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Abstract—Within process mining research, one of the most
important fields of study is process discovery, which can be
defined as the extraction of control-flow models from audit trails
or information system event logs. The evaluation of discovered
process models is an essential but difficult task for any process
discovery analysis. With this paper, we propose a novel approach
for evaluating discovered process models based on artificially
generated negative events. This approach allows for the definition
of a behavioral F-measure for discovered process models, which
is the main contribution of this paper.

I. INTRODUCTION

Within the research domain of process mining, a lot of
attention has been bestowed on process discovery. Process
discovery can be best defined as extracting control-flow pro-
cess models from information system event logs. Over the
years, several different process discovery algorithms [1]–[8]
have been proposed in literature. Many of these algorithms
are able to deal with specific problems related to control-flow
discovery: parallelism, loops, duplicate tasks, noise, and non-
local dependencies. However, the effort spent in developing
process discovery algorithms is not counterbalanced by the
effort put into the evaluation of the discovered process models.
As such, Rozinat et al. [9] and De Weerdt et al. [10] identified
that a well-defined evaluation framework for process discovery
is still missing. The lack of an evaluation framework is
primarily due to the difficulty of combining metrics that cap-
ture different dimensions along which process models should
be evaluated. More specifically, process models cannot be
evaluated on recall or sensitivity only. Although this dimension
is of utmost importance, other requirements for discovered
process models such as precision and generalization beyond
observed behavior should be included in any process discovery
evaluation analysis.

With this paper, we propose an evaluation approach based
upon artificially generated negative events that allows for the
application of the well-known F-measure to discovered pro-
cess models. Accordingly, this paper is structured as follows.
Section II outlines the technique of inducing artificial negative

events and the different approaches to measuring recall and
precision. In Section III, we define our novel evaluation
approach, which will be empirically validated in Section IV.
Finally, in Section V, a number of key discussion points
are commented on before the conclusions are formulated in
Section VI.

II. MEASURING RECALL AND PRECISION

A. Artificially generating negative events

Event logs rarely contain information about transitions that
are not allowed to take place. This makes process discovery an
inherently unsupervised learning problem. To make a tradeoff
between overly general or overly precise process models,
learners make additional assumptions about the given event
sequences. Such assumptions are part of the inductive bias of
a learner. Process discovery algorithms generally include the
assumption that event logs portray the complete behavior of
the underlying process and implicitly use this completeness
assumption to make a tradeoff between overly general and
overly precise process models.

In [8], Goedertier et al. describe a technique to artificially
generate negative events based on an event log containing only
positive events. The induction procedure is the foundation for
their process discovery technique called AGNEs Miner. In this
paper, we will make use of the same principle for generating
negative events in order to build our evaluation approach.

1) Principle: The technique of inducing negative events
is relatively straightforward. Negative events record that at
a given position in an event sequence, a particular event
cannot occur. At each position in each event trace in the
log, it is examined which negative events can be recorded for
this position. In a first step, the technique stipulates that the
event log is made more compact, by grouping process traces
that have identical sequences into grouped process instances.
By grouping similar process instances, searching for similar
behavior in the event log can be performed more efficiently.

In the second step, all negative events are induced for
each grouped process instance. Negative examples can be
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introduced in grouped process instances by checking at any
given positive event whether any other activity type in the
event log could occur as an event at this position. For each
of these events, it is tested whether there exists a similar
sequence in the event log in which at that point the event under
consideration occurs. If such an event does not occur in any
other sequence, such behavior is not present in the event log.
Consequently, a negative event can be added at this position in
the event sequence. On the other hand, if a similar sequence
is found with this behavior, no negative event is generated.

2) Example: In order to elucidate the principle of gen-
erating artificial negative events more clearly, the injection
procedure is illustrated with a small example. Take the event
log in Figure 1, which is perfectly represented by the process
model in Figure 2. When we look for instance at the third
positive event (activity c) in trace σ1, it can be seen that five
artificial negative events are induced at this position. Because
activity d appears at the same position of event cp in another
similar trace in the event log, namely trace σ2, activity d
cannot be added as a negative event in trace σ1 at the position
of event cp. In contrary, all the other activity types in this event
log can be added as artificial negative events because there are
no similar traces in the event log where these activities appear
as a positive event at the position of event cp in trace σ1. In
this way, artificial negative events are added to the event log
for each positive event in a log trace (see Table I).

σ1 abcdeg
σ2 abdceg
σ3 abcdefg
σ4 abdcefg

Fig. 1. Example event log

σ1 ap bp cp dp ep gp

bn an an an an an

cn cn bn bn bn bn

dn dn en cn cn cn

en en fn en dn dn

fn fn gn fn fn en

gn gn gn gn fn

TABLE I
ARTIFICIAL NEGATIVE EVENTS FOR TRACE σ1

The availability of an event log supplemented with artificial
negative events allows for the construction of a confusion
matrix for a mined control-flow model. By replaying the event
log in the model, each and every positive and artificial negative
event can be evaluated. In this way, a matrix as in Table II
can be constructed denoting whether the positive and negative
events are predicted correctly or not by the model. The
availability of such a confusion matrix is a substantial advance
of the evaluation method based on the artificial negative event
generation proposed by Goedertier et al. [8].

a b

c

d

e

f

g

Fig. 2. Process Model for the event log in Figure 1

Actual pos. Actual neg.
Pred. pos. True Pos. (TP ) False Pos. (FP )
Pred. neg. False Neg. (FN ) True Neg. (TN )

TABLE II
CONFUSION MATRIX

B. Recall

Recall or sensitivity is undoubtedly reckoned as the most
important evaluation dimension of discovered process models.
A recall metric reflects how much behavior present in the event
log is captured by the model. For every process discovery
algorithm, it is of utmost importance to render models with
good recall because representing the control-flow behavior in
an event log is the major objective of any discovery technique.

In recent years, a number of authors proposed metrics for
quantifying the recall of a discovered process model in respect
to the event log. A well-known recall metric is fitness f [11].
This Petri net based metric punishes for missing and remaining
tokens when replaying the event log in the discovered process
model. Although often used, there exist different alternatives
for the fitness metric. For example, Weijters et al. [2] proposed
the Parsing Measure PM , a much more coarse grained metric,
that quantifies the percentage of traces that can be replayed
in the discovered process model. Other valuable recall metrics
are Completeness (PFcomplete) [4] and an alternative Com-
pleteness metric as defined by Greco et al. [12].

Originating from their technique allowing to induce artificial
negative events into an event log, Goedertier et al. [8] defined
two evaluation metrics. One of these metrics is Behavioral
recall (rp

B), which captures the percentage of correctly classi-
fied positive events in the event log by the discovered process
model. In the next section, we will make use of this recall
metric in order to define an F-measure for discovered process
models.

C. Precision

The key challenge for any process discovery technique
is to come up with accurate process models that at the
same time find the right balance between underfitting (overly
general process model) and overfitting (overly precise process
model). The precision evaluation dimension gauges whether a
mined process model does not underfit the behavior present
in the event log. As illustrated in Figure 3, a flower model
(Figure 3(c)) is very sensitive because it allows any sequence
of activities, nevertheless this model does not deliver any
knowledge with respect to the control-flow behavior in the
event log. This is the main motivation why process models
should also be evaluated along the precision dimension.

In the literature, few precision metrics have been pro-
posed. Greco et al. [12] defined Soundness. Soundness is
the percentage of traces compliant with the process model
that have been registered in the log. Calculating Soundness
is not straightforward because enumerating all possible paths
in a process model is hard. Even for smaller process models,
it might be impossible to determine all the traces that are
compliant with a process model.



A by far more used precision metric is the advanced
behavioral appropriateness (a

′
B) as defined by Rozinat et al.

[11]. Although this metric is theoretically sound in order to
evaluate the precision of a process model, we have illustrated
previously that there are a number of drawbacks [10]. For
instance, the calculation requires an exhaustive simulation
which is computationally very demanding. Moreover, the im-
plementation of this exhaustive simulation for calculating the
metric within the ProM framework [13] is only approximate.

D. Precision based on artificially generated negative events

As explained before, with the availability of an event
log supplemented with artificial negative events, a confusion
matrix can be composed. Drawing upon this confusion matrix,
a novel precision metric is defined. By evaluating the true
positive events (TP ) in respect to all predicted positive events
(TP +FP ), the precision dimension of a mined process model
can be assessed. Therefore we define Behavioral Precision pB

as in Equation 1.

pB =

( ∑k
i=1 niTP i∑k

i=1 niTP i +
∑k

i=1 niFP i

)
(1)

Note that k is the total number of different grouped process
instances in the event log. Index i runs over all different
grouped process instances. ni is the number of instances
within one group of similar process instances. TP denotes
the correctly predicted positive events, while FP denotes the
incorrectly predicted artificial negative events.

This precision metric, which fully coincides with the stan-
dard definition of precision within the field of data mining, has
the advantage of requiring much less computational resources
in respect to the other precision metrics mentioned earlier.
Furthermore, having now both a recall metric and a precision
metric based on artificially generated negative events, we are
able to define an F-measure for evaluating discovered process
models, as discussed in the next section.

III. APPLYING THE F-MEASURE TO PROCESS DISCOVERY

A. Definition

Originally, the F-measure (Equation 2) was proposed by
van Rijsbergen [14] in the context of information retrieval.
In the fields of machine learning and data mining [15], the F-
measure is often used as a standard balance between precision
and recall for evaluating point classifiers.

F = 2× precision× recall
precision + recall

(2)

In fact, the F-measure can be seen as a point classifier
alternative of the AUC (Area Under the ROC-curve) [16], a
popular evaluation metric for rank classifiers. AUC cannot be
used as an evaluation approach for process discovery because a
discovered process model can only be seen as a point classifier
for each individual event in the event log. In particular, a
discovered process model determines whether a positive or

artificial negative event is correctly classified or not, it does
not assign a probability to this classification.

In order to take into account the typicalities of the process
discovery evaluation setting, we define the Behavioral F-
measure FB for a discovered process model in Equation 3,
entirely founded upon the formula in Equation 2.

FB = 2× pB × rp
B

pB + rp
B

, with (3)

pB =

( ∑k
i=1 niTP i∑k

i=1 niTP i +
∑k

i=1 niFP i

)

rp
B =

( ∑k
i=1 niTP i∑k

i=1 niTP i +
∑k

i=1 niFN i

)

Note that the meaning of the symbols remain exactly the
same as in Equation 1, with FN denoting the falsely predicted
positive events.

B. Advantages

The key advantage of this novel evaluation approach con-
sists of a transparent and robust method to combine two
important evaluation dimensions for discovered process mod-
els: recall and precision. More precisely, our approach allows
for careful comparison of different process models obtained
from the same event log. As such, benchmarking state-of-
the-art process discovery techniques can be carried out in an
understandable and effective way. What is more, we think that
this novel evaluation approach is an important step towards a
well-defined evaluation framework for process discovery.

Also, the availability of a new precision metric, quantifying
whether a process model does not underfit the data, is of major
importance. The Behavioral Precision (pB) is theoretically
sound and can be calculated swiftly. In this way, this metric is a
useful alternative for the currently available precision metrics,
that suffer from computational inefficiencies.

In order to empirically validate our proposed evaluation ap-
proach, we will demonstrate the application of the Behavioral
F-measure (FB) within a benchmarking experiment based on
20 artificial event logs. This analysis is presented in the next
section.

IV. EMPIRICAL VALIDATION

This section reports on the empirical validation of the pro-
posed evaluation approach. Hence, we will first illustrate the
approach with a very simple process discovery example before
the evaluation approach is compared to traditional process
discovery evaluation metrics in a benchmarking experiment
of process discovery techniques making use of 20 artificially
constructed event logs.

A. An illustrative example

Figure 3 illustrates the novel evaluation approach with a
simple example. For an event log 3(a) and three corresponding
control-flow models 3(c) 3(b) 3(d), two evaluation approaches
are compared. Approach A is our novel evaluation approach



based on artificially generated negative events enabling the
computation of the F-measure. The other evaluation approach
consists of a procedure described by Rozinat et al. [11], to
equally weigh fitness and advanced behavioral appropriate-
ness in order to evaluate mined process models along two
dimensions. As can be seen from Table 3(e), both approaches
correctly evaluate the best process model and punish the im-
precise flower model and the incomplete model 3(d). However,
there exist some small differences between the two approaches.
First of all, the F-measure punishes the imprecise and incorrect
process models more severely, which can be judged advanta-
geous. Furthermore, there is also a discrepancy between the
two precision metrics pB and a

′
B . This discrepancy is due to

the differences in how precision is quantified. pB depends on
replaying the event log in the discovered Petri net model, while
a
′
B only takes into account the ratios of sometimes follows and

sometimes precedes relations in the model and in the event log.

B. Benchmarking state-of-the-art process discovery tech-
niques with artificial event logs

1) Techniques: This benchmarking experiment compares
six state-of-the-art process discovery techniques (see Table III)
in order to validate the novel evaluation approach. Next to the
six techniques, a flower model is included in the benchmark
as a reference model.

Name Author Year
α+ van der Aalst et al. [1], [17] 2004

HeuristicsMiner Weijters et al. [2] 2006
α++ Wen et al. [3] 2007

GeneticMiner Alves de Medeiros et al. [4] 2007
DTGeneticMiner Alves de Medeiros [18] 2007

AGNEsMiner Goedertier et al. [8] 2009

TABLE III
PROCESS DISCOVERY TECHNIQUES

2) Artificial event logs: In order to benchmark the six
selected process discovery techniques, an experiment with 20
event logs has been set up. These event logs have previously
been used by Alves de Medeiros et al. [18] to evaluate the
GeneticMiner algorithm. The characteristics of the artificial
event logs are presented in Table IV. In order to validate the
robustness of the algorithms, we conducted two different ex-
periments: once we applied the selected discovery techniques
on the event logs without any addition of noise and once
we randomly injected 20% noise using the available noise
injection filter in the ProM framework.

3) Statistical tests: A procedure described in Dems̆ar [19]
is followed to statistically test the results of the benchmarking
experiment. In a first step of this procedure, the Friedman
test [20] is performed which is a non-parametric equivalent
of the well known ANOVA test (ANalysis Of VAriance). The
null hypothesis of the Friedman test states that all techniques
perform equivalent. The test statistic is defined as:

χ2
F =

12P

k(k + 1)




k∑

j=1

R2
j −

k(k + 1)2

4
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a10skip 12 6 300 1 X
a12 14 5 300 2
a5 7 13 300 1 X
a6nfc 8 3 300 1 X
a7 9 14 300 4
a8 10 4 300 1
betaSimplified 13 4 300 0 X X X
choice 12 16 300 0
DriversLicense 9 2 300 0
DriversLincensel 11 87 350 1 X X X X
herbstFig3p4 12 32 300 3 X
herbstFig5p19 8 6 300 1 X
herbstFig6p18 7 153 300 0 X
herbstFig6p31 9 4 300 0 X
herbstFig6p36 12 2 300 0 X
herbstFig6p38 7 5 300 3 X
herbstFig6p41 16 12 300 4
l2l 6 10 300 0 X
l2lOptional 6 9 300 0 X
l2lSkip 6 8 300 0 X

TABLE IV
EVENT LOG PROPERTIES

with Rj the average rank of algorithm j = 1, 2 . . . k over P
data sets. Under the null hypothesis, the Friedman test statistic
is distributed according to χ2

F with k− 1 degrees of freedom,
at least when P and k are big enough (P > 10 and k > 5).
Otherwise, exact critical values are used based on an adjusted
Fisher z-distribution.

If the null hypothesis of equivalent performing techniques is
rejected by the Friedman test, a post-hoc Bonferroni-Dunn test
[21] is applied to compare the process discovery techniques.
The post-hoc Bonferroni-Dunn test is a non-parametric alter-
native of the Tukey test and is defined as:

CD = qα

√
k(k + 1)

6P

with critical value qα based on the Studentized range statistic
divided by

√
2, and an additional Bonferroni correction by

dividing the confidence level α by the number of comparisons
made, α

(k−1) , to control for family wise testing. This results
in a lower confidence level and thus in higher power. The
difference in performance of the best performing technique
and other techniques is significant if the corresponding average
ranks differ by at least the Critical Distance (CD).

4) Results: Results of the benchmarking experiment are
presented in Figure 4 and Table V. In what follows, the most
important conclusions are discussed.

The aim of this benchmarking study is twofold. First of
all, we use this experiment in order to evaluate the novel
evaluation approach proposed in Section III. Secondly, the
results of this benchmarking experiment allow for assessing
the performance of different process discovery techniques
on artificial data sets. Because in the second part of the
experiment, we subjected the techniques to the same event
logs but with the injection of noise, the noise robustness of
the different techniques is also analyzed.

As explained in Section IV-B3, the results of the different
process discovery techniques are compared by first applying



σ1 abcdeg
σ2 abdceg
σ3 abcdefg
σ4 abdcefg

(a) Event log
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(b) An accurate and precise model
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(c) An overly general
model

a b c d e f g

(d) An incomplete model

Evaluation approach A Evaluation approach B
rp
B pB FB f a

′
B

1
2f + 1

2a
′
B

Best Model 1 1 1 1 1 1
Flower Model 1 0, 15 0, 26 1 0, 10 0, 55
Incomplete Model 0, 85 0, 76 0, 80 0, 87 1 0, 93

(e) Evaluation results

Fig. 3. Illustration of the novel evaluation approach

a Friedman test, followed by a Bonferroni-Dunn test. We
performed these statistical tests for both evaluation approaches
as presented in Section IV-A. The Friedman test resulted in a
p-value close to zero (p values between 0.0000 and 0.0005)
indicating the existence of significant differences across the
applied techniques, both in case no noise was added and in
case 20% noise was added. In a next step, the Bonferroni-Dunn
test to compare the performance of all the models with the
single best performing model is applied. The results are plotted
in Figure 4. The horizontal axis in these figures corresponds to
the average rank of a technique across the different artificial
event logs. The techniques are represented by a horizontal
line; the more this line is situated to the left, the better
performing a technique is. The left end of this line depicts
the average ranking while the length of the line corresponds
to the critical distance for a difference between any technique
and the best performing technique to be significant at the 99%
confidence level. The dotted, dashed and full vertical lines
in the figures indicate the critical difference at respectively
the 90%, 95% and 99% confidence level. A technique is
significantly outperformed by the best technique if it is located
at the right side of the vertical line.

Taking this into account, it can be concluded from Fig-
ures 4(a) and 4(c) that without noise, the techniques do
not significantly differ both in terms of F-measure and in
terms of 1

2f + 1
2a

′
B . However, when introducing noise, the

picture shifts profoundly. When taking into account 1
2f + 1

2a
′
B

as well as FB , AGNEsMiner and HeuristicsMiner clearly
outperform the other algorithms. For α+ and α++, this is not
surprising because it is known that these algorithms are not
robust to noise. However, regarding the genetic algorithms,
the underperformance is quite surprising. Generally speaking,
these algorithms are described as noise robust. However, the
20% noise addition in our experiment causes problems for the
genetic algorithms in terms of discovering the correct process
model.

This analysis is confirmed by the aggregated, non-

parametrical results displayed in Table V. Note that, in this
table, the best average performance over the 20 event logs is
underlined and denoted in bold face for each metric. A paired
t-test was used to test the significance of the performance
differences. Performances that are not significantly different
at the 95% level from the top-ranking performance with
respect to a one-tailed paired t-test are tabulated in bold face.
Statistically significant underperformances at the 99% level
are emphasized in italics. Performances significantly different
at the 95% level but not at the 99% level are reported in normal
font.

The absolute figures confirm the good performance of the
AGNEsMiner algorithm, both in terms of recall and precision.
However, we should recognize the evaluation of this technique
might be slightly biased because it is founded upon the same
principle as the novel evaluation approach itself. Nevertheless,
it should be concluded that without noise, many different algo-
rithms perform more or less equally. Once noise is introduced,
only HeuristicsMiner and AGNEsMiner remain able to render
good process models. This last conclusion is founded upon
results from both evaluation approaches considered.

Although the analysis of the process discovery algorithms
is very useful, the ultimate reason for setting up this exper-
iment is evaluating our newly proposed evaluation approach.
Focussing on recall first, it can be concluded that rp

B and f are
very similar. From Tables V(a) and V(b), it can be seen that
there are slight differences, but in general, these two metrics
yield the same result. In contrast, comparing the two precision
metrics pB and a

′
B , it is concluded that these metrics do not

portray similar behavior in our experiment when evaluating
the precision of the discovered process models. In our opinion,
there exist important drawbacks regarding a

′
B , which are due

to the exhaustive simulation that is required to calculate this
metric. In our previous study [10], we already pinpointed a
number of concerns regarding this precision metric, which
are confirmed by the experiment presented. Even more, we
found out that in case event logs portray loop behavior,
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Flower
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(a) Plot of the Bonferroni-Dunn test for FB (no noise)
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Alpha++

Alpha+
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(b) plot of the Bonferroni-Dunn test for FB (20% noise)
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GeneticMiner
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(c) plot of the Bonferroni-Dunn test for 1
2
f + 1

2
a
′
B (no noise)

1 2 3 4 5 6 7 8 9 10

Flower

Alpha++

DTGeneticMiner

GeneticMiner

Alpha+

HeuristicsMiner

AGNEsMiner

average rank

(d) plot of the Bonferroni-Dunn test for 1
2
f + 1

2
a
′
B (20% noise)

Fig. 4. Ranking of process discovery techniques for FB in case no noise was added 4(a), FB with 20% noise added 4(b), 1
2
f + 1

2
a
′
B without noise 4(c),

and 1
2
f + 1

2
a
′
B with 20% noise 4(d). The dotted vertical line represents the 90% significance level, the dashed line the 95% significance level and the full

line the 99% significance level.

a
′
B often resulted in a considerable underestimation of the

precision of the discovered process model. This is again due
to inconsistencies in the exhaustive simulation procedure that
is behind this metric.

The aforementioned analysis of the precision metrics, highly
influences the analysis of the evaluation approaches. As for
the experiment without noise, represented in Table V(a),
conclusions based upon the different approaches completely
contradict. Our novel evaluation approach indicates that Genet-
icMiner is the best performing technique, whereas according to
evaluation approach B, GeneticMiner is the least appropriate
technique. As said, this is primarily due to the differences
in the precision metrics. Regarding the experiment with 20%
noise addition, both evaluation approaches present equivalent
results, but this is caused by the fact that two of the considered
techniques clearly outperform the other techniques.

C. Conclusion

The benchmarking experiment presented allows for the
formulation of a number of important conclusions. First of
all, there exist important differences between the considered
evaluation approaches. These differences are primarily due to
the discrepancy of the precision metrics that underly these

approaches. Because of the reliability issues with a
′
B , we

think that our novel evaluation approach in terms of the
application of the F-measure for process discovery models is
highly valuable.

Besides, our evaluation approach has the advantage
to solidly combine two crucial evaluation dimen-
sions.Furthermore, the use of artificially generated negative
events allows for swift calculation of both recall and precision,
which is an important feature in respect to the exhaustive
simulation that is required to calculate the advanced behavioral
appropriateness. Accordingly, we describe our approach to be
a robust evaluation method for process discovery models.

Finally, regarding the process discovery techniques under
study, we found that AGNEsMiner and HeuristicsMiner were
confirmed to be robust to noise, whereas the genetic ap-
proaches appeared less prone than previously considered. This
conclusion should be investigated further because only one
noise percentage was considered.

V. DISCUSSION

A. Completeness Assumption

As explained, the proposed evaluation approach is entirely
based on the principle of inducing artificial negative events into



(a) Without noise
Evaluation approach A Evaluation approach B
rp
B pB FB f a

′
B

1
2
f + 1

2
a
′
B

AGNEsMiner 0,9979 0,9215 0,9507 0,9953 0,7965 0,8959
α+ 0,9524 0,8616 0,8922 0,9685 0,8082 0,8884
α++ 0,9721 0,9213 0,9407 0,9838 0,8642 0,9240
DTGeneticMiner 0,9991 0,9144 0,9493 0,9965 0,7432 0,8698
GeneticMiner 0,9845 0,9362 0,9538 0,9981 0,7015 0,8498
HeuristicsMiner 0,9586 0,9069 0,9273 0,9733 0,7742 0,8737
Flower 1,0000 0,1174 0,2083 1,0000 0,1850 0,5925

(b) 20% noise
Evaluation approach A Evaluation approach B
rp
B pB FB f a

′
B

1
2
f + 1

2
a
′
B

AGNEsMiner 0,9848 0,9229 0,9494 0,9808 0,8397 0,9103
α+ 0,6128 0,3574 0,4186 0,7626 0,8505 0,8066
α++ 0,3764 0,3711 0,3454 0,6996 0,6294 0,6645
DTGeneticMiner 0,8606 0,4148 0,5496 0,9071 0,4658 0,6865
GeneticMiner 0,8878 0,4550 0,5909 0,9330 0,4552 0,6941
HeuristicsMiner 0,9302 0,7698 0,8607 0,9619 0,7048 0,8334
Flower 1,0000 0,1174 0,2083 1,0000 0,1996 0,5998

TABLE V
BENCHMARKING EXPERIMENT - AGGREGATED RESULTS OF BOTH EVALUATION APPROACHES

an event log. In order to induce these negative events, we make
use of the assumption that an event log portrays the complete
behavior of the underlying process. We acknowledge that in
real-life situations, this completeness assumption might be-
come problematic because an event log might not completely
capture all possible behavior. When an event log does not
capture all behavior, artificial negative events might be falsely
introduced into the event log. However, this completeness
assumption is an inherent problem for many unsupervised data
mining tasks. When building a model based on a certain data
set, it is always complicated to induce models that generalize
towards unseen behavior that is not represented in the data.
This is also the case for process discovery.

Furthermore, we argue that it is not always the case that one
should conclude that an event log is incomplete with respect to
all possible behavior. For example, incompleteness of an event
log is strongly determined by the time frame of the event log
under consideration and also by the number of cases. Often,
only domain experts will be able to assess to what extent a
certain event log is incomplete.

Nevertheless, we recognize that in highly flexible environ-
ments, it might be the case that an event log does not capture
all possible behavior of a deployed process. However, we
think that our novel evaluation approach is definitely of added
value for the evaluation of discovered process models. Of
course, when applying our approach, one should always bare
in mind the consequences of the completeness assumption.
When you are investigating highly unstructured processes, it
might be necessary to think about other evaluation methods.
However, currently available process discovery techniques face
the same problem with respect to completeness. Günther et
al. [5] identified that traditional process discovery approaches
perform very poor when dealing with highly unstructured
event logs. Accordingly, we think that our evaluation approach
is definitely applicable to more structured cases of process dis-
covery. When traditional process discovery techniques come

up with reasonably interpretable results, we argue that this
novel evaluation approach is able to assess discovered process
models in a robust way.

What is more, we think that our approach might be dy-
namically adapted to counter the problem of the closed world
assumption. In this paper we did not consider weighing recall
and precision differently. However, by varying a parameter that
controls the balance between recall and precision (typically
called β), different F-measures can be defined weighing recall
and precision unequally. By attaching less weight to the
precision dimension, one reduces the impact of the com-
pleteness assumption because only this dimension takes into
account falsely predicted negative events. In future research,
it should be investigated whether the use of weights can be
used advantageously in order to cope with more unstructured
event logs. Preferably, this should be investigated using real-
life event logs with different levels of unstructuredness.

Finally, we think that in order to deal with the strict com-
pleteness assumption, it should also be investigated whether
we can transform a process discovery model from a point
classifier into a rank classifier from an event viewpoint.
When introducing probabilities in a smart way, it might be
possible to alleviate the completeness issue within the limits
of the evaluation approach discussed in this paper. Though,
we consider this a thought-provoking challenge for future
research.

B. Real-life event logs
Closely related to the aforementioned remark on the com-

pleteness assumption, we are convinced that both process
discovery techniques and evaluation approaches should be
assessed using real-life event logs. This is because such a setup
allows for an analysis of the scalability of the algorithms and
evaluation approaches. What is more, this type of study would
yield important information concerning the practical applica-
tion of certain process discovery techniques in general. Finally,
the use of real-life event logs should allow an investigation



on how to better cope with the completeness assumption in
practice.

C. Root cause analysis

Identification of the root causes of control-flow inaccuracies
of a certain discovered process model is an issue that is
not addressed in this paper. Because the proposed evaluation
method is not yet implemented as a ProM plug-in, we cannot
provide a means for root cause analysis. However, it should
be possible to devise a plug-in based on the novel evaluation
approach that visually represents flaws in the process model
under investigation. For the fitness and advanced behavioral
appropriateness, there exists a plug-in in the ProM framework,
called Conformance Checker, that allows to some extent the
identification of root causes of control-flow inaccuracies.

D. Overfitting: generality dimension

As explained in Section II-C, precision gauges whether a
model underfits the data. However, the proposed evaluation
method does not allow for the verification to what extent a
process model overfits the data. Our evaluation approach is
not able to detect whether a process model overfits the data
by for example just enumerating all the traces in the event log.
Rozinat et al. [11] defined the advanced structural appropriate-
ness as a metric to determine whether a process model overfits
the data. This metric takes into account structural properties
of the mined process models in terms of alternative duplicate
tasks and redundant invisible tasks. Currently, quantifying the
generality dimension based upon artificially generated negative
events seems unfeasible. This causes our approach to be not
fully applicable yet as a general evaluation framework for
process discovery. In future work, we will investigate how
we can quantify overfitting process models and thus further
improve upon the important problem of finding a balance
between generality and precision.

VI. CONCLUSION

With this paper, we have proposed a novel evaluation
approach that allows for the application of the F-measure
to the field of process discovery. Our approach is founded
on a technique allowing generation of artificially generated
negative events. The approach was discussed and evaluated
in a benchmarking experiment with artificial event logs. This
analysis yielded that our approach is definitely of added value
and an interesting step towards a more holistic approach to
process discovery evaluation.
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