2,223 research outputs found

    Checkpointing as a Service in Heterogeneous Cloud Environments

    Get PDF
    A non-invasive, cloud-agnostic approach is demonstrated for extending existing cloud platforms to include checkpoint-restart capability. Most cloud platforms currently rely on each application to provide its own fault tolerance. A uniform mechanism within the cloud itself serves two purposes: (a) direct support for long-running jobs, which would otherwise require a custom fault-tolerant mechanism for each application; and (b) the administrative capability to manage an over-subscribed cloud by temporarily swapping out jobs when higher priority jobs arrive. An advantage of this uniform approach is that it also supports parallel and distributed computations, over both TCP and InfiniBand, thus allowing traditional HPC applications to take advantage of an existing cloud infrastructure. Additionally, an integrated health-monitoring mechanism detects when long-running jobs either fail or incur exceptionally low performance, perhaps due to resource starvation, and proactively suspends the job. The cloud-agnostic feature is demonstrated by applying the implementation to two very different cloud platforms: Snooze and OpenStack. The use of a cloud-agnostic architecture also enables, for the first time, migration of applications from one cloud platform to another.Comment: 20 pages, 11 figures, appears in CCGrid, 201

    End-to-end informed VM selection in compute clouds

    Full text link
    The selection of resources, particularly VMs, in current public IaaS clouds is usually done in a blind fashion, as cloud users do not have much information about resource consumption by co-tenant third-party tasks. In particular, communication patterns can play a significant part in cloud application performance and responsiveness, specially in the case of novel latencysensitive applications, increasingly common in today’s clouds. Thus, herein we propose an end-to-end approach to the VM allocation problem using policies based uniquely on round-trip time measurements between VMs. Those become part of a userlevel ‘Recommender Service’ that receives VM allocation requests with certain network-related demands and matches them to a suitable subset of VMs available to the user within the cloud. We propose and implement end-to-end algorithms for VM selection that cover desirable profiles of communications between VMs in distributed applications in a cloud setting, such as profiles with prevailing pair-wise, hub-and-spokes, or clustered communication patterns between constituent VMs. We quantify the expected benefits from deploying our Recommender Service by comparing our informed VM allocation approaches to conventional, random allocation methods, based on real measurements of latencies between Amazon EC2 instances. We also show that our approach is completely independent from cloud architecture details, is adaptable to different types of applications and workloads, and is lightweight and transparent to cloud providers.This work is supported in part by the National Science Foundation under grant CNS-0963974

    Task Runtime Prediction in Scientific Workflows Using an Online Incremental Learning Approach

    Full text link
    Many algorithms in workflow scheduling and resource provisioning rely on the performance estimation of tasks to produce a scheduling plan. A profiler that is capable of modeling the execution of tasks and predicting their runtime accurately, therefore, becomes an essential part of any Workflow Management System (WMS). With the emergence of multi-tenant Workflow as a Service (WaaS) platforms that use clouds for deploying scientific workflows, task runtime prediction becomes more challenging because it requires the processing of a significant amount of data in a near real-time scenario while dealing with the performance variability of cloud resources. Hence, relying on methods such as profiling tasks' execution data using basic statistical description (e.g., mean, standard deviation) or batch offline regression techniques to estimate the runtime may not be suitable for such environments. In this paper, we propose an online incremental learning approach to predict the runtime of tasks in scientific workflows in clouds. To improve the performance of the predictions, we harness fine-grained resources monitoring data in the form of time-series records of CPU utilization, memory usage, and I/O activities that are reflecting the unique characteristics of a task's execution. We compare our solution to a state-of-the-art approach that exploits the resources monitoring data based on regression machine learning technique. From our experiments, the proposed strategy improves the performance, in terms of the error, up to 29.89%, compared to the state-of-the-art solutions.Comment: Accepted for presentation at main conference track of 11th IEEE/ACM International Conference on Utility and Cloud Computin
    • …
    corecore