938 research outputs found

    Computer-aided Image Processing of Angiogenic Histological

    Get PDF
    This article reviews the questions regarding the image evaluation of angiogeneic histological samples, particularly the ovarian epithelial cancer. Review is focused on the principles of image analysis in the field of histology and pathology. The definition, classification, pathogenesis and angiogenesis regulation in the ovaries are also briefly discussed. It is hoped that the complex image analysis together with the patient’s clinical parameters will allow an acquiring of a clear pathogenic picture of the disease, extension of the differential diagnosis and become a useful tool for the evaluation of drug effects. The challenge of the assessment of angiogenesis activity is the heterogeneity of several objects: parameters derived from patient’s anamnesis as well as of pathology samples. The other unresolved problems are the subjectivity of the region of interest selection and performance of the whole slide scanning

    T-cadherin is present on endothelial microparticles and is elevated in plasma in early atherosclerosis

    Get PDF
    Aims The presence of endothelial cell (EC)-derived surface molecules in the circulation is among hallmarks of endothelial activation and damage in vivo. Previous investigations suggest that upregulation of T-cadherin (T-cad) on the surface of ECs may be a characteristic marker of EC activation and stress. We investigated whether T-cad might also be shed from ECs and in amounts reflecting the extent of activation or damage. Methods and results Immunoblotting showed the presence of T-cad protein in the culture medium from normal proliferating ECs and higher levels in the medium from stressed/apoptotic ECs. Release of T-cad into the circulation occurs in vivo and in association with endothelial dysfunction. Sandwich ELISA revealed negligible T-cad protein in the plasma of healthy volunteers (0.90 ± 0.90 ng/mL, n = 30), and increased levels in the plasma from patients with non-significant atherosclerosis (9.23 ± 2.61 ng/mL, n = 63) and patients with chronic coronary artery disease (6.93 ± 1.31 ng/mL, n = 162). In both patient groups there was a significant (P = 0.043) dependency of T-cad and degree of endothelial dysfunction as measured by reactive hyperaemia peripheral tonometry. Flow cytometry analysis showed that the major fraction of T-cad was released into the EC culture medium and the plasma as a surface component of EC-derived annexin V- and CD144/CD31-positive microparticles (MPs). Gain-of-function and loss-of-function studies demonstrate that MP-bound T-cad induced Akt phosphorylation and activated angiogenic behaviour in target ECs via homophilic-based interactions. Conclusion Our findings reveal a novel mechanism of T-cad-dependent signalling in the vascular endothelium. We identify T-cad as an endothelial MP antigen in vivo and demonstrate that its level in plasma is increased in early atherosclerosis and correlates with endothelial dysfunctio

    Intrinsic remote conditioning of the myocardium as a comprehensive cardiac response to ischemia and reperfusion

    Get PDF
    We have previously shown that distal anterior wall ischemia/reperfusion induces gene expression changes in the proximal anterior myocardial area, involving genes responsible for cardiac remodeling. Here we investigated the molecular signals of the ischemia non-affected remote lateral and posterior regions and present gene expression profiles of the entire left ventricle by using our novel and straightforward method of 2D and 3D image reconstruction. Five or 24h after repetitive 10min ischemia/reperfusion without subsequent infarction, pig hearts were explanted and myocardial samples from 52 equally distributed locations of the left ventricle were collected. Expressional changes of seven genes of interest (HIF-1alpha; caspase-3, transcription factor GATA4; myocyte enhancer factor 2C /MEF2c/; hexokinase 2 /HK2/; clusterin /CLU/ and excision repair cross-complementation group 4 /ERCC4/) were measured by qPCR. 2D and 3D gene expression maps were constructed by projecting the fold changes on the NOGA anatomical mapping coordinates. Caspase-3, GATA4, HK2, CLU, and ERCC4 were up-regulated region-specifically in the ischemic zone at 5 h post ischemia/reperfusion injury. Overexpression of GATA4, clusterin and ERCC4 persisted after 24 h. HK2 showed strong up-regulation in the ischemic zone and down-regulation in remote areas at 5 h, and was severely reduced in all heart regions at 24 h. These results indicate a quick onset of regulation of apoptosis-related genes, which is partially reversed in the late phase of ischemia/reperfusion cardioprotection, and highlight variations between ischemic and unaffected myocardium over time. The NOGA 2D and 3D construction system is an attractive method to visualize expressional variations in the myocardium

    Arteriogenesis – Molecular Regulation, Pathophysiology and Therapeutics I

    Get PDF
    corecore