14,919 research outputs found

    An optimized method towards formal verification of mixed signals using differential fed neural network over FFNN

    Get PDF
    Today, the semiconductor industries are rapidly usinganalog and mixed signals to achieve cost-effective solutions on a System on Chip (SoC) design.  The SoC device is a part of analog, digital and essential mixed-signal models/circuits merged on a semiconductor device, which provides the platform to build modern retail/consumer electronics appliances with smart technology. In order to evaluate the mixed signals, the conventional approaches are not effective with respect to its performance, time and manufacturing cost. Thus, the recent researches were much interested in formal verification technique as it provides the evidence of conscious algorithms in a system. The demand for formal verification in the SoC designs in the context of software and hardware platform is high because of its cost and accuracy. Thus, the paper introduces atechnique of formal verification for mixed signals by using training models of the Differential fed neural network (DFNN) over feedforward neural network (FFNN). The formal verification is performed through equivalence checking by using recently adopted designs as reference designs. The outcomes of the verification techniques suggests that DFNN based technique improves the training accuracy and optimizes the hardware resources like area, power than the FFNN based technique

    ART and ARTMAP Neural Networks for Applications: Self-Organizing Learning, Recognition, and Prediction

    Full text link
    ART and ARTMAP neural networks for adaptive recognition and prediction have been applied to a variety of problems. Applications include parts design retrieval at the Boeing Company, automatic mapping from remote sensing satellite measurements, medical database prediction, and robot vision. This chapter features a self-contained introduction to ART and ARTMAP dynamics and a complete algorithm for applications. Computational properties of these networks are illustrated by means of remote sensing and medical database examples. The basic ART and ARTMAP networks feature winner-take-all (WTA) competitive coding, which groups inputs into discrete recognition categories. WTA coding in these networks enables fast learning, that allows the network to encode important rare cases but that may lead to inefficient category proliferation with noisy training inputs. This problem is partially solved by ART-EMAP, which use WTA coding for learning but distributed category representations for test-set prediction. In medical database prediction problems, which often feature inconsistent training input predictions, the ARTMAP-IC network further improves ARTMAP performance with distributed prediction, category instance counting, and a new search algorithm. A recently developed family of ART models (dART and dARTMAP) retains stable coding, recognition, and prediction, but allows arbitrarily distributed category representation during learning as well as performance.National Science Foundation (IRI 94-01659, SBR 93-00633); Office of Naval Research (N00014-95-1-0409, N00014-95-0657

    MetTeL: A Generic Tableau Prover.

    Get PDF

    A scalable multi-core architecture with heterogeneous memory structures for Dynamic Neuromorphic Asynchronous Processors (DYNAPs)

    Full text link
    Neuromorphic computing systems comprise networks of neurons that use asynchronous events for both computation and communication. This type of representation offers several advantages in terms of bandwidth and power consumption in neuromorphic electronic systems. However, managing the traffic of asynchronous events in large scale systems is a daunting task, both in terms of circuit complexity and memory requirements. Here we present a novel routing methodology that employs both hierarchical and mesh routing strategies and combines heterogeneous memory structures for minimizing both memory requirements and latency, while maximizing programming flexibility to support a wide range of event-based neural network architectures, through parameter configuration. We validated the proposed scheme in a prototype multi-core neuromorphic processor chip that employs hybrid analog/digital circuits for emulating synapse and neuron dynamics together with asynchronous digital circuits for managing the address-event traffic. We present a theoretical analysis of the proposed connectivity scheme, describe the methods and circuits used to implement such scheme, and characterize the prototype chip. Finally, we demonstrate the use of the neuromorphic processor with a convolutional neural network for the real-time classification of visual symbols being flashed to a dynamic vision sensor (DVS) at high speed.Comment: 17 pages, 14 figure

    Combining Machine Learning and Formal Methods for Complex Systems Design

    Get PDF
    During the last 20 years, model-based design has become a standard practice in many fields such as automotive, aerospace engineering, systems and synthetic biology. This approach allows a considerable improvement of the final product quality and reduces the overall prototyping costs. In these contexts, formal methods, such as temporal logics, and model checking approaches have been successfully applied. They allow a precise description and automatic verification of the prototype's requirements. In the recent past, the increasing market requests for performing and safer devices shows an unstoppable growth which inevitably brings to the creation of more and more complicated devices. The rise of cyber-physical systems, which are on their way to become massively pervasive, brings the complexity level to the next step and open many new challenges. First, the descriptive power of standard temporal logics is no more sufficient to handle all kind of requirements the designers need (consider, for example, non-functional requirements). Second, the standard model checking techniques are unable to manage such level of complexity (consider the well-known curse of state space explosion). In this thesis, we leverage machine learning techniques, active learning, and optimization approaches to face the challenges mentioned above. In particular, we define signal measure logic, a novel temporal logic suited to describe non-functional requirements. We also use evolutionary algorithms and signal temporal logic to tackle a supervised classification problem and a system design problem which involves multiple conflicting requirements (i.e., multi-objective optimization problems). Finally, we use an active learning approach, based on Gaussian processes, to deal with falsification problems in the automotive field and to solve a so-called threshold synthesis problem, discussing an epidemics case study.During the last 20 years, model-based design has become a standard practice in many fields such as automotive, aerospace engineering, systems and synthetic biology. This approach allows a considerable improvement of the final product quality and reduces the overall prototyping costs. In these contexts, formal methods, such as temporal logics, and model checking approaches have been successfully applied. They allow a precise description and automatic verification of the prototype's requirements. In the recent past, the increasing market requests for performing and safer devices shows an unstoppable growth which inevitably brings to the creation of more and more complicated devices. The rise of cyber-physical systems, which are on their way to become massively pervasive, brings the complexity level to the next step and open many new challenges. First, the descriptive power of standard temporal logics is no more sufficient to handle all kind of requirements the designers need (consider, for example, non-functional requirements). Second, the standard model checking techniques are unable to manage such level of complexity (consider the well-known curse of state space explosion). In this thesis, we leverage machine learning techniques, active learning, and optimization approaches to face the challenges mentioned above. In particular, we define signal measure logic, a novel temporal logic suited to describe non-functional requirements. We also use evolutionary algorithms and signal temporal logic to tackle a supervised classification problem and a system design problem which involves multiple conflicting requirements (i.e., multi-objective optimization problems). Finally, we use an active learning approach, based on Gaussian processes, to deal with falsification problems in the automotive field and to solve a so-called threshold synthesis problem, discussing an epidemics case study
    • …
    corecore