880 research outputs found

    Survey on Aerial Multirotor Design: a Taxonomy Based on Input Allocation

    Get PDF
    This paper reviews the impact of multirotor aerial vehicles designs on their abilities in terms of tasks and system properties. We propose a general taxonomy to characterize and describe multirotor aerial vehicles and their design, which we apply exhaustively on the vast literature available. Thanks to the systematic characterization of the designs we exhibit groups of designs having the same abilities in terms of achievable tasks and system properties. In particular, we organize the literature review based on the number of atomic actuation units and we discuss global properties arising from their choice and spatial distribution in the designs. Finally, we provide a discussion on the common traits of the designs found in the literature and the main future open problems

    Voliro: An Omnidirectional Hexacopter With Tiltable Rotors

    Full text link
    Extending the maneuverability of unmanned areal vehicles promises to yield a considerable increase in the areas in which these systems can be used. Some such applications are the performance of more complicated inspection tasks and the generation of complex uninterrupted movements of an attached camera. In this paper we address this challenge by presenting Voliro, a novel aerial platform that combines the advantages of existing multi-rotor systems with the agility of omnidirectionally controllable platforms. We propose the use of a hexacopter with tiltable rotors allowing the system to decouple the control of position and orientation. The contributions of this work involve the mechanical design as well as a controller with the corresponding allocation scheme. This work also discusses the design challenges involved when turning the concept of a hexacopter with tiltable rotors into an actual prototype. The agility of the system is demonstrated and evaluated in real- world experiments.Comment: Submitted to Robotics and Automation Magazin

    Mechanical Design, Modelling and Control of a Novel Aerial Manipulator

    Full text link
    In this paper a novel aerial manipulation system is proposed. The mechanical structure of the system, the number of thrusters and their geometry will be derived from technical optimization problems. The aforementioned problems are defined by taking into consideration the desired actuation forces and torques applied to the end-effector of the system. The framework of the proposed system is designed in a CAD Package in order to evaluate the system parameter values. Following this, the kinematic and dynamic models are developed and an adaptive backstepping controller is designed aiming to control the exact position and orientation of the end-effector in the Cartesian space. Finally, the performance of the system is demonstrated through a simulation study, where a manipulation task scenario is investigated.Comment: Comments: 8 Pages, 2015 IEEE International Conference on Robotics and Automation (ICRA '15), Seattle, WA, US

    Swashplateless-elevon Actuation for a Dual-rotor Tail-sitter VTOL UAV

    Full text link
    In this paper, we propose a novel swashplateless-elevon actuation (SEA) for dual-rotor tail-sitter vertical takeoff and landing (VTOL) unmanned aerial vehicles (UAVs). In contrast to the conventional elevon actuation (CEA) which controls both pitch and yaw using elevons, the SEA adopts swashplateless mechanisms to generate an extra moment through motor speed modulation to control pitch and uses elevons solely for controlling yaw, without requiring additional actuators. This decoupled control strategy mitigates the saturation of elevons' deflection needed for large pitch and yaw control actions, thus improving the UAV's control performance on trajectory tracking and disturbance rejection performance in the presence of large external disturbances. Furthermore, the SEA overcomes the actuation degradation issues experienced by the CEA when the UAV is in close proximity to the ground, leading to a smoother and more stable take-off process. We validate and compare the performances of the SEA and the CEA in various real-world flight conditions, including take-off, trajectory tracking, and hover flight and position steps under external disturbance. Experimental results demonstrate that the SEA has better performances than the CEA. Moreover, we verify the SEA's feasibility in the attitude transition process and fixed-wing-mode flight of the VTOL UAV. The results indicate that the SEA can accurately control pitch in the presence of high-speed incoming airflow and maintain a stable attitude during fixed-wing mode flight. Video of all experiments can be found in youtube.com/watch?v=Sx9Rk4Zf7sQComment: 8 pages, 13 figure

    BogieCopter: A Multi-Modal Aerial-Ground Vehicle for Long-Endurance Inspection Applications

    Full text link
    The use of Micro Aerial Vehicles (MAVs) for inspection and surveillance missions has proved to be extremely useful, however, their usability is negatively impacted by the large power requirements and the limited operating time. This work describes the design and development of a novel hybrid aerial-ground vehicle, enabling multi-modal mobility and long operating time, suitable for long-endurance inspection and monitoring applications. The design consists of a MAV with two tiltable axles and four independent passive wheels, allowing it to fly, approach, land and move on flat and inclined surfaces, while using the same set of actuators for all modes of locomotion. In comparison to existing multi-modal designs with passive wheels, the proposed design enables a higher ground locomotion efficiency, provides a higher payload capacity, and presents one of the lowest mass increases due to the ground actuation mechanism. The vehicle's performance is evaluated through a series of real experiments, demonstrating its flying, ground locomotion and wall-climbing capabilities, and the energy consumption for all modes of locomotion is evaluated.Comment: This paper has been accepted for publication at the IEEE International Conference on Robotics and Automation (ICRA), London, 202

    An Omnidirectional Aerial Platform for Multi-Robot Manipulation

    Get PDF
    The objectives of this work were the modeling, control and prototyping of a new fully-actuated aerial platform. Commonly, the multirotor aerial platforms are under-actuated vehicles, since the total propellers thrust can not be directed in every direction without inferring a vehicle body rotation. The most common fully-actuated aerial platforms have tilted or tilting rotors that amplify the aerodynamic perturbations between the propellers, reducing the efficiency and the provided thrust. In order to overcome this limitation a novel platform, the ODQuad (OmniDirectional Quadrotor), has been proposed, which is composed by three main parts, the platform, the mobile and rotor frames, that are linked by means of two rotational joints, namely the roll and pitch joints. The ODQuad is able to orient the total thrust by moving only the propellers frame by means of the roll and pitch joints. Kinematic and dynamic models of the proposed multirotor have been derived using the Euler- Lagrange approach and a model-based controller has been designed. The latter is based on two control loops: an outer loop for vehicle position control and an inner one for vehicle orientation and roll-pitch joint control. The effectiveness of the controller has been tested by means of numerical simulations in the MATLAB c SimMechanics environment. In particular, tests in free motion and in object transportation tasks have been carried out. In the transportation task simulation, a momentum based observer is used to estimate the wrenches exchanged between the vehicle and the transported object. The ODQuad concept has been tested also in cooperative manipulation tasks. To this aim, a simulation model was considered, in which multiple ODQuads perform the manipulation of a bulky object with unknown inertial parameters which are identified in the first phase of the simulation. In order to reduce the mechanical stresses due to the manipulation and enhance the system robustness to the environment interactions, two admittance filters have been implemented: an external filter on the object motion and an internal one local for each multirotor. Finally, the prototyping process has been illustrated step by step. In particular, three CAD models have been designed. The ODQuad.01 has been used in the simulations and in a preliminary static analysis that investigated the torque values for a rough sizing of the roll-pitch joint actuators. Since in the ODQuad.01 the components specifications and the related manufacturing techniques have not been taken into account, a successive model, the ODQuad.02, has been designed. The ODQuad.02 design can be developed with aluminum or carbon fiber profiles and 3D printed parts, but each component must be custom manufactured. Finally, in order to shorten the prototype development time, the ODQuad.03 has been created, which includes some components of the off-the-shelf quadrotor Holybro X500 into a novel custom-built mechanical frame
    • …
    corecore