3 research outputs found

    Hybrid approaches to optimization and machine learning methods: a systematic literature review

    Get PDF
    Notably, real problems are increasingly complex and require sophisticated models and algorithms capable of quickly dealing with large data sets and finding optimal solutions. However, there is no perfect method or algorithm; all of them have some limitations that can be mitigated or eliminated by combining the skills of different methodologies. In this way, it is expected to develop hybrid algorithms that can take advantage of the potential and particularities of each method (optimization and machine learning) to integrate methodologies and make them more efficient. This paper presents an extensive systematic and bibliometric literature review on hybrid methods involving optimization and machine learning techniques for clustering and classification. It aims to identify the potential of methods and algorithms to overcome the difficulties of one or both methodologies when combined. After the description of optimization and machine learning methods, a numerical overview of the works published since 1970 is presented. Moreover, an in-depth state-of-art review over the last three years is presented. Furthermore, a SWOT analysis of the ten most cited algorithms of the collected database is performed, investigating the strengths and weaknesses of the pure algorithms and detaching the opportunities and threats that have been explored with hybrid methods. Thus, with this investigation, it was possible to highlight the most notable works and discoveries involving hybrid methods in terms of clustering and classification and also point out the difficulties of the pure methods and algorithms that can be strengthened through the inspirations of other methodologies; they are hybrid methods.Open access funding provided by FCT|FCCN (b-on). This work has been supported by FCT— Fundação para a Ciência e Tecnologia within the R &D Units Project Scope: UIDB/00319/2020. Beatriz Flamia Azevedo is supported by FCT Grant Reference SFRH/BD/07427/2021 The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/ MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and SusTEC (LA/P/0007/2021).info:eu-repo/semantics/publishedVersio

    Paralelización del algoritmo basado en el comportamiento social de las arañas para clustering

    Get PDF
    La adaptación de las tecnologías digitales y la aplicación de Internet en las organizaciones, personas y dispositivos, generan una cantidad extraordinaria de datos en diversas áreas de la ciencia como por ejemplo: minería de datos, big data, clasificación de patrones, reconocimiento de imágenes, inteligencia de negocios, bioinformática, detección de outliers e IoT. En consecuencia estos datos requieren ser analizados, procesados y almacenados. El proceso de análisis generalmente trae dificultades computacionales como el tiempo de ejecución y la calidad de los resultados. Clustering es una de las técnicas de clasificación mas utilizadas para analizar grandes y pequeños volúmenes de datos. En la literatura se puede hallar algoritmos como por ejemplo: Social Spider Optimization (SSO), K-means, Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO), Genetic Algorithms (GA). En este trabajo se implementa la versión paralela del algoritmo SSO, esta implementación es denominada como Parallel Social Spider Optimization (P-SSO). El objetivo de esta investigación es mejorar la precisión de la métrica y el tiempo de ejecución del algoritmo SSO. Para el desarrollo de la implementación se utilizó el mecanismo de modelo de isla con topologías estáticas y topologías dinámicas. En la etapa experimental los algoritmos propuestos se ejecutaron 50 veces, para lo cual se usó 9 dataset del repositorio UCI Machine Learning Repository. Tambien se realizó un análisis estadístico para comparar el algoritmo SSO con el algoritmo P-SSO. Los resultados muestran que los modelos paralelos del algoritmo P-SSO en promedio son 15 veces más rápido que el algoritmo SSO para clasificar grandes volúmenes de datos y 28 veces más rápido para pequeños volúmenes de datos. Así mismo se verifico que la métrica generada de la suma de las distancias Euclidianas para el algoritmo P-SSO es muy similar a la métrica resultante del algoritmo SSO y para algunos dataset este valor es más óptimo. Finalmente, se verifico que los modelos paralelos del algoritmo P-SSO convergen más lento que el algoritmo SSO. Esto constituye un aporte significativo en mejorar el tiempo de ejecución de estos algoritmos para resolver problemas de clustering, con métricas muy favorables que verifican la solución.Financiado por la UNSAA
    corecore