30,418 research outputs found

    Texture descriptors applied to digital mammography

    Get PDF
    Breast cancer is the second cause of death among women cancers. Computer Aided Detection has been demon- strated an useful tool for early diagnosis, a crucial as- pect for a high survival rate. In this context, several re- search works have incorporated texture features in mam- mographic image segmentation and description such as Gray-Level co-occurrence matrices, Local Binary Pat- terns, and many others. This paper presents an approach for breast density classi¯cation based on segmentation and texture feature extraction techniques in order to clas- sify digital mammograms according to their internal tis- sue. The aim of this work is to compare di®erent texture descriptors on the same framework (same algorithms for segmentation and classi¯cation, as well as same images). Extensive results prove the feasibility of the proposed ap- proach.Postprint (published version

    Application of Fractal and Wavelets in Microcalcification Detection

    Get PDF
    Breast cancer has been recognized as one or the most frequent, malignant tumors in women, clustered microcalcifications in mammogram images has been widely recognized as an early sign of breast cancer. This work is devote to review the application of Fractal and Wavelets in microcalcifications detection

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201
    corecore