144,603 research outputs found

    An approach for analyzing business process execution complexity based on textual data and event log

    Get PDF
    With the advent of digital transformation, organizations increasingly rely on various information systems to support their business processes (BPs). Recorded data, including textual data and event log, expand exponentially, complicating decision-making and posing new challenges for BP complexity analysis in Business Process Management (BPM). Herein, Process Mining (PM) serves to derive insights based on historic BP execution data, called event log. However, in PM, textual data is often neglected or limited to BP descriptions. Therefore, in this study, we propose a novel approach for analyzing BP execution complexity by combining textual data serving as an input at the BP start and event log. The approach is aimed at studying the connection between complexities obtained from these two data types. For textual data-based complexity, the approach employs a set of linguistic features. In our previous work, we have explored the design of linguistic features favorable for BP execution complexity prediction. Accordingly, we adapt and incorporate them into the proposed approach. Using these features, various machine learning techniques are applied to predict textual data-based complexity. Moreover, in this prediction, we show the adequacy of our linguistic features, which outperformed the linguistic features of a widely-used text analysis technique. To calculate event log-based complexity, the event log and relevant complexity metrics are used. Afterward, a correlation analysis of two complexities and an analysis of the significant differences in correlations are performed. The results serve to derive recommendations and insights for BP improvement. We apply the approach in the IT ticket handling process of the IT department of an academic institution. Our findings show that the suggested approach enables a comprehensive identification of BP redesign and improvement opportunities

    A Robust F-measure for evaluating discovered process models

    Get PDF

    Large-scale event extraction from literature with multi-level gene normalization

    Get PDF
    Text mining for the life sciences aims to aid database curation, knowledge summarization and information retrieval through the automated processing of biomedical texts. To provide comprehensive coverage and enable full integration with existing biomolecular database records, it is crucial that text mining tools scale up to millions of articles and that their analyses can be unambiguously linked to information recorded in resources such as UniProt, KEGG, BioGRID and NCBI databases. In this study, we investigate how fully automated text mining of complex biomolecular events can be augmented with a normalization strategy that identifies biological concepts in text, mapping them to identifiers at varying levels of granularity, ranging from canonicalized symbols to unique gene and proteins and broad gene families. To this end, we have combined two state-of-the-art text mining components, previously evaluated on two community-wide challenges, and have extended and improved upon these methods by exploiting their complementary nature. Using these systems, we perform normalization and event extraction to create a large-scale resource that is publicly available, unique in semantic scope, and covers all 21.9 million PubMed abstracts and 460 thousand PubMed Central open access full-text articles. This dataset contains 40 million biomolecular events involving 76 million gene/protein mentions, linked to 122 thousand distinct genes from 5032 species across the full taxonomic tree. Detailed evaluations and analyses reveal promising results for application of this data in database and pathway curation efforts. The main software components used in this study are released under an open-source license. Further, the resulting dataset is freely accessible through a novel API, providing programmatic and customized access (http://www.evexdb.org/api/v001/). Finally, to allow for large-scale bioinformatic analyses, the entire resource is available for bulk download from http://evexdb.org/download/, under the Creative Commons -Attribution - Share Alike (CC BY-SA) license

    i-JEN: Visual interactive Malaysia crime news retrieval system

    Get PDF
    Supporting crime news investigation involves a mechanism to help monitor the current and past status of criminal events. We believe this could be well facilitated by focusing on the user interfaces and the event crime model aspects. In this paper we discuss on a development of Visual Interactive Malaysia Crime News Retrieval System (i-JEN) and describe the approach, user studies and planned, the system architecture and future plan. Our main objectives are to construct crime-based event; investigate the use of crime-based event in improving the classification and clustering; develop an interactive crime news retrieval system; visualize crime news in an effective and interactive way; integrate them into a usable and robust system and evaluate the usability and system performance. The system will serve as a news monitoring system which aims to automatically organize, retrieve and present the crime news in such a way as to support an effective monitoring, searching, and browsing for the target users groups of general public, news analysts and policemen or crime investigators. The study will contribute to the better understanding of the crime data consumption in the Malaysian context as well as the developed system with the visualisation features to address crime data and the eventual goal of combating the crimes
    corecore