30,741 research outputs found

    Exploring the use of conversational agents to improve cyber situational awareness in the Internet of Things (IoT).

    Get PDF
    The Internet of Things (IoT) is an emerging paradigm, which aims to extend the power of the Internet beyond computers and smartphones to a vast and growing range of "things" - devices, processes and environments. The result is an interconnected world where humans and devices interact with each other, establishing a smart environment for the continuous exchange of information and services. Billions of everyday devices such as home appliances, surveillance cameras, wearables and doorbells, enriched with computational and networking capabilities, have already been connected to the Internet. However, as the IoT has grown, the demand for low-cost, easy-to-deploy devices has also increased, leading to the production of millions of insecure Internet-connected smart devices. Many of these devices can be easily exploited and leveraged to perform large-scale attacks on the Internet, such as the recently witnessed botnet attacks. Since these attacks often target consumer-level products, which commonly lack a screen or user interface, it can be difficult for users to identify signs of infection and be aware of devices that have been compromised. This thesis presents four studies which collectively explored how user awareness of threats in consumer IoT networks could be improved. Maintaining situational awareness of what is happening within a home network is challenging, not least because malicious activity often occurs in devices which are not easily monitored. This thesis evaluated the effectiveness of conversational agents to improve Cyber Situational Awareness. In doing so, it presented the first study to investigate their ability to help users improve their perception of smart device activity, comprehend this in the context of their home environment, and project this knowledge to determine if a threat had occurred or may occur in the future. The research demonstrated how a BLSTMRNN with word embedding could be used to extract semantic meaning from packets to perform deep packet inspection and detect IoT botnet activity. Specifically, how the models use of contextual information from both the past and future enabled better predictions to be made about the current state (packet) due to the sequential nature of the network traffic. In addition, a cross-sectional study examined users' awareness and perception of threats and found that, although users value security and privacy, they found it difficult to identify threats and infected devices. Finally, novel cross-sectional and longitudinal studies evaluated the use of conversational agents, and demonstrated them to be an effective and efficient method of improving Cyber Situational Awareness. In particular, this was shown to be true when using a multi-modal approach and combining aural, verbal and visual modalities

    eHealth and the Internet of Things

    Get PDF
    To respond to an ageing population, eHealth strategies offer significant opportunities in achieving a balanced and sustainable healthcare infrastructure. Advances in technology both at the sensor and device levels and in respect of information technology have opened up other possibilities and options. Of significance among these is what is increasingly referred to as the Internet of Things, the interconnection of physical devices to an information infrastructure. The paper therefore sets out to position the Internet of Things at the core of future developments in eHealt

    Software Platforms for Smart Cities: Concepts, Requirements, Challenges, and a Unified Reference Architecture

    Full text link
    Making cities smarter help improve city services and increase citizens' quality of life. Information and communication technologies (ICT) are fundamental for progressing towards smarter city environments. Smart City software platforms potentially support the development and integration of Smart City applications. However, the ICT community must overcome current significant technological and scientific challenges before these platforms can be widely used. This paper surveys the state-of-the-art in software platforms for Smart Cities. We analyzed 23 projects with respect to the most used enabling technologies, as well as functional and non-functional requirements, classifying them into four categories: Cyber-Physical Systems, Internet of Things, Big Data, and Cloud Computing. Based on these results, we derived a reference architecture to guide the development of next-generation software platforms for Smart Cities. Finally, we enumerated the most frequently cited open research challenges, and discussed future opportunities. This survey gives important references for helping application developers, city managers, system operators, end-users, and Smart City researchers to make project, investment, and research decisions.Comment: Accepted for publication in ACM Computing Survey

    How the internet of things technology enhances emergency response operations

    Get PDF
    The Internet of Things (IoT) is a novel paradigm that connects the pervasive presence around us of a variety of things or objects to the Internet by using wireless/wired technologies to reach desired goals. Since the concept of the IoT was introduced in 2005, we see the deployment of a new generation of networked smart objects with communication, sensory and action capabilities for numerous applications, mainly in global supply chain management, environment monitoring and other non-stress environments. This paper introduces the IoT technology for use in the emergency management community. Considering the information required for supporting three sequential and distinct rhythms in emergency response operations: mobilization rhythm, preliminary situation assessment rhythm, and intervention rhythm, the paper proposes a modified task-technology fit approach that is used to investigate how the IoT technology can be incorporated into the three rhythms and enhance emergency response operations. The findings from our research support our two hypotheses: H1: IoT technology fits the identified information requirements; and H2: IoT technology provides added value to emergency response operations in terms of obtaining efficient cooperation, accurate situational awareness, and complete visibility of resources. © 2012 Elsevier Inc

    How the Internet of Things Technology Enhances Emergency Response Operations

    Get PDF
    The Internet of Things (IoT) is a novel paradigmthat connects the pervasive presence around us of a variety of things or objects to the Internet by using wireless/wired technologies to reach desired goals. Since the concept of the IoT was introduced in 2005, we see the deployment of a new generation of networked smart objects with communication, sensory and action capabilities for numerous applications, mainly in global supply chain management, environment monitoring and other non-stress environments. This paper introduces the IoT technology for use in the emergency management community. Considering the information required for supporting three sequential and distinct rhythms in emergency response operations: mobilization rhythm, preliminary situation assessment rhythm, and intervention rhythm, the paper proposes a modified task-technology fit approach that is used to investigate how the IoT technology can be incorporated into the three rhythms and enhance emergency response operations. The findings from our research support our two hypotheses: H1: IoT technology fits the identified information requirements; and H2: IoT technology provides added value to emergency response operations in terms of obtaining efficient cooperation, accurate situational awareness, and complete visibility of resources
    corecore