9 research outputs found

    Optimal Sensorless Four Switch Direct Power Control of BLDC Motor

    Get PDF
    Brushless DC (BLDC) motors are used in a wide range of applications due to their high efficiency and high power density. In this paper, sensorless four-switch direct power control (DPC) method with the sector to sector commutations ripple minimization for BLDC motor control is proposed. The main features of the proposed DPC method are: (1) fast dynamic response (2) easy implementation (3) use of power feedback for motor control that is much easy to implement (4) eliminating the torque dips during sector-to sector commutations. For controlling the motor speed, a position sensorless method is used enhancing drive reliability. For reference speed tracking, a PI control is also designed and tuned based on imperialist competition algorithm (ICA) that reduces reference tracking error. The feasibility of the proposed control method is developed and analyzed by MATLAB/SIMULINK®. Simulation results prove high performance exhibited by the proposed DPC strategy

    Commutation Torque-ripple Minimization for Brushless DC Motor Based on Quasi-Z-Source Inverter

    Get PDF
    Conventional brushless DC Motor (BLDCM) drive involves a voltage-source inverter with six-step squarewave control, which can be widely used in automated industrial applications. However, high torque ripple due to different current slew rates during the commutation interval would significantly reduce the performance in the high-precision area. To tackle this problem, the paper proposes a novel strategy to reduce the commutation torque-ripple by using a quasi-Z-source inverter. In which, an impedance network is implemented between the power supply and the voltage-source inverter. This could make the equivalent DC-link voltage boosted during the commutation interval to compensate the current dip of commutation phase, and keep incoming and outgoing phase current changing at the same rate. In Matlab/Simulink environment, proposed scheme is developed and simulated. Finally, the effectiveness of the proposed control strategy is validated, the torque ripple can be greatly reduced and with the increased average torque

    Advances in Rotating Electric Machines

    Get PDF
    It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines

    DC Current Control for a Single-Stage Current Source Inverter in Motor Drive Application

    Get PDF
    The current source inverter (CSI) is a power electronics topology that allows for the realization of variable speed drives (VSD). Compared to the most common voltage source inverter (VSI), which can be directly connected to a voltage source, the CSI needs a prestage to generate a constant current bus. This article therefore seeks to challenge this “accepted” consideration that a CSI always needs this precircuit and seeks to remove this circuit by proposing an innovative i dc current control scheme. The proposed scheme is applied to a single stage motor drive driven by a CSI converter. It is shown how implementing this control scheme removes the need for the front-end stage, thus removing an unnecessary converter and optimizing the efficiency at the same time. The CSI state-space equations are presented and the developed models are verified using simulations. Stability analysis of small-signal model is considered through Nyquist criterion with the robustness in presence of variations of the most important system parameters. Experimental results driving a permanent magnet synchronous machine (PMSM) are shown confirming the validity of the proposed control, potentially paving the way to a larger adoption of the CSI topologies for motor drive applications

    Advances and Technologies in High Voltage Power Systems Operation, Control, Protection and Security

    Get PDF
    The electrical demands in several countries around the world are increasing due to the huge energy requirements of prosperous economies and the human activities of modern life. In order to economically transfer electrical powers from the generation side to the demand side, these powers need to be transferred at high-voltage levels through suitable transmission systems and power substations. To this end, high-voltage transmission systems and power substations are in demand. Actually, they are at the heart of interconnected power systems, in which any faults might lead to unsuitable consequences, abnormal operation situations, security issues, and even power cuts and blackouts. In order to cope with the ever-increasing operation and control complexity and security in interconnected high-voltage power systems, new architectures, concepts, algorithms, and procedures are essential. This book aims to encourage researchers to address the technical issues and research gaps in high-voltage transmission systems and power substations in modern energy systems

    Applications of Power Electronics:Volume 1

    Get PDF

    Application of Power Electronics Converters in Smart Grids and Renewable Energy Systems

    Get PDF
    This book focuses on the applications of Power Electronics Converters in smart grids and renewable energy systems. The topics covered include methods to CO2 emission control, schemes for electric vehicle charging, reliable renewable energy forecasting methods, and various power electronics converters. The converters include the quasi neutral point clamped inverter, MPPT algorithms, the bidirectional DC-DC converter, and the push–pull converter with a fuzzy logic controller

    Recent Development of Hybrid Renewable Energy Systems

    Get PDF
    Abstract: The use of renewable energies continues to increase. However, the energy obtained from renewable resources is variable over time. The amount of energy produced from the renewable energy sources (RES) over time depends on the meteorological conditions of the region chosen, the season, the relief, etc. So, variable power and nonguaranteed energy produced by renewable sources implies intermittence of the grid. The key lies in supply sources integrated to a hybrid system (HS)
    corecore