
MODELLING, CONTROL AND

CONSTRUCTION OF TRICOPTER

UNMANNED AERIAL VEHICLES

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Science and Engineering

2022

Daniel N. Abara

School of Engineering, Department of Electrical and Electronic Engineering



Contents

Abstract 12

Declaration 13

Copyright Statement 14

Dedication 15

Acknowledgements 16

Publications 17

Nomenclature 18

1 Introduction 22

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 22

1.1.1 Multi-agent Systems . . . . . . . . . . . . . . . . . . . . . . . . 27

1.2 Contributions to the state-of-the-art . . . . . . . . . . . . . . . . . . . . 30

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 Preliminaries 34

2.1 Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.1 Linear subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.2 Symmetric and semidefinite matrices . . . . . . . . . . . . . . . 35

2.1.3 Cross products . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.4 Kronecker products . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1.5 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . 37

2.2 Linear Systems Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2



2.2.1 Description of systems . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.2 Stability, Controllability and Observability . . . . . . . . . . . . 38

2.2.3 State space realizations . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.4 Internal stability . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Homogeneous multi-agent systems . . . . . . . . . . . . . . . . . . . . . 41

2.5 Negative Imaginary Systems . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.1 Properties of networked NI and SNI systems . . . . . . . . . . . 42

2.5.2 Eigenvalue loci theory . . . . . . . . . . . . . . . . . . . . . . . 43

2.5.3 Properties of eigenvalue loci of networked NI (SNI) systems . . 44

2.6 Quaternion Maths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.7 Coordinate Rotations and Rotation matrices . . . . . . . . . . . . . . . 46

2.7.1 Rotation matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.7.2 Quaternion rotation operators . . . . . . . . . . . . . . . . . . . 48

2.7.3 Euler angles and rotation sequences . . . . . . . . . . . . . . . . 49

2.7.4 Relationship between Quaternions and Euler angles . . . . . . . 51

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Development and stabilization of a low-cost single-tilt tricopter 52

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Mathematical Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.1 Forces and Torques . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.2 Newton-Euler Model . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1 Moments of Inertia . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.2 Thrust and Torque Constants . . . . . . . . . . . . . . . . . . . 58

3.4 Hover Control design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.1 Linearised Model . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.2 Control Allocation . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.3 PID Cascade scheme . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3



3.6.1 Platform Description . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6.2 Hover flight test . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Development and control of Multirotor-tilting tricopter with direct

actuation for position control 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Modelling of the multirotor-tilting tricopter . . . . . . . . . . . . . . . 71

4.2.1 Tricopter Forces and Moments . . . . . . . . . . . . . . . . . . . 71

4.2.2 Dynamic model . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Parameter Identification . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 Moment of Inertia . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.2 Thrust and Torque Constants . . . . . . . . . . . . . . . . . . . 78

4.4 Attitude control using Quaternion feedback control (QFB) technique . 79

4.4.1 QFB control scheme . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.2 Quaternion error . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5 Attitude control using MPC . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5.1 Quasi-LPV modelling of the tricopter . . . . . . . . . . . . . . . 81

4.5.2 MPC formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Matlab simulation results for attitude control . . . . . . . . . . . . . . 85

4.6.1 Simulation results using QFB technique . . . . . . . . . . . . . 85

4.6.2 Comparative simulation study between QFB and MPC . . . . . 87

4.7 6-DOF control of tricopter . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.8.1 Platform Description . . . . . . . . . . . . . . . . . . . . . . . . 96

4.8.2 Mixer for position control . . . . . . . . . . . . . . . . . . . . . 97

4.8.3 Mixer Implementation . . . . . . . . . . . . . . . . . . . . . . . 98

4.8.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 99

4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 A negative imaginary robust formation control scheme for a group of

networked tricopters over inner-loop sliding-mode control 103

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4



5.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Multi-tilt tricopter modelling . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.1 Linearisation using Sliding Mode Control . . . . . . . . . . . . . 107

5.3 System Identification of NI systems . . . . . . . . . . . . . . . . . . . . 111

5.3.1 Continuous time closed-loop system identification . . . . . . . . 111

5.3.2 System identification of a tricopter enforcing NI property . . . . 113

5.4 Formation control of multi-tilt tricopters . . . . . . . . . . . . . . . . . 116

5.4.1 Closed-loop stability of networked NI/SNI system with ‘mixed’

SNI+VSP controller . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4.2 Formation control of networked multi-tilt tricopters using ‘mixed’

SNI+VSP controller . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5 Case study and simulation results . . . . . . . . . . . . . . . . . . . . . 122

5.5.1 Formation control of a group of six tricopters . . . . . . . . . . 122

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6 Concluding Remarks 130

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.2 Directions for Future Research . . . . . . . . . . . . . . . . . . . . . . . 132

Bibliography 134

A Platform Description 147

A.1 Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.1.1 Pixhawk Flight Controller . . . . . . . . . . . . . . . . . . . . . 148

A.1.2 Additional Sensors . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.1.3 Propulsion and Power System . . . . . . . . . . . . . . . . . . . 150

A.1.4 Heading control concept . . . . . . . . . . . . . . . . . . . . . . 151

A.2 Software Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.2.1 PX4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.2.2 QGroundControl Interface . . . . . . . . . . . . . . . . . . . . . 153

A.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

B Tricopter System Specification 155

B.1 Single-tilt tricopter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5



B.1.1 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

B.1.2 Performance Summary . . . . . . . . . . . . . . . . . . . . . . . 155

B.1.3 System Hardware Description . . . . . . . . . . . . . . . . . . . 156

B.2 Multi-tilt tricopter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

B.2.1 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

B.2.2 Performance Summary . . . . . . . . . . . . . . . . . . . . . . . 158

B.2.3 System Hardware Description . . . . . . . . . . . . . . . . . . . 158

C MPC Formulation 161

C.1 Forward Euler method of discretization . . . . . . . . . . . . . . . . . . 161

C.2 Cost function simplification . . . . . . . . . . . . . . . . . . . . . . . . 162

C.2.1 Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

C.2.2 Part II - Future State Prediction Formula . . . . . . . . . . . . 163

C.2.3 Part III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

D Row Reduction using Gaussian Elimination 166

E Mixer Implementation in Pixhawk 169

E.1 Airframe Configuration file . . . . . . . . . . . . . . . . . . . . . . . . . 169

E.2 Multi-tri Geometry file . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

E.3 MAIN Mixer file - mt_tri_y_yaw-.main.mix . . . . . . . . . . . . . . . 172

E.4 AUX Mixer file - mt_tri_y_yaw-.aux.mix . . . . . . . . . . . . . . . . 172

Word count: 32,300

6



List of Tables

3.1 Summary of estimated parameters . . . . . . . . . . . . . . . . . . . . . 59

3.2 PID gains for attitude rate loop . . . . . . . . . . . . . . . . . . . . . . 62

3.3 PID gains for attitude loop . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 PID gains for velocity loop . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 PID gains for position loop . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Trifilar experiment: Time for 10 oscillations. Ax means axis hence

tx is the measured time for 10 oscillations around x axis, hz is the

measured time for 10 oscillations of the empty hoop around the z-axis.

All measurements are in seconds. . . . . . . . . . . . . . . . . . . . . . 79

5.1 Summary of tricopter parameters . . . . . . . . . . . . . . . . . . . . . 110

7



List of Figures

1.1 Tricopter Configurations [images from Google]. . . . . . . . . . . . . . . 23

(a) T-shaped tricopter airframe . . . . . . . . . . . . . . . . . . . . . 23

(b) Y-shaped Tricopter schematic . . . . . . . . . . . . . . . . . . . . 23

(c) Y-shaped Tricopter schematic . . . . . . . . . . . . . . . . . . . . 23

2.1 Positive Feedback interconnection of two systems ∆(s) and M(s) . . . 39

2.2 Network graphs with different topologies. . . . . . . . . . . . . . . . . . 40

(a) Undirected graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

(b) Directed graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Nyquist D-contour in the s-plane, where ω = 0+, 0− and ω = +∞,−∞

are denoted by j0+, j0− and +j∞,−j∞ respectively, Ω0 = {s| s =

εejθ, ε ∈ R>0,

ε → 0, −π
2 ≤ θ ≤ π

2}, ΩR = {s| s = Rejθ, R ∈ R>0, R → +∞, −π
2 ≤

θ ≤ π
2} and σ ∈ (0, σ∗) is a finite range. . . . . . . . . . . . . . . . . . . 44

2.4 Rotation of coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 Forces and torques acting on single-tilt tricopter and coordinate systems. 54

3.2 Top view diagram of tricopter where l0 is the length of each arm,

l1 = l0 sin π
3 , l2 = l0 cos π

3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Derivation of moments of inertia of a tricopter. Note that l = l0. . . . . 57

3.4 Freebody diagram of thrust stand . . . . . . . . . . . . . . . . . . . . . 58

3.5 Measurement of thrust and torque constants. . . . . . . . . . . . . . . . 58

3.6 Thrust and drag-torque constants data with regression fit. . . . . . . . 59

3.7 Cascaded-PID control architecture. . . . . . . . . . . . . . . . . . . . . 62

3.8 x, y and z (altitude) position of tricopter in inertial coordinates. . . . . 63

3.9 Attitude of tricopter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8



3.10 Control inputs and rotor speeds of the tricopter. . . . . . . . . . . . . . 65

3.11 Side view of the single-tilt tricopter assembly. . . . . . . . . . . . . . . 66

3.12 Attitude and PWM commands from test. . . . . . . . . . . . . . . . . . 67

4.1 Forces and torques acting on tricopter and coordinate systems . . . . . 72

4.2 Top view of the tricopter showing all frames where CW and CCW mean

clockwise and counter clockwise respectively. . . . . . . . . . . . . . . . 72

4.3 Trifilar experiment with tricopter set for measuring Jz . . . . . . . . . . 76

4.4 Trifilar experiment with tricopter set for measuring Jx and Jy . . . . . 77

4.5 Thrust and drag-torque constants data with 93.82% fit for kt and 96.78%

fit for kd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6 Quaternion feedback control scheme. . . . . . . . . . . . . . . . . . . . 79

4.7 LPV-MPC scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.8 Attitude response to demanded heading of -0.12 rad (−7 deg.) after 3s,

([φ = 0, θ = 0, ψ = −0.12]> ⇒ [q0 = 1, q1 = 0, q2 = 0, q3 = −0.059]>). 86

4.9 Attitude response in Euler angles η, ([φ = 0, θ = 0, ψ = −0.12]> ⇒

[q0 = 1, q1 = 0, q2 = 0, q3 = −0.059]>). . . . . . . . . . . . . . . . . . . 87

4.10 Quaternion error qe and Angular velocity ωb . . . . . . . . . . . . . . . 87

4.11 Control torques and actuator outputs, τ bm, αi and ωi stand for torques,

servo angles and motor speeds respectively. . . . . . . . . . . . . . . . . 88

4.12 Attitude response to demanded heading of -0.14 rad with QFB and MPC 89

4.13 Comparing control torques between QFB and MPC schemes . . . . . . 89

4.14 Comparing motor speeds between QFB and MPC schemes . . . . . . . 90

4.15 Comparing servo angles between QFB and MPC schemes . . . . . . . . 91

4.16 Position of tricopter using translational forces only without changing

attitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.17 Tricopter response to rectangular trajectory with motion achieved using

translational control forces only. . . . . . . . . . . . . . . . . . . . . . . 93

4.18 Tilt angles applied to the servo motors to enable motions in x or y

directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.19 Attitude response to reference qd = [1 0 0 0]> (η = [0 0 0]>) with

position control for 6-DOF control. . . . . . . . . . . . . . . . . . . . . 95

4.20 Tricopter platform on test stand . . . . . . . . . . . . . . . . . . . . . . 95

9



4.21 Tilting mechanism assembly. . . . . . . . . . . . . . . . . . . . . . . . . 96

4.22 Thrust vectoring via direct actuation . . . . . . . . . . . . . . . . . . . 97

4.23 Pseudo-code for AUX mixer implementation . . . . . . . . . . . . . . . 99

4.24 Servo outputs when using direct actuation for x motion . . . . . . . . . 100

4.25 Servo outputs when using direct actuation for y motion . . . . . . . . . 101

5.1 SMC control scheme for linearising tricopter dynamics . . . . . . . . . 109

5.2 Tricopter response to spiral trajectory with SMC . . . . . . . . . . . . 110

5.3 Tricopter attitude with SMC . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4 Frequency response comparison: x and y channels . . . . . . . . . . . . 114

5.5 Frequency response comparison: z and roll channels . . . . . . . . . . . 115

5.6 Frequency response comparison: pitch and yaw channels . . . . . . . . 115

5.7 A formation control scheme for a group of networked SMC-linearized

tricopter agents (being SNI) involving a decoupled ‘mixed’ SNI+VSP

controller K(s) with K(0) > 0. . . . . . . . . . . . . . . . . . . . . . . 116

5.8 Closed-loop stability of a negative feedback interconnection containing a

networked ‘mixed’ SNI+VSP system K(s) cascaded with a decentralised

SNI system M(s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.9 (a) All the eigenvalue loci ρi(jω) of (L+G)⊗K(s)M(s) remain confined

within the Green coloured region ∀ω ∈ R∪{∞} when M(s) is SNI with

M(0) > 0 and K(s) is ‘mixed’ SNI+VSP with K(0) > 0; (b) Nyquist

D-contour in the s-plane. . . . . . . . . . . . . . . . . . . . . . . . . . . 118

(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.10 An equivalent block diagram of the formation control scheme shown in

Figure 5.7 for SMC-linearised networked tricopter agents. Note LG =

(L+G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.11 Undirected network interaction topology. . . . . . . . . . . . . . . . . . 124

5.12 Group formation of six tricopter agents with SNI+VSP controllers with

formation configuration switched from diamond to triangle after 10

seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.13 x position responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.14 y position responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

10



5.15 altitude z responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.16 roll attitude responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.17 pitch attitude responses. . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.18 yaw attitude responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.1 Block diagram of the setup. . . . . . . . . . . . . . . . . . . . . . . . . 147

A.2 Pixhawk 1 Flight controller . . . . . . . . . . . . . . . . . . . . . . . . 148

A.3 PX4Flow optical flow sensor. . . . . . . . . . . . . . . . . . . . . . . . . 149

A.4 Lidar-Lite V3 range-finder. . . . . . . . . . . . . . . . . . . . . . . . . . 150

A.5 Main Power supply components . . . . . . . . . . . . . . . . . . . . . . 151

(a) Matek PDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

(b) LiPo pack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.6 Heading control; CW and CCW mean Clockwise and Counter clockwise

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

(a) heading control operation . . . . . . . . . . . . . . . . . . . . . . 151

(b) tilt action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.7 Single-tilt tricopter Assembly . . . . . . . . . . . . . . . . . . . . . . . 152

A.8 Multi-tilt tricopter Assembly . . . . . . . . . . . . . . . . . . . . . . . . 152

A.9 QGroundControl Ground station application. . . . . . . . . . . . . . . 154

11



The University of Manchester
Daniel N. Abara
Doctor of Philosophy
Modelling, Control and Construction of Tricopter Unmanned Aerial Vehi-
cles
May 24, 2022

This thesis deals with the development and control of low-cost single-tilt and multi-
tilt tricopter aerial vehicles. Tricopter UAVs have been shown to be more agile and
manoeuvrable offering more advantages than other multicopters like the quadcopter
for example. The dynamic models for both tricopters are derived from first principles
and experimental data is used to obtain the actuator constants. In the case of the
single-tilt tricopter, a control allocation algorithm is also proposed to solve the problem
of the number of control inputs being more than the number of actuators since the
single-tilt tricopter has only four actuators (3 rotors and 1 servo) and a greater number
of control inputs (forces and torques). A cascaded-PID control scheme is then used to
stabilize the single-tilt tricopter in hover mode. The simulation results yield realistic
control inputs and the outputs have acceptable performance. The feasibility of the
proposed scheme is then validated with some experiments on the developed tricopter
platform in hover.

For the multi-tilt tricopter, a Quaternion Feedback Control (QFB) scheme is pro-
posed which uses unit quaternions to represent the attitude dynamics in order to avoid
gimbal lock which occurs when the pitch angle approaches ±90 degrees if using Euler
angles. Also, a linear Model Predictive Control (MPC) scheme which uses the Linear
Parameter Varying model of the tricopter is proposed. These control techniques are
tested and compared using simulations in Matlab/Simulink. The feasibility of achiev-
ing independent position and attitude control, with possibility of translating in the
longitudinal and lateral directions without changing the multi-tilt tricopter’s attitude,
is shown in simulation and demonstrated in experiments on the in-house tricopter. The
hardware implementation of this concept is achieved by developing an algorithm using
the PX4 framework which allocates the lateral and longitudinal forces via mapped
transmitter knobs.

Finally, this thesis also proposes a robust leader-following formation control scheme
for a class of multi-agent systems that can be modelled as a group of networked
closed-loop linearized multi-tilt tricopter agents utilizing Negative Imaginary (NI)
theory. A continuous time subspace identification method for NI systems based on the
Laguerre filter is proposed, which guarantees that the resultant model is NI. Sliding
Mode Control (SMC) is used to linearize the tricopter system in closed-loop having
six inputs and outputs instead of the more common feedback or Jacobi linearization
methods. The usefulness of the identification algorithm is shown via the identification
of an NI model for the SMC-linearized tricopter (inner-loop). The leader-following
formation problem is formulated as an asymptotic tracking problem of a distributed
Strictly Negative Imaginary (SNI) plus Very Strictly Passive (VSP) system being
cascaded with a network of closed-loop linearized multi-tilt tricopter agents. An in-
depth simulation case study is performed on a formation tracking mission for a group of
six SMC-linearized multi-tilt tricopters and the results show that the tricopter agents
achieve consensus tracking and leader-following group formation tracking.
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Nomenclature

Field of numbers

R real numbers

Rn real column vectors with n entries

Rm×n real matrices with m rows and n columns

C complex numbers

Cn complex column vectors with n entries

Cm×n complex matrices with m rows and n columns

Fm×n real or complex matrices with m rows and n columns

R>0 positive real numbers

R≥0 non-negative real numbers

Relational symbols

< less than

> greater than

∀ for all

≥ greater than or equal

∈ belong to

≤ less than or equal

⇔ is equivalent to

6= not equal to

6≡ not equivalent to

⇒ implies

→ tends to

⊂ is a proper subset of
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, is defined as

Matrix operations

In n× n identity matrix

A> transpose of A

A∗ complex conjugate transpose of A

Ā complex conjugate of A

A−1 inverse of matrix A

A−> shorthand for
(
A−1

)>
A−∗ shorthand for

(
A−1

)∗
ûi i-th unit vector [1 0 0]>

ûj j-th unit vector [0 1 0]>

ûk k-th unit vector [0 0 1]>

A > 0(≥ 0) A is positive definite (semidefinite)

aij the i-th row and j-th column of a real matrix

aij the i-th row and j-th column of a complex matrix

det(A) determinant of A

λmax(A) maximum eigenvalue of matrix A

rank(A) rank of matrix A

Miscellaneous

vb vector v given relative to the body-fixed frame

ve vector v given relative to the earth (inertial) frame

vl
n vector v given relative to the local frame n

◦ quaternion product

⊗ kronecker product

cφ shorthand for cosφ

sφ shorthand for sinφ

tφ shorthand for tanφ

Rb
e rotation matrix which transforms a vector from earth to body-fixed

coordinates

RHm×n
∞ set of all proper, real, rational and asymptotically stable transfer function
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matrices of dimensions (m× n)

SO(3) special orthogonal group of all (3×3) rotation matrices

diag
(
a, b, c

)
diagonal matrix with diagonal entries a, b, c

� end of proof

Acronyms

BLDC Brushless Direct Current

BR Bounded Real

CAD Computer Aided Design

CAN Controller Area Network

CT Continuous Time

DC Direct Current

DOF Degree of Freedom

DT Discrete Time

ESC Electronic Speed Controller

GPS Global Positioning System

I2C Inter-Integrated Circuit

LiPo Lithium Polymer

LMI Linear Matrix Inequality

LPV Linear Parameter Varying

LTI Linear Time Invariant

MAS Multi-Agent Systems

MIMO Multi Input Multi Output

MPC Model Predictive Control

NI Negative Imaginary

PDB Power Distribution Board

PID Proportional Integral Derivative

PR Positive Real

PWM Pulse Width Modulation

QFB Quaternion Feedback

RAM Random Access Memory

REF Row Echelon Form
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RTOS Real-time operating system

SISO Single Input Single Output

SMC Sliding Mode Control

SNI Strictly Negative Imaginary

UART Universal Asynchronous Receiver/Transmitter

UAV Unmanned Aerial Vehicle

VSP Very Strictly Passive

VTOL Vertical Take-off and Landing
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Chapter 1

Introduction

1.1 Background and Motivation

Unmanned Aerial Vehicles (UAVs) may be classed as either fixed wing or rotary

wing [1]. The fixed wing UAVs require a runway for take-off while the rotary wing

UAVs have the advantage of vertical take-off and landing (VTOL) and this has led

to an increased interest in VTOL aircraft which are sometimes called multi-rotors or

multicopters typically named based on the number of rotors on the aircraft. This

interest in multicopters is due to their ability to operate in hazardous or difficult

terrains without needing a runway as a result of the VTOL feature. Inspired by these

reasons, the focus of this thesis is on control of multicopters.

Multicopters may exist in various configurations and may be classed as under-

actuated, fully-actuated or over-actuated. An important concept in the description of

dynamical systems which is essential in understanding these different classifications

is the degrees-of-freedom (DOF). The number of DOF is equal to the number of

coordinates which are used to specify the configuration of a dynamic system minus

the number of independent equations of constraint [2, 3]. In other words, the DOF

is the number of independent generalized coordinates that completely defines the

configuration of a dynamic system at any time instant. The typical multicopter has

6-DOF [4] which are the three translational positions (lateral, longitudinal and altitude)

and three attitude angles (roll, pitch and yaw) which together describe the position and

orientation of the multicopter in three-dimensional space. The physical configuration of

the multicopter affects how many of these DOF can be directly actuated or equivalently,

22
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(a) T-shaped tricopter airframe (b) Y-shaped Tricopter schematic

(c) Y-shaped Tricopter schematic

Figure 1.1: Tricopter Configurations [images from Google].

how many control inputs (forces and torques) are available to directly control the

multicopter’s DOF. It is therefore necessary to understand how the available control

inputs relate to the number and arrangement of the actuators (motors and servos) of

the multicopter system and this relationship is often called a control allocation. The

system is considered under-actuated if the number of available control inputs is less

than the number of DOF [3,5]. This implies that the number and arrangement of the

multicopter’s actuators results in a configuration that is not sufficient to fully actuate

all the 6-DOF. Most classic multicopters are under-actuated. For example, the classic

quadcopter [6] is under-actuated because only 4 out of the 6-DOF namely the altitude,

roll, pitch and yaw, can be directly and independently controlled. Control of the lateral

and longitudinal positions is achieved indirectly by controlling the attitude. A higher

number of actuators does not necessarily indicate higher DOF. For example, the classic

hexacopter [7] has six rotors but is still under-actuated just like the quadcopter. If the

number of available control inputs is equal to the number of DOF, such multicopter is

said to be fully-actuated [8]. This implies that the arrangement of actuators is such

that all 6-DOF can be independently controlled. Over-actuated multicopters have the

same properties as fully-actuated ones but typically have more than 6 actuators thereby
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providing more flexibility in the control allocation due to the redundant actuators [9].

This is often useful for fault-tolerance and energy efficiency.

Typically, the rotors of multicopters are in pairs so that inherent reaction torques

are accounted for using counter-rotating propellers. In order to achieve more efficiency

in terms of size, manoeuvrability and even costs, researchers have proposed several

configurations of multicopters. A popular configuration is the quadcopter which has

four rotors and the attitude is controlled by varying the speeds of the opposite rotors

while lift is generated by the thrust produced by the four rotors rotating at equal

speed [6]. However, most quadcopters have the downside of being rigid due to their

airframe structure. That is, it is difficult to achieve and sustain large attitude angle

changes during flight making quadcopters less flexible or agile. It is possible to perform

instant manoeuvers such as flips for example, but such motions cannot be sustained for

continuous periods. The exception to this is where the quadcopter has some or all of its

rotors tilted. In this situation, the quadcopter becomes a tilt-rotor and is hence more

flexible. This thesis therefore focuses on another less common configuration known

as the tricopter which has 3 rotors, with one of the rotors (normally the tail rotor)

allowed to tilt for direct yaw control. Although, the odd number of rotors leads to

yaw imbalance making the tricopter unstable and control more difficult, the design

is cheaper [10] than an equivalently sized quadcopter due to less power requirements

from a reduction in number of motors, and the inherent instability and tilt mechanism

makes the tricopter more agile and manoeuvrable, compared to the quadcopter [11].

In this thesis, the configuration with one rotor tilted is termed single-tilt (or classic)

tricopter. In addition, the tricopter being a tilt-rotor airframe opens up opportunities

for research into the tilt-rotor space. These are the reasons this thesis focuses on the

tricopter rather than the more common quadcopter.

A T-shaped configuration modelled using Newton-Euler methods was proposed

by [12] and a nonlinear control technique which utilized nested saturations was used

to achieve stability of the single-tilt tricopter. A similar but different T-shaped single-

tilt tricopter was proposed in [13] where the UAV has the combined features of both

fixed-wing and rotary-wing UAVs. The three motors point upwards like any standard

multicopter on take-off, thereby providing the needed thrust to gain altitude like a

rotary-wing (VTOL) UAV. After take-off, the two front rotors are tilted forwards,
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to vector the thrust from these rotors in the longitudinal direction. As a result, this

single-tilt tricopter setup achieves forward motion like a fixed-wing UAV. This is similar

to the Bell Boeing V-22 Osprey convertiplane. A more complex airframe is proposed

by [11] where instead of using a tilted tail rotor, the yaw angle is controlled by a pair

of flaps mounted on the slipstream of the propellers. While the idea is innovative, the

complexity makes it less intuitive. Noting that the tail servo is the weakest link in the

single-tilt tricopter airframe, a fault-tolerant controller is proposed in [14] to combat

the stuck fault of the tail servo. Speaking of control techniques, a number of linear

and nonlinear control techniques have been applied to solve the control problem of

the single-tilt tricopter. Besides the use of nested saturations in [12], fuzzy-logic has

been used in [15] where a similar model to [13] is proposed. An MPC-based control

technique is applied in [16] to achieve stability of the single-tilt tricopter’s position. In

addition, a control algorithm is proposed therein. Similar to [16], a nonlinear MPC

scheme is used in [17] to control the single-tilt tricopter and online learning capabilities

of the proposed method are investigated with simulations. The work of [18] makes use

of adaptive fuzzy gain scheduling to tune PID controllers for the single-tilt tricopter,

thus yielding better performance than conventional PIDs. It can be observed that there

are still opportunities for further research into the single-tilt tricopter especially in the

area of experimental validation of the tricopter concept with physical hardware as most

of the existing works are based mainly on simulations. Also, in the current literature

for the single-tilt tricopter, models derived from first principles are mostly used rather

than models identified from experimental data. Consequently, the practicability of

the existing methods with regards to real hardware has received little consideration.

These issues open up opportunities for additional research into the tricopter’s airframe

structure or design and into the development of control techniques for the tricopter.

Motivated by these concerns together with a desire to gain further insight into the

tricopter problem in general, the hardware for a single-tilt tricopter using open-source

tools based on the PX4 [19] framework is constructed in this thesis. The model is

derived from first principles and to make the control as practicable as possible, varied

experiments are developed and used in identifying the model parameters. As the

single-tilt tricopter is under-actuated, a control allocation scheme which allocates the

actuator signals is proposed to solve this problem. Cascaded-PID control is used to
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study the practicability of the scheme with both simulations and trial experiments.

Another tricopter configuration which is investigated in this thesis is the multi-

tilt tricopter. In this configuration, all three rotors are tilted thereby providing more

benefits such as further increasing the agility of the tricopter and offering the possibility

of achieving independent translational and rotational motions. That is, making it

possible to control the position (with respect to the intertial frame) of the tricopter

without changing its attitude. This configuration is advantageous for example for

mounting a camera directly on the UAV body rather than on a gimbal. Since this

configuration offers greater tilting capabilities, a variety of views maybe obtained by

directly varying the attitude of the UAV, thereby varying the views of the camera. In

such situation, the use of a gimbal for changing the camera’s view becomes unnecessary.

The multi-tilt tricopter has gained less attention compared to the single-tilt tricopter.

One of the pioneering works on the multi-tilt tricopter is the work of [20] where a

novel airframe in which all rotors can tilt was proposed. The authors used feedback

linearization and H∞-control to show how the attitude could be stabilized. A similar

tricopter where all rotors can tilt is studied in [21] and a so-called pilot-supporting

controller is proposed to control the vehicle, and more recently in [22], flatness-based

control has been applied to show how a tricopter with all rotors independently tilting

can follow arbitrary trajectories in air. Another interesting work relating to the multi-

tilt tricopter is that of [23] where all rotors independently tilt. However, apart from

the fact that the tail rotor points downwards in the reverse direction, the airframe is

T-shaped rather than Y-shaped as compared to [20–22] and PID control is used to

verify the concept with flight experiments. Besides the fact that there has been fewer

studies on the multi-tilt tricopter problem, a similar observation to the single-tilt case

can be made relating to the fact that there has been more focus on models based on

first principles rather than experimental models, and the models used in practically

all the former works mentioned represent rotational dynamics (attitude) using Euler

angles which are prone to gimbal lock issues [24]. Gimbal lock is an effect which

occurs when the pitch angle reaches ±900 leading to singularities in the computations

and subsequent processing errors especially when implementing on hardware. This

is an important factor to consider for the multi-tilt tricopter since it is a very agile

and flexible UAV where the changes in attitude angles may be large, as a result of
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the airframe configuration. In addition, none of the existing works have explored a

quaternion feedback control technique for the tricopter problem in general.

Motivated by these issues and the opportunities which the multi-tilt airframe

configuration presents, a tricopter with independently tilting rotors is also constructed

in this thesis using open source tools (PX4) similar to the single-tilt case resulting in

a fully actuated vehicle. A custom tilt-mechanism is developed and used to tilt each

of the rotors in a wider range for more flexibility. Different from existing literature on

tricopters, this thesis proposes a quaternion-feedback control technique for attitude

stabilization. The model used in this case makes use of quaternions in representing the

attitude thereby avoiding gimbal lock. Like the single-tilt case, experiments are used

to obtain the parameters of the model. Besides the quaternion-feedback scheme, a

linear MPC scheme is also proposed for attitude stabilization of the multi-tilt tricopter.

Here, rather than linearizing the model about operating points as is standard practice,

a Linear-Parameter-Varying (LPV) model is used instead. This offers better precision

in terms of the validity of the model since the nonlinearities of the tricopter are

captured in the LPV model. As a result, by using this LPV model, even though

the multi-tilt tricopter system is inherently nonlinear, a linear control method can

be applied to control it. This thesis also shows via simulations, the capability of the

multi-tilt tricopter to perform independent translational motion in the longitudinal

and lateral directions without changing attitude. This concept is then demonstrated by

implementing the control forces for the longitudinal and lateral positions in the control

allocation of the PX4 flight stack mixing system, validated using bench test experiments

on the multi-tilt tricopter test bed. Note that a radio transmitter typically supports

the control of only roll, pitch, yaw and thrust. This control allocation implemented in

PX4 is necessary in order to additionally control the longitudinal and lateral positions

of the tricopter using the radio transmitter.

1.1.1 Multi-agent Systems

The cooperative control of multi-agent systems (MAS) has also drawn a decent amount

of attention in recent years. In this context, a number of systems or (UAVs in this

case) are considered as agents forming a network where information can be exchanged

between agents via the network [25]. Although each individual agent may have limited
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resources, the network of agents as a whole can perform complex tasks in a coordinated

manner. Researchers from multiple disciplines have shown interest in MAS due to

their wide applications in multirobot cooperation [4, 26, 27] and distributed sensor

networks [28, 29] to name a few. As noted in [30], the MAS domain includes three

main areas namely consensus control [31, 32], containment control [33] and formation

control [34]. Of these three, formation control has witnessed an immense growth over

the past decade [35]. In many cases, if formation control is achieved, consensus control

is inherently achieved and this may account for the growth and amount of research

in the formation control space. The formation control problem is to develop control

techniques or strategies to achieve group formation tracking. That is, to make the

agents achieve a specified formation (or shape) with reference to a target.

Recognising that MAS play a key role in today’s world with substantial amount of

research in this space, this thesis also investigates the formation control for a group of

multi-tilt tricopters. The literature on MAS suggests that formation control has seen

the highest amount of interest, of the domains in the MAS field [35]. This has been

achieved using several techniques and approaches [30, 36–40] including an approach

called Negative Imaginary (NI) systems theory [41,42]. NI systems theory is a robust

control method for achieving robust stability of a feedback interconnection for a certain

class of systems. The Nyquist stability criterion [43] provides stability conditions under

which a feedback interconnection is robustly stable using a lot of information about the

interconnected systems. If less information is known about the interconnected systems,

it is still possible to guarantee robust stability if certain conditions are known. For

instance, if the interconnected systems are Bounded Real (BR) or Positive Real (PR),

then concepts such as small-gain theorem [44] or passivity theorem [45] respectively,

provide conditions for establishing the robust stability of the feedback interconnection.

The NI theory provides a result of similar nature where a certain class of systems may

be characterized as having NI frequency response. Consequently, the NI theory provides

necessary and sufficient conditions for establishing the stability of an interconnection

of such systems [46, 47], using only limited information about the interconnected

systems. The NI theory itself has gained a lot of traction since inception and has been

shown to have many useful engineering applications including Nanopositioning, vehicle

platooning, vibration control, control of large space structures, flexible robotic arms,
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DC machines and multi-agent networked systems (see [48–53] and references therein).

In general, NI theory is appealing due to its simple internal stability condition1 that

depends on the loop gain at zero frequency only. This thesis focuses mainly on the

application of the NI theory to multi-agent systems.

In [55], a consensus-based formation control framework is designed for a multi-

vehicle system using NI theory. Obstacle avoidance and detection is also investigated

therein and compared to the similar work of [56] which is based on artificial potential

field function control. The authors in [56] and [57] extended the works of [31] and [32]

to develop a formation control framework for a group of heterogeneous vehicles with

time-invariant switching. Two-wheeled mobile robots interacting through a directed

and balanced graph are made to achieve a rendezvous control scheme in [58], also using

NI theory. The idea of using the NI/SNI stability result to develop cooperative control

schemes is due to the fact that a certain class of systems (such as UAVs, mobile robots

for example) can be modelled as a group of networked single or double integrator

agents which satisfy the NI property. This single or double integrator systems are

typically achieved by feedback linearization of the nonlinear dynamics of the original

systems. Another factor is that a number of studies in literature [41,55,57], have shown

specifically that linearized dynamics of the inner-loop of a class of UAVs in particular,

exhibit the NI property. Thus, a distributed SNI controller may be used to robustly

stabilize such UAVs.

Motivated by these existing results and in an effort to further develop the formation

control of multi-agent UAVs, this thesis proposes a leader-following formation control

scheme for a network of multi-tilt tricopter UAVs. Different from existing works such

as [20] where feedback linearization has been used to obtain single/double integrator

dynamics, this thesis proposes Sliding Mode Control (SMC) for linearizing the nonlinear

dynamics of the multi-tilt tricopter. The result is a SMC-linearized closed-loop system

with six inputs (three positions with respect to the inertial frame and three attitude

angles) and six corresponding outputs. Noting from [57] that linearized UAV dynamics

in closed-loop can be modelled as NI systems and in an attempt to obtain the dynamics

of the SMC-linearized multi-tilt tricopter model, this thesis develops a closed-loop
1A necessary and sufficient condition for the internal stability of a positive feedback interconnection

of NI and Strictly NI systems, say M(s) and N(s), is λmax[N(0)M(0)] < 1 [47,54].
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system identification algorithm that guarantees that the identified model is NI. The

algorithm is based on the classic subspace identification method but makes use of the

Laguerre filter [59] and extends the work of [60]. The developed scheme is used to obtain

transfer function models for each channel of the SMC-linearized multi-tilt tricopter and

frequency domain analysis is used to confirm that these models are in fact NI. These

models when combined form a six-by-six transfer function matrix describing the full

SMC-linearized dynamics of each of the multi-tilt tricopters in a network, and which

serves as the inner loop. Consequently, an outer-loop output feedback distributed

controller is proposed to achieve formation control. This distributed controller is

based on the NI and passivity theories via a derived closed-loop stability result which

establishes that a network of SMC-linearized multi-tilt tricopters being NI or SNI can

be robustly stabilized with negative feedback. To prove the stability of the states, the

characteristics of the eigenvalue loci of networked NI and SNI systems is used instead of

the Lyapunov-based approach which is more common in literature. Simulation studies

are used to demonstrate the effectiveness and usefulness of the proposed methods.

1.2 Contributions to the state-of-the-art

The contributions of this thesis to the state-of-the-art are as follows:

• Design and construction of servo tilt-mechanism which extends the tilt angle

range of the rotors in a multi-tilt tricopter.

• The development of control allocation scheme which allocates the actuator signals

via a non-square mixer matrix due to under-actuation in the single-tilt tricopter.

• Demonstration of capability of multi-tilt tricopters to translate in longitudinal

and lateral directions without change in attitude.

• Development of direct (manual) actuation method to control lateral and longitudi-

nal motion of the multi-tilting tricopter via thrust vectoring, using a transmitter.

• Development of a novel system identification method for NI systems in continuous

time.
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• Development of closed-loop stability result for a network of NI/SNI systems in

feedback with mixed NI+VSP controllers.

• Design of distributed control law using proposed stability result to achieve coop-

erative control with both consensus and formation control.

1.3 Thesis Organization

The rest of this thesis is organized as follows:

Chapter 2 - Preliminaries:

This chapter presents some relevant technical background which is essential for the

reader to understand the rest of the thesis. The concepts introduced include Linear

algebra, Linear systems theory, Graph theory and Negative imaginary systems theory.

A review of coordinate systems, Quaternions, Euler angles and rotation matrices is

also provided.

Chapter 3 - Development and stabilization of a low-cost single-tilt tricopter:

In this chapter, a low-cost single-tilting tricopter aerial vehicle is developed with optical

flow estimation for indoor navigation. A dynamic model is derived and experimental

data is used to obtain the actuator constants. A CAD model is then developed and is

used to obtain the moments of inertia with respect to the three main axes. A control

allocation algorithm is also proposed to solve the problem of the number of control

inputs being more than the number of actuators since the single rotor tilt tricopter

has only four actuators (3 rotors and 1 servo). A cascaded-PID control scheme is then

used to stabilize the tricopter in hover mode. The simulation results yield realistic

control inputs and the outputs have acceptable performance. The feasibility of the

proposed scheme is then validated with some experiments on the developed tricopter

platform in hover.

Chapter 4 - Development and control of Multirotor-tilting tricopter with

direct actuation for position control:

This chapter presents the development and control of a custom multirotor-tilting

tricopter UAV. The dynamic model is derived and data from varied experiments
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is used to identify the model parameters. A Quaternion Feedback Control (QFB)

scheme is proposed which uses unit quaternions to represent the attitude dynamics

in order to avoid gimbal lock which occurs when the pitch angle approaches ±90

degrees if using Euler angles. Next, a Model Predictive Control (MPC) scheme which

uses the Linear Parameter Varying model of the tricopter is proposed. Both control

techniques are tested and compared using simulations. The feasibility of full actuation

is shown through position control achieved by feedback linearization of the nonlinear

translational equations to yield the desired control forces for the longitudinal and

lateral directions. This idea of independently controlling the lateral and longitudinal

positions is then extended to hardware through the development of a control allocation

via thrust vectoring based on the PX4 framework. Real-time indoor experiments on

the in-house tricopter test-bed are used to validate the control allocation for motion

in the lateral and longitudinal directions.

Chapter 5 - A negative imaginary robust formation control scheme for a

group of networked tricopters over inner-loop sliding-mode control:

This chapter proposes a robust leader-following formation control scheme for a class of

multi-agent systems that can be modelled as a group of networked closed-loop linearized

multi-tilt tricopter agents utilizing Negative Imaginary (NI) theory and Passivity

Theory. A continuous time subspace identification method for NI systems based on the

Laguerre filter is proposed, which guarantees that the resultant model is NI. The model

of the tricopter is derived and Sliding Mode Control (SMC) technique is used to linearize

the system in closed-loop having six inputs and outputs. The developed identification

algorithm is used to identify an NI model for the SMC-linearized tricopter (inner-loop).

According to NI theory, since the linearized tricopter is NI, if SNI controllers are

used to control them, then robust stability for the whole network is achieved. The

leader-following formation problem has been formulated as an asymptotic tracking

problem of a distributed SNI+VSP system being cascaded with a network of closed-

loop linearized multi-tilt tricopter agents. Eigenvalue loci technique is used instead

of Lyapunov-based approach, to prove the asymptotic convergence of the formation

tracking error. A simulation study for a group of six SMC-linearized multi-tilt tricopters

is provided to show the usefulness and effectiveness of the proposed scheme.



CHAPTER 1. INTRODUCTION 33

Chapter 6 - Concluding Remarks:

This chapter concludes this thesis by providing a summary of the contributions herein,

and highlighting possible areas for future research.



Chapter 2

Preliminaries

This chapter provides a brief but necessary technical background to prepare the reader

for the chapters that follow. This chapter is intended to be used as a quick reference

for understanding the derivations of the results in subsequent chapters.

2.1 Linear Algebra

This section contains some basic linear algebra definitions and properties which are

used in this thesis.

2.1.1 Linear subspaces

The range and rank of a matrix are important properties used in linear algebra and

are respectively defined as follows:

Definition 2.1 (Range, [44, 61]). Let A ∈ Fm×n. Then, the range or image of A

denoted Im(A) is defined as

Im(A) = {y ∈ Fm : y = Ax, x ∈ Fn}.

Definition 2.2 (Rank, [44, 61]). Let A ∈ Fm×n. Then the rank of A is defined as

rank(A) = dim(Im(A)).

Since rank(A) = rank(A∗), then rank(A) equals the maximum number of linearly

independent rows and columns. One way of obtaining the rank of a matrix is by row

34
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reduction (Gaussian elimination) to reduce the matrix to its Row Echelon Form (REF),

see [62] for details. The following definition applies the rank condition to a special case

of when the matrix A is square.

Definition 2.3 ( [62]). Given a square matrix A ∈ Fn×n. If rank(A) = n, then A is

said to be full rank and is nonsingular. That is, its inverse A−1 exists.

This will be used later to show that a matrix is always invertible as far as it is

full rank. The notion of Unitary matrices is another concept which applies to several

applications including coordinate rotations which are considered in this thesis. Thus,

a formal definition is given as follows.

Definition 2.4 (Unitary matrix, [44]). A square matrix U ∈ Fn×n whose columns

form an orthonormal basis for Fn is called a unitary matrix (or orthogonal matrix if

F = R), and it satisfies U∗U = I = UU∗.

2.1.2 Symmetric and semidefinite matrices

The concept of semidefinite matrices has been used in many applications and is essential

in the development of NI theory which forms a part of this thesis. A formal definition

is given as follows.

Definition 2.5 (Symmetric matrix, [62]). Let A ∈ Rn×n (respectively ∈ Cn×n), then

A is said to be symmetric (respectively hermitian) if A = A> (respectively A = A∗)

that is, aij = aji (respectively aij = aji).

Definition 2.6 (Skew-symmetric matrix, [62]). Let A ∈ Rn×n (respectively A ∈

Cn×n), then A is said to be skew-symmetric (respectively skew-hermitian) if A = −A>

(respectively A = −A∗) that is, aij = −aji (respectively = −aji).

Definition 2.7 (Semidefinite matrix, [44]). A square Hermitian matrix X = X∗ is

said to be positive (semi) definite, denoted by X > 0(X ≥ 0), if x∗Xx > 0(x∗Xx ≥

0) ∀x 6= 0.

2.1.3 Cross products

The cross product is an important property with applications in many areas including

coordinate rotations which are used in this thesis when modelling the tricopter. A
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formal definition is as follows.

Definition 2.8. [63] The cross-product of u∈ R3 and v∈ R3, denoted by u×v, is a

vector w∈ R3 that is normal to the plane of u and v and is in a direction such that

u,v,w (in that order) form a right-handed system. The length of w is defined to be

|u× v| = |u||v| sin θ, where θ is the angle between u and v.

It is convenient to represent the cross-product as a matrix function given by,

u× v =


0 −uz uy

uz 0 −ux
−uy ux 0




vx

vy

vz

 = S(u)v, (2.1)

where S(·) ∈ R3×3 is a skew-symmetric cross product matrix function. An important

property of the cross product is that it is anti-commutative, that is,

u× v = −(v× u),

S(u)v = −S(v)u. (2.2)

2.1.4 Kronecker products

The Kronecker product is an important concept that has been used in this thesis to

express a networked multi-agent system. Its definition and key properties are given as

follows.

Definition 2.9 (Kronecker product, [44]). The Kronecker product of A ∈ Fm×n and

B ∈ Fp×q is defined as

A⊗B =



a11B a12B . . . a1nB

a21B a22B . . . a2nB
... ... . . . ...

am1B am2B . . . amnB


∈ Fmp×nq, (2.3)

and has the following properties:

A⊗ (B + C) = A⊗B + A⊗ C, (2.4)

(kA)⊗B = A⊗ (kB) = k(A⊗B) where k is a scalar, (2.5)

(A⊗B)(C ⊗D) = (AC)⊗ (BD), (2.6)

(A⊗B)−1 = A−1 ⊗B−1. (2.7)
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2.1.5 Eigenvalues and Eigenvectors

The eigenvalues of a square matrix provide important information about the matrix,

and therefore play a key role in analysis and design of linear control systems which is

done in this thesis. A brief definition of eigenvalues and eigenvectors is as follows.

Definition 2.10 (Eigenvalues, [61]). Let A ∈ Cn×n. If a scalar λ and a non-zero vector

x satisfy the equation

Ax = λx, x ∈ Cn, x 6= 0, λ ∈ C,

then λ is called an eigenvalue of A and x is called an eigenvector of A associated with

λ. The pair λ, x is an eigenpair for A.

2.2 Linear Systems Theory

This section presents some concepts in linear systems theory and their properties with

a focus on linear control systems. The material in this section can be found in [44].

2.2.1 Description of systems

Consider the following linear time-invariant (LTI) system,
ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t)
(2.8)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rq×m, and x(t) ∈ Rn, u(t) ∈ Rm and

y(t) ∈ Rp represent the state, input and output respectively. If m = p = 1, the system

(2.8) is said to be a SISO system while if m, p > 1, the system (2.8) is said to be a

MIMO system. The corresponding transfer function (transfer matrix for MIMO case)

is defined as M(s) = C(sI −A)−1B +D. The eigenvalues of A in system (2.8) are the

poles of M(s).

The system (2.8) is often represented in compact form by the notation

M(s) =

 A B

C D

 = C[sI − A]−1B +D (2.9)
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where M(s) is a transfer function (or matrix). An important operation which can be

performed on M(s) and which is used extensively in NI theory is the transpose given

below.

Definition 2.11. The transpose of the transfer matrix (2.9) is given by

M>(s) = B>(sI − A)−>C> +D> =

 A> C>

B> D>

 . (2.10)

2.2.2 Stability, Controllability and Observability

The stability is an important concept in the analysis of control systems and the following

definition provides a condition for the stability of system (2.8).

Definition 2.12. A matrix A is said to be asymptotically stable or Hurwitz if all

its eigenvalues are in the open left half plane that is, all its eigenvalues have strictly

negative real part.

The controllability and observability are very important in the design of feedback

controllers for linear systems and they are applied in the design of Model Predictive

and output feedback controllers in this thesis. The following lemmas provide useful

results for checking these conditions.

Lemma 2.1. If rank
[
B,AB, . . . , An−1B

]
= n, then (A,B) is controllable.

Lemma 2.2. If rank
[
C>, A>C>, . . . , (An−1)>C>

]
= n, then (C,A) is observable.

There are cases where a system does not satisfy the controllability or observability

conditions but it may satisfy a reduced condition of being stabilizable or detectable

respectively.

Definition 2.13. If there exists a matrix K ∈ Rm×n such that A + BK is Hurwitz,

then system (2.8) is stabilizable or (A,B) is stabilizable.

Definition 2.14. If there exists a matrix L ∈ Fn×p such that A+LC is Hurwitz, then

system (2.8) is detectable or (A,C) is detectable.
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2.2.3 State space realizations

Most of the NI lemmas have been derived under the assumption of a minimal state-

space realization. If the A matrix of M(s) in (2.9) has the least possible dimension,

then the system is minimal and is given by the following result.

Theorem 2.1. A state space realization

 A B

C D

 of M(s) is minimal if and only if

(A,B) is controllable and (C,A) is observable.

2.2.4 Internal stability

Given a positive feedback interconnection as in Figure 2.1.

( )s

( )M s







1u

2u2y

1y

Figure 2.1: Positive Feedback interconnection of two systems ∆(s) and M(s)

Lemma 2.3. [44] The feedback interconnection in Figure 2.1 is well-posed if and only

if I −∆(∞)M(∞) is invertible.

If for all bounded inputs (u1, u2), the outputs (y1, y2) are also bounded, then the

positive feedback interconnection in Figure 2.1 is internally stable. The following

lemma provides a matrix characterization for internal stability. For convenience, ∆(s)

and M(s) will be denoted as ∆ and M respectively.

Lemma 2.4. [44] The system in Figure 2.1 is internally stable if and only if the

transfer matrix I −M

−∆ I


−1

=

I +M(I −∆M)−1∆ M(I −∆M)−1

(I −∆M)−1∆ (I −∆M)−1

 (2.11)

from (u1, u2) to (y1, y2) is RH∞.
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2.3 Graph theory

Graph theory is fundamental in the study of cooperative and consensus control of

multi-agent systems which are considered in this thesis. This section therefore presents

some background on graph theory as applied in this thesis and the material in this

section can be found in [64–67].

Graphs are used to model information exchange among the agents in a network and

the nodes in a graph represent the agents while the edges represent the information

exchange among the agents. Graphs may be undirected where the flow of information

is bidirectional (each agent can both send and receive information) or directed where

the flow of information is directional (some agents can only receive information while

others can only send information) as given in Figure 2.2. This thesis uses the directed

graph topology.

1N

12a
21a

23a

31a

32a

13a

3N
2N

(a) Undirected graph

1N

12a

23a

31a
13a

3N
2N

(b) Directed graph

Figure 2.2: Network graphs with different topologies.

Consider a weighted and directed graph G = (V , E ,A) with a non-empty set of

nodes V = {1, 2, · · · , N}, a set of edges E ⊂ V × V. An edge rooted at the ith node

and ended at the jth node is denoted by (i, j), which means information can flow from

the ith node to the jth node. If an edge exists between nodes i and j, we call them

adjacent and the associated adjacency matrix of the network A =
[
aij
]
∈ RN×N . The

weight of edge (i, j) is aij and aij > 0 if (i, j) ∈ E . The jth node is called a neighbour

of the ith node if (j, i) ∈ E . The in-degree matrix is defined as D = diag
(
di
)
∈ RN×N

with di = ∑N
j=1 aij. The Laplacian matrix L ∈ RN×N of G is defined as L = D − A.

For example, the adjacency matrix, in-degree matrix and Laplacian for the directed
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topology in Figure 2.2 are given as,

A =


0 1 1

0 0 1

1 0 0

 , D =


2 0 0

0 1 0

0 0 1


and

L =


2 −1 −1

0 1 −1

−1 0 1

 . (2.12)

Suppose a multi-agent network contains both leader and follower agents, and that

the information flow among the follower agents is bidirectional and there exists at

least one directional link from the leader to the followers. If the ith follower agent is

connected to the leader (considered as the root node labelled with ‘0’), then an edge

(0, i) is said to exist between them with a gain gi > 0. Here the reference trajectory

from the root node is applied to the ith follower agent which is pinned and hence gi is

called the pinning gain. The pinning matrix is denoted as G = diag
(
gi
)
∈ RN×N The

convergence of the other follower agents to the reference trajectory is achieved due to

their interaction with the pinned agent.

2.4 Homogeneous multi-agent systems

This section provides a formal definition of homogeneous multi-agent systems which

are considered in this thesis. When the agents of a network are described by identical

dynamics, such multi-agent network is said to be homogeneous.

Definition 2.15 ( [68]). A homogeneous multi-agent system is a network of identical

multi-input multi-output agents described by

Agent i : ẋi = Axi +Bui +Hwi, (2.13)

yi = Cxi

where i = {1, 2, . . . , N} ∈ G, xi ∈ Rn is the state, ui ∈ Rm is the input and wi ∈ Rw is

external disturbance.
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2.5 Negative Imaginary Systems

This section provides the relevant background of NI and SNI systems and some of the

internal stability results that exist in the literature. The results here are used later to

develop an identification scheme for NI systems and to design an NI based consensus

control scheme for a network of tricopters.

Definition 2.16 (NI systems, [54, 69]). Let M(s) be the real, rational and proper

transfer matrix of a square and causal system without any poles in the open right-half

plane. M(s) is said to be Negative Imaginary (NI) if

• j
[
M(jω)−M(jω)∗

]
≥ 0 for all ω ∈ (0,∞) except the values of ω where s = jω

is a pole of M(s);

• If s = jω0 with ω0 ∈ (0,∞) is a pole ofM(s), then it is at most a simple pole and

the residue matrix lim
s→jω0

(s− jω0)jM(s) is Hermitian and positive semidefinite;

• If s = 0 is a pole of M(s), then the lim
s→0

skM(s) = 0 for all k ≥ 3 and lim
s→0

s2M(s)

is Hermitian and positive semidefinite.

A subset of NI systems termed SNI systems is defined as follows:

Definition 2.17 (SNI systems, [47]). LetM(s) be the real, rational and proper transfer

matrix of a square and causal system. M(s) is said to be Strictly Negative Imaginary

if M(s) has no poles in {s ∈ C : R[s] ≥ 0} and j
[
M(jω)−M(jω)∗

]
≥ 0 for all

ω ∈ (0,∞).

2.5.1 Properties of networked NI and SNI systems

This subsection declares the properties of the interaction topology of a group of NI

systems when considered as agents in a network. These results will be used later to

develop an NI-based co-operative control scheme for a network of tricopters.

Assumption 2.1. The communication topology of N agents (in the homogeneous case)

is described by an undirected and connected graph G. There always exists a root node

(also called the leader or target) which provides reference trajectory to the follower

agents (at least to one follower).
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According to Assumption 2.1, we have (L+G) > 0 whereG = diag{g1, g2, · · · , gN} >

0 is the pinning-gain matrix. The following lemma proves that a network of homoge-

neous LTI systems that satisfies Assumption 2.1 exhibits stable NI (resp. SNI) property

if and only if each individual system of the network is stable NI (resp. SNI).

Lemma 2.5 ( [42,70]). Consider a network of N identical stable NI (including SNI)

agents that satisfies Assumption 2.1. Then, M̄(s) = (L+G)⊗M(s) is stable NI (resp.

SNI) if and only if M(s) ∈ RHm×m
∞ is NI (resp. SNI).

Lemma 2.6 shows that a network of all homogeneous stable NI (including SNI)

systems retains the same sign definiteness of its DC-gain matrix when the corresponding

communication topology satisfies Assumption 2.1.

Lemma 2.6 ( [42, 70]). Consider a network of N identical stable NI agents M(s) ∈

RHm×m
∞ satisfying Assumption 2.1. Denote M̄(s) = (L+G)⊗M(s). Then, M̄(0) >

0 (resp. < 0) if and only if M(0) > 0 (resp. < 0).

2.5.2 Eigenvalue loci theory

Similar to a Nyquist plot, the eigenvalue loci ρi(s) for i ∈ {1, 2, . . . , n} of a transfer

function matrix G(s) is a conformal mapping of the function det[G(s)] in a complex

plane, known as the eigenvalue loci plane, when s traverses along the s-plane D-contour

in the clockwise direction as shown in Figure 2.3. For complete details of the eigenvalue

loci theory, please see [71,72].

The eigenvalue loci theory is used later to prove the stability of a feedback inter-

connection of NI and VSP controllers.

Theorem 2.2 ( [71,72]). The negative feedback interconnection of a plant M(s) and

a controller K(s) is asymptotically stable if an only if the net sum of the critical point

(−1 + j0) encirclements of all the eigenvalue loci ρi(jw) of the loop transfer function

M(s)K(s) for i ∈ {1, 2, . . . , n} is counter-clockwise and equal to the number of RHP

zeros of the open-loop characteristic polynomial. For open-loop stable cases, none of

ρi(jw) should encircle the critical point (−1 + j0).
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0j 

j 

0j 

j 

0 



R

0



>
>
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Figure 2.3: Nyquist D-contour in the s-plane, where ω = 0+, 0− and ω = +∞,−∞
are denoted by j0+, j0− and +j∞,−j∞ respectively, Ω0 = {s| s = εejθ, ε ∈ R>0,
ε → 0, −π

2 ≤ θ ≤ π
2}, ΩR = {s| s = Rejθ, R ∈ R>0, R → +∞, −π

2 ≤ θ ≤ π
2} and

σ ∈ (0, σ∗) is a finite range.

2.5.3 Properties of eigenvalue loci of networked NI (SNI) sys-

tems

So far in the literature, the eigenvalue loci theory [71,72] has been defined for a single

LTI system. Lemma 2.7 given below shows that all the eigenvalue loci of networked

stable NI (resp. SNI) systems lie below (resp. strictly below) the real axis of the

eigenvalue loci plane for all ω ∈ (0,∞). This resembles the well-known Nyquist

interpretation of the NI and SNI transfer functions in the SISO setting [47].

Lemma 2.7 ( [42,70]). Consider a network of N identical stable NI (resp. SNI) agents

M(s) ∈ RHm×m
∞ satisfying Assumption 2.1. Denote M̄(s) = (L+ G)⊗M(s). Then,

the eigenvalue loci ρi(jω) of M̄(s) ∈ RHNm×Nm
∞ lie below (resp. strictly below) the real

axis of the eigenvalue loci plane ∀ω ∈ (0,∞) and ∀i ∈ {1, 2, . . . , Nm}.

The following lemma, referred to as the NI lemma, provides a state-space charac-

terisation for NI systems without poles at the origin.

Lemma 2.8 (NI Lemma, [47,73]). Let G(s) be the real, rational and proper transfer

function matrix of a finite-dimensional, square and causal system G having a minimal

state-space realization

 A B

C D

. Then, G(s) is NI without poles at the origin if and
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only if det(A) 6= 0, D = D> and there exists a real matrix X = X> > 0 such that

AX +XA> ≤ 0 and

B = −AXC>.
(2.14)

2.6 Quaternion Maths

Quaternions are useful in modelling the attitude of rotating bodies such as UAVs and a

brief introduction to quaternions is given in this section. Let qv = iq1 + jq2 + kq3 ∈ R3,

and q0 be a scalar, then a quaternion q ∈ R4 is the sum [74],

q = q0 + qv = q0 + iq1 + jq2 + kq3 (2.15)

where qi for i ∈ {0, 1, 2, 3} are the components of the quaternion. The quaternion may

be represented as a vector

q = [q0 q1 q2 q3]> =

q0

qv

 . (2.16)

The conjugate, norm and inverse of the quaternion are [74],

q∗ = [q0 -q1 -q2 -q3]>, (2.17)

‖q‖ =
√
q2

0 + q2
1 + q2

2 + q2
3, (2.18)

q−1 = q∗

‖q‖
. (2.19)

The product of two quaternions p = p0 + pv and q = q0 + qv is given as [74],

r = p ◦ q = p0q0 − pv · qv + p0qv + q0pv + pv × qv (2.20)

where r is itself a quaternion. More compactly, this product may be written as,

r = p ◦ q = Q(p)q = Q̄(q)p (2.21)

where Q ∈ R4×4, Q̄ ∈ R4×4 are matrix-valued functions which we define as,

Q(p) =

p0 −p>v
pv p0I3 + S(pv)

 =



p0 −p1 −p2 −p3

p1 p0 −p3 p2

p2 p3 p0 −p1

p3 −p2 p1 p0


, (2.22)
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and

Q̄(q) =

q0 −q>v
qv p0I3 − S(qv)

 =



q0 −q1 −q2 −q3

q1 q0 q3 −q2

q2 −q3 q0 q1

q3 q2 −q1 q0


(2.23)

where S(·) ∈ R3×3 is the skew-symmetric cross product matrix function as given by

(2.1) and this property makes the quaternion product non-commutative as evident from

the lower-right (3× 3) sub-matrix of (2.22) and (2.23) respectively. For completeness,

the functions Q(q) and Q̄(p) may be defined similar to (2.22) and (2.23), respectively.

Furthermore, by substituting (2.17) into Q(q) and Q̄(q), we find that

Q(q∗) =



q0 q1 q2 q3

−q1 q0 q3 −q2

−q2 −q3 q0 q1

−q3 q2 −q1 q0


= Q(q)> (2.24)

and

Q̄(q∗) =



q0 q1 q2 q3

−q1 q0 −q3 q2

−q2 q3 q0 −q1

−q3 −q2 q1 q0


= Q̄(q)>. (2.25)

Finally, it is clear from (2.19) that when the norm is unity, q−1 = q∗ and such

quaternion is called a unit quaternion. For the rest of this thesis, we assume unit

quaternions.

2.7 Coordinate Rotations and Rotation matrices

The dynamics of a rigid-body may be represented in different coordinate systems with

the possibility of moving from one coordinate system to another. This section provides

a background of coordinate systems and rotation matrices and the results discussed

here are used later in deriving the dynamic equations of the tricopter. Consider

Figure 2.4(a), with origin 0, x and y axes, and α, the angle between the vector v and

the positive x axis:
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Figure 2.4: Rotation of coordinates

Any point P can be located by an ordered pair (x1, y1) to yield a R2 coordinate

plane. Figure 2.4(b) shows the vector v after a rotation of the coordinate system

through an angle θ about the origin. Using Figure 2.4, it can be shown that the

rotation about the origin of a R2 coordinate system in matrix form is given as [74],x2

y2

 =

 cos θ sin θ

− sin θ cos θ


x1

y1

 . (2.26)

The R2 coordinate plane in Figure 2.4 may be extended to a R3 coordinate plane

using a third z-axis which is assumed to be perpendicular to the xy plane and directed

positively out of the paper towards the reader, forming a right-handed system [74].

Thus, let v have coordinates (x1, y1, z1). If the coordinate frame is rotated about

the z-axis through the angle θ as in Figure 2.4(b), such that the new coordinates of

the rotated frame are (x2, y2, z2), it is clear that the rotation about the z-axis will

not change the z-coordinate [74]. That is, z2 = z1. Combining this result with (2.26)

yields, 
x2

y2

z2

 =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1




x1

y1

z1

 , v2 = Rzv1 (2.27)

where Rz is called a rotation matrix and describes a rotation about the z-axis mapping

from coordinate frame 1 (x1, y1, z1) to 2 (x2, y2, z2). A similar argument holds for the

rotation of the coordinate frame through the angle θ about the x-axis (x2 = x1) and

y-axis (y2 = y1) so that

Rx =


1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 and Ry =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 ,
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respectively. The matrices Rx,Ry and Rz will be used later to derive Euler rotation

sequences.

2.7.1 Rotation matrices

A rotation matrix is one which when multiplied with a vector rotates the vector while

preserving its length. The special orthogonal group of all rotations in 3 dimension

is denoted by SO(3). The matrices in this group satisfy A−1 = A> hence the term

orthogonal. This group is termed special because the determinant of its matrices is

1. In short, if A ∈ SO(3), det(A) = 1 and A−1 = A>. Hence, let Ra
b ∈ SO(3) be

a rotation matrix that transforms from coordinate system b to a, then the following

properties hold:

(Ra
b )−1 = (Ra

b )> = Rb
a, (2.28)

Rc
bR

b
a = Rc

a, (2.29)

det[Rb
a] = 1. (2.30)

Consequently, a vector in the earth-fixed inertial frame can be transformed to the

body-fixed coordinate frame by pre-multiplying it by a rotation matrix as described

by the following definition.

Fact 2.1. Let ve ∈ R3 be a vector in the earth-fixed inertial coordinate frame, and

vb ∈ R3 be the same vector in body-fixed coordinates, then the following relations

hold:

vb = Rb
ev

e, (2.31)

ve = (Rb
e)>vb. (2.32)

2.7.2 Quaternion rotation operators

A unit quaternion may be used to represent the attitude of a rigid body and unit

quaternions are used to represent the attitude of the multi-tilt tricopter in this thesis.

Let us define a unit vector û = qv
sin (θ/2) , which represents the direction of q and θ is

the angle associated with the quaternion.
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Theorem 2.3. [74, Theorem 5.2] For any unit quaternion

q = q0 + qv = cos θ2 + û sin θ2 (2.33)

and for any vector v ∈ R3, the action of the operator

Lq∗(v) = q∗ ◦ v ◦ q (2.34)

is a rotation of the coordinate frame about the axis û through an angle θ while v is not

rotated.

Thus, consider a vector ve ∈ R3 in earth coordinates. If vb ∈ R3 is the same vector

in body coordinates then, 0

vb

 = q∗ ◦

 0

ve

 ◦ q = Q̄(q)Q(q)>

 0

ve

 , (2.35)

=

1 0>

0 Rb
e(q)


 0

ve

 (2.36)

where

Rb
e(q) =


1− 2(q2

2 + q2
3) 2q1q2 + 2q0q3 2q1q3 − 2q0q2

2q1q2 − 2q0q3 q2
0 − q2

1 + q2
2 − q2

3 2q2q3 + 2q0q1

2q1q3 + 2q0q2 2q2q3 − 2q0q1 1− 2(q2
1 + q2

2)

 . (2.37)

It can also be shown that the angular velocity ωb is related to the unit quaternion

through the following relation [24,74],

q̇ = 1
2q ◦

 0

ωb

 . (2.38)

2.7.3 Euler angles and rotation sequences

The orientation of one coordinate system with respect to another can be described by

three successive coordinate rotations around the orthogonal coordinate axes, and the

angles of rotation are called the Euler angles [24, 63,74]. Euler angles are used in this

thesis to represent the attitude of the tricopters.
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Theorem 2.4 ( [74]). Any two independent orthonormal coordinate frames can be

related by a sequence of rotations (not more than three) about coordinate axes, where

no two successive rotations may be about the same axis.

This thesis uses the aerospace (z, y, x) or (3,2,1) sequence [63,74] that is required

to go from a reference on earth into alignment with an aircraft body-fixed coordinate

system. From the reference, the system of rotation is first a rotation through an angle

ψ about the z-axis (heading), followed by a rotation through and angle θ about the

new y-axis (pitch) and finally a rotation through an angle φ about the new x-axis (roll)

and expressed as the matrix product

Rb
e(η) = Rx(φ)Ry(θ)Rz(ψ),

=


cθcψ cθsψ −sθ

sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ

cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ

 (2.39)

where cφ , cosφ, sφ , sinφ and η = [φ θ ψ]>.

The following definition describes the relationship between the time derivatives of

the Euler angles and the angular velocities of a rigid body.

Definition 2.18 ( [24]). Let η̇ = [φ̇ θ̇ ψ̇]> be the time derivative of the Euler angles

of a rigid body, the relationship between η̇ and the angular velocity of the body

ωb = [ωp ωq ωr]> is given by,

ωb = Γ(η)η̇ (2.40)

where Γ(η) =
[
ûi,Rx(φ)ûj,Rx(φ)Ry(θ)ûk

]
is an Euler angle rates matrix function

with ûi, ûj, ûk as the ith, jth and kth unit vectors respectively such that

Γ(η) =


1 0 − sin θ

0 cos θ sinφ cos θ

0 − sinφ cosφ cos θ

 . (2.41)
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2.7.4 Relationship between Quaternions and Euler angles

It is often convenient to transform vectors from a quaternion representation to euler

angles. The Euler angles may be recovered from (2.37) as [74],

η =


atan2

(
2q2q3 + 2q0q1, 1− 2(q2

1 + q2
2)
)

−asin
(
2q1q3 − 2q0q2

)
atan2

(
2q1q2 + 2q0q3, 1− 2(q2

2 + q2
3)
)

 . (2.42)

2.8 Summary

This chapter has provided a brief but necessary overview of the key concepts, tech-

niques and tools which are used in different parts of this work. The earlier sections

covered linear algebra, linear systems theory, graph theory and negative imaginary

systems theory. The later sections described coordinate systems, representations and

transformations which are useful in modelling rigid bodies. Overall, the material pre-

sented is important for the reader to effectively understand the remaining chapters of

this work as several references are made to this chapter throughout this thesis.



Chapter 3

Development and stabilization of a

low-cost single-tilt tricopter

All the material in this chapter was published in [75].

3.1 Introduction

In this chapter, a single-tilting tricopter using low-cost materials and open-source soft-

ware with optical flow included for GPS-denied environments is constructed. Although

researchers have paid some attention to the tricopter UAV, there is still insufficient

experimental research to validate the tricopter concept onto real physical hardware.

Most of the existing works have predominantly focused on theoretical and simulation

results with little or no consideration of practicability. Also, only few of the models

used in literature are based on real experimental data collected from physical hard-

ware, the rest are arbitrarily chosen parameters used as numerical examples. These

issues open up opportunities for further research and this is the motivation for this

work. In this chapter, the dynamic model of the tricopter is derived, an experiment

to obtain the actuator constants from the acquired data is developed together with

a CAD model based on the measured parameters of the tricopter, which is used for

estimating the moments of inertia. A control allocation scheme is proposed which

allocates the actuator signals via a non-square mixer matrix due to under-actuation in

the tricopter. The feasibility and applicability of the methods used herein is shown by

implementing cascaded-PID control to stabilize the tricopter, and validated with some

52
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trial experiments on the developed platform. Furthermore, this work serves as a basis

for more complex control and real-time hardware experiments with varied scenarios

on the developed tricopter which is the end goal of this project.

The key contribution to the state-of-the art from this chapter is:

• The development of control allocation scheme which allocates the actuator signals

via a non-square mixer matrix due to under-actuation in the tricopter.

The other technical contributions of this chapter are summarized as follows:

• Development of a single-tilting tricopter using low-cost materials and open-source

software with optical flow included for GPS-denied environments,

• The dynamic model is derived, an experiment to obtain actuator constants

from acquired data is developed, and a CAD model is drafted from measured

parameters and used for estimating moment of inertia,

• Implementation of cascaded-PID control to stabilize the single-tilt tricopter UAV,

simulated with Matlab/Simulink and validated with trial experiments on the

developed hardware.

3.2 Mathematical Modeling

Besides the arrangement of the rotors and choice of coordinate system, the dynamic

model developed in this section is similar to those in existing literature. However,

the parameters used to fit the model are based on the actual hardware information

rather than arbitrary parameters. As shown in Figure 3.1, (Xe, Y e, Ze) denotes the

earth coordinate system which is assumed to be inertial and (Xb, Y b, Zb) denotes the

body coordinate system with its origin fixed to the center of mass G of the vehicle.

Additionally, Figure 3.2 shows a technical diagram of the top view of the tricopter for

convenience. The transformation from the inertial frame to the body frame following

the (z, y, x) sequence [63] is encoded in the rotation matrix Rb
e(η) given by (2.39)

and the reverse transformation from body frame to inertial frame is obtained as the

inverse Rb
e(η)−1 = Rb

e(η)> = Re
b(η) from rotation matrix properties [63]. Similarly,

the function which relates the angular velocities in body coordinates to the euler angle

rates is given by (2.41).



CHAPTER 3. DEV. & STAB. OF A LOW-COST SINGLE-TILT TRICOPTER 54

𝜶
𝝎𝟑

𝝎𝟐

𝝎𝟏

𝑶𝟐

𝑶𝟑

𝑶𝟏

𝑮

𝒙𝒃

𝒇𝟑

𝒚𝒃

𝒛𝒃

𝒍𝟐

𝒍𝟏

−𝒍𝟏

𝒍𝟐

−𝒍𝟎

𝒇𝟏

𝒇𝟐

𝒙𝒆
𝒚𝒆

𝒛𝒆

Figure 3.1: Forces and torques acting on single-tilt tricopter and coordinate systems.
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Figure 3.2: Top view diagram of tricopter where l0 is the length of each arm,
l1 = l0 sin π

3 , l2 = l0 cos π
3 .

Using this information, let us now derive the forces and torques acting on the

single-tilt tricopter.

3.2.1 Forces and Torques

The forces and drag torques produced by each rotor as depicted in Figure 3.1 are

assumed to be proportional to the square of the angular speeds ωi [76] since the

propeller is directly coupled with the DC motor such that

fi = ktω
2
i and τi = kdω

2
i ∀i ∈ {1, 2, 3} (3.1)
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where fi and τi denote the forces and drag torques respectively, kt is the thrust constant

and kd is the drag-torque constant. The force produced by the ith rotor from Figure 3.1

is thus

f i =


0

0

−ktω2
i

 for i ∈ {1, 2} and f 3 =


0

−ktω2
3 sinα

−ktω2
3 cosα


so that the total force from all three rotors is given as

Fb
m =


Fx

Fy

Fz

 =


0

−ktω2
3 sinα

−kt(ω2
1 + ω2

2 + ω2
3 cosα)

 . (3.2)

Let (o1, o2, o3) be the application points of the forces (f 1,f 2,f 3) respectively. Then

the torque generated by the rotors with respect to the center of mass G can be expressed

in the body frame as

Tb
r =

3∑
i=1
τ bm,i =

3∑
i=1

(Goi × f i) (3.3)

where Goi is the vector of the distance of the ith rotor from the center of gravity G

and

Go1 =


l2

l1

0

 , Go2 =


l2

−l1
0

 , Go3 =


−l0
0

0


where l0 is the length of each rotor arm measured from each of the rotor heads to the

center of mass G, l1 = l0 sin π
3 and l2 = l0 cos π

3 . Applying these in (3.3), the torque

produced by the rotors is

Tb
r =


τx

τy

τz

 =


l1kt(ω2

2 − ω2
1)

l2kt(ω2
1 + ω2

2)− l0ktω2
3 cosα

l0ktω
2
3 sinα

 . (3.4)

The drag torque on the propellers is opposite to the direction of rotation of the

propellers. From Figure 3.1, the reaction torques of the ith rotor are given as

τ bd,i =


0

0

−kdω2
i

 ∀i ∈ {1, 2} and τ bd,3 = −kdω2
3


0

sinα

cosα

 , (3.5)
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so that the total drag torque from all three rotors is

Tb
d =


τx

τy

τz

 =


0

−kdω2
3 sinα

−kd(ω2
1 + ω2

2 + ω2
3 cosα)

 . (3.6)

By summing (3.4) and (3.6) and grouping the result with (3.2), the expression for the

total forces and torques which describes the mixer of the tricopter is obtained as

Fx

Fy

Fz

τx

τy

τz


=



0

−ktω2
3 sinα

−kt(ω2
1 + ω2

2 + ω2
3 cosα)

l1kt(ω2
2 − ω2

1)

l2kt(ω2
1 + ω2

2)− l0ktω2
3 cosα− kdω2

3 sinα

l0ktω
2
3 sinα− kd(ω2

1 + ω2
2 + ω2

3 cosα)


. (3.7)

3.2.2 Newton-Euler Model

The tricopter UAV is considered to be a rigid-body with mass mt, and the total force

acting on the UAV Fb
t is the sum of the force produced by the rotors Fb

m and the force

due to gravity

Fe
g =


0

0

mtg

 (3.8)

where g is the acceleration due to gravity. Then, define ξe , [x y z]>,ηb , [φ θ ψ]>,

ωb , [ωp ωq ωr]>. By using Newton-Euler methods [63], the translational dynamics of

the single-tilt tricopter is,

ξ̈
e = 1

mt

[
Rb
e(η)>Fb

m + Fe
g

]
, (3.9)

and the rotational dynamics from (2.40) is given by,

η̇ = Γ(η)−1ωb. (3.10)

The angular accelerations are given as,

ω̇b = J−1
[(
−ωb × Jωb

)
+ Tb

m

]
(3.11)
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where Tb
m = Tb

r + Tb
d is the total torque applied to the tricopter and J is the inertia

matrix. Equations (3.9)–(3.11) together with (3.7) describe the nonlinear model of the

tricopter. Note that there is no particular reason for using these equations in this form

with the translational and rotational components in different frames as these equations

may be put in the same frame. The interested reader is also referred to [20] which

describes a model where all three rotors can tilt. The model in [20] is an extension of

the classic tricopter’s tail rotor tilt action to the other two rotors.

3.3 Model Parameters

3.3.1 Moments of Inertia

A CAD model was developed in Solidworks as depicted in Figure 3.3 using the manually

measured parameters of the tricopter and this was used to obtain the moments of inertia.

It is assumed that the fuselage is a cuboid with length a, breadth b, height c and mass

m0, and that the motors are cylindrical with diameter D, height h and mass m1. Note

that l1 =
√

3
2 l0 and l2 = 1

2 l0.

1

yl
h

r
l1 

l2

b

c

a

2

3

x

z

1

yl
h

r
l1 

l2

b

c

a

2

3

x

z

Figure 3.3: Derivation of moments of inertia of a tricopter. Note that l = l0.

The components Jxy, Jxz and Jyz are small compared to the others and are assumed

negligible so that the inertia matrix becomes J = diag{Jxx, Jyy, Jzz}. For convenience,

let Jxx , Jx, Jyy , Jy and Jzz , Jz. The nominal moments of inertia are given in

Table 3.1.
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3.3.2 Thrust and Torque Constants

The thrust (and torque) at different speeds were measured through an experiment

which consists of a thrust stand and dynamometer. The stand has a load cell for

measuring the thrust, and two adjacent load cells for measuring torque. The motor is

mounted between these load cells and the torque is measured using a pivot system by

computing the moment between these two load cells. This arrangement is depicted in

Figure 3.4.

Figure 3.4: Freebody diagram of thrust stand

The stand was fitted to a wooden board mounted on a bench as in Figure 3.5.

Figure 3.5: Measurement of thrust and torque constants.

The thrust constant kt and drag-torque constant kd are obtained by plotting thrust

and drag torque against the square of the speed respectively so that the constants

kt and kd are simple gradients of the best fitting line through all the data points,

constructed via least squares. The experimental data used to obtain the constants kt



CHAPTER 3. DEV. & STAB. OF A LOW-COST SINGLE-TILT TRICOPTER 59

and kd are shown in Figure 3.6 from which we obtain kt = 1.591 × 10−6 N/(rad/s)2

and kd = 2.354 × 10−8 N.m/(rad/s)2 when using Emax2207-eco motors with 6 × 4.5

propellers (6 inches long with a pitch angle of 4.5 degrees) on 3S (11.10 Volts). All
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Figure 3.6: Thrust and drag-torque constants data with regression fit.

the parameters for the single-tilt tricopter system including the moments of inertia, are

given in Table 3.1. It should be noted that the results in Figure 3.6 were obtained using

only one of the motors of the tricopter. This implies that there may be some deviations

in the value of the torque and thrust constants of the other two motors. However, as

the motors are of identical specification, it is assumed that any such deviations are

small and negligible.

Table 3.1: Summary of estimated parameters

Parameter Estimate
arm length, l0 1.625× 10−1 m

distance of M1 from G on y-axis, l1 1.4073× 10−1 m
distance of M1/M2 from G on x-axis, l2 8.125× 10−2 m

length of fuselage, a 9.221× 10−2 m
width of fuselage, b 4.968× 10−2 m
height of fuselage, c 8.493× 10−2 m
mass of motor, m1 4× 10−2 kg

mass of fuselage, m0 5.83× 10−1 kg
radius of motor, r 1.375× 10−2 m
height of motor, h 3.276× 10−2 m
thrust constant, kt 1.591× 10−6 kg.m

drag torque constant, kd 2.354× 10−8 kg.m2

moment of inertia in x-axis, Jx 2.33× 10−3 kg.m2

moment of inertia in y-axis, Jy 2.71× 10−3 kg.m2

moment of inertia in z-axis, Jz 4.36× 10−3 kg.m2

moment of inertia in xy-axes, Jxy 1.12× 10−7 kg.m2

moment of inertia in xz-axes, Jxz −1.0× 10−5 kg.m2

moment of inertia in yz-axes, Jyz 1.44× 10−8 kg.m2
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3.4 Hover Control design

3.4.1 Linearised Model

The main objective is to achieve stability of the tricopter in hover. This is essential since

a stable hover implies that all the attitude angles (or channels) are stable. Furthermore,

this is a basic requirement to implement trajectory or position tracking control since

the attitude loops are the low level (inner) loops while the position controllers are

the outer loops. Since we are only interested in operating the tricopter close to hover,

we can simplify the nonlinear model of subsection 3.2.2 via linearisation. Thus, only

the dynamics that describe the tricopter’s behaviour when close to hovering state are

considered. This leads to the assumption that φ ≈ 0, θ ≈ 0, ψ ≈ 0 so that cosφ ≈

cos θ ≈ cosψ ≈ 1 and sinφ ≈ φ, sin θ ≈ θ, sinψ ≈ ψ. Let the state vectors be defined

as x = (x, y, z, ẋ, ẏ, ż, φ, θ, ψ, φ̇, θ̇, ψ̇). By applying the small angle assumptions in (3.9)

and (3.10), and linearising about the operating point x̄ = (x̄, ȳ, z̄, 0, 0, 0, 0, 0, 0, 0, 0, 0),

we obtain the linearised dynamics [77],
φ̈ = 1

Jxx
τx, θ̈ = 1

Jyy
τy, ψ̈ = 1

Jzz
τz,

ẍ = −gθ, ÿ = gφ+ Fy
mt
, z̈ = Fz

mt
.

(3.12)

3.4.2 Control Allocation

It is not straightforward to use the vector (3.7) for control directly due to its complexity,

and also because the mixer matrix obtained is non-square due to more control inputs

[Fy, Fz, τx, τy, τz]> than actuator signals [ω2
1, ω

2
2, ω

2
3, α]>. Hence, the actuator signals

cannot be computed using an inverse. To solve this problem, the vector (3.7) is split

into two groups where Fy is separated from the main allocation noting that Fy is

due to the tilting angle, and the main lift force is provided by Fz. The input vector

then becomes [uz, uφ, uθ, uψ]> = [Fz, τx, τy, τz]>. The term kdω
2
3 sinα in τy of (3.7) is

assumed negligible as α is small around hover so that the main control allocation is
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given as the mixer

uz

uφ

uθ

uψ


=



−kt −kt −kt 0

−l1kt l1kt 0 0

l2kt l2kt −l0kt 0

−kd −kd −kd l0kt





ω2
1

ω2
2

ω2
3 cosα

ω2
3 sinα


=MΩ. (3.13)

By performing row reduction onM, its row echelon form is obtained as,

MREF =



−kt −kt −kt 0

R2−l1R1→ 0 2l1kt l1kt 0

R3+l2R1, l2= 1
2 l0→ 0 0 −3

2 l0kt 0

R4− kd
kt
R1→ 0 0 0 l0kt


. (3.14)

It is evident that the matrix MREF is always full rank as long as its diagonal

elements are positive and this is true since kt, kd > 0 and li > 0, i ∈ {0, 1, 2}. Hence,

from definitions 2.2 and 2.3,M is invertible. By taking the inverse ofM, vector Ω is

given by 

Ω1

Ω2

Ω3

Ω4


=



− l0
2kt(l0+l2)uz −

1
2l1ktuφ + l0

2kt(l0+l2)uθ

− l0
2kt(l0+l2)uz + 1

2l1ktuφ + l0
2kt(l0+l2)uθ

− l2
kt(l0+l2)uz −

1
kt(l0+l2)uθ

− kd
k2
t l0
uz + 1

kt
uψ


. (3.15)

Hence, ω1 =
√

Ω1, ω2 =
√

Ω2, ω3 = 4
√

Ω2
3 + Ω2

4 and α = atan(Ω4
Ω3

). Having obtained the

speed of rotor 3 as ω3 and the tilt angle α and in order to account for the lateral force

which was separated from the main allocation, uy = Fy is then allocated based on the

ω3 and α, as uy = −ktω2
3 sinα, in the second allocation.

3.4.3 PID Cascade scheme

A PID control scheme was implemented as depicted in Figure 3.7. As an example, the

output of the PID controller for the roll rate loop is given as

uφ = kP (pd − p) + kI

∫ t

0
(pd − p)− kDp (3.16)

where kP , kI , kD are the gains of the PID controller, pd is the desired roll rate, p is the

measured roll rate and (pd − p) is the error. The derivative gain was applied to the

output rather than the error to avoid derivative kick.
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Figure 3.7: Cascaded-PID control architecture.

Independent controllers similar to (3.16) were tuned for the angular rates, the

attitude, the linear velocities and the positions respectively using Simulink with a

criteria of settling time ts = 6 seconds. The difficulty of tuning such a cascade

structure shown in Figure 3.7 is that the outer loops (or higher level loops) depend

on the inner loops. Hence, the lower level loops were tuned first starting with the

attitude rate loop and then extending to the attitude loop and so on. As the tricopter

is unstable in open loop, methods such as Ziegler-Nichols step response method [78] for

tuning PID controllers could not be utilized. The Ziegler-Nichols closed loop method

was also attempted but it was difficult to obtain a finite value for the ultimate gain

Ku. Consequently, the PID tuner in Simulink Control Design was used to tune each

of the loops separately. The final PID gains after some fine-tuning are summarized in

Tables 3.2 to 3.5.

Table 3.2: PID gains for attitude rate loop

(p, pd)→ uφ (q, qd)→ uθ (r, rd)→ uψ
kP 0.019 0.025 0.093
kI 0.018 0 0.139
kD 0 0 0

Table 3.3: PID gains for attitude loop

(φ, φd)→ pd (θ, θd)→ qd (ψ,ψd)→ rd
kP 4.75 4.75 4.75
kI 3.85 3.83 3.85
kD 0.74 0.74 0.74

Table 3.4: PID gains for velocity loop

(Vx, Vxd)→ φd (Vy , Vyd)→ θd
kP 1.67 4.39
kI 0 0.52
kD 4.25 0
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Table 3.5: PID gains for position loop

(x, xd)→ Vxd (y, yd)→ Vyd (z, zd)→ uz
kP 1.652 1.260 4.59
kI 0 0 1.23
kD 0 0 4.25

3.5 Simulation Results

A simulation model was built in Matlab/Simulink using the full nonlinear dynamics

of the tricopter described in Section 3.2, and following the scheme in Figure 3.7. The

maximum speed of the Emax2207-eco 1700KV motors with 6045 propellers on 3S (11.1

Volts) was obtained from experimental data as ωmax ≈ 1639rad/s. In order to ensure

that the control inputs are feasible with respect to the physical constraints of the motor,

the following control limits were set: uz ∈ (−2ktω2
max, 0), uφ ∈ (−l1ktω2

max, l1ktω
2
max),

uθ ∈ (−l0ktω2
max, 2l2ktω2

max) and uψ ∈ (−2kdω2
max, l0ktω

2
max). It is important to

mention that these limits were not considered in the controller design. The simulation

was run for 40 seconds with the tricopter commanded to move 0.25m in the x direction

and hover at a height of 0.45m.
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Figure 3.8: x, y and z (altitude) position of tricopter in inertial coordinates.
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The results show that the designed controller completely stabilized the tricopter.

From Figure 3.8, the tricopter settles at the desired position in the x-direction after

about 5 seconds and reaches the desired altitude in about 10 seconds. There are some

oscillations of low magnitude in the measured lateral position but as time tends to

infinity, the measured y position is regulated to zero by the controller. Figure 3.9

shows that the attitude is stabilized within 6 seconds. The initial oscillatory behaviour

may be due to the nonlinearities in the plant since the control is based on a linear

model, but these oscillations settle within a short period of 3 seconds. The demanded

pitch angle is large (over 450) initially but this may be due to simulation errors when

modelling the tricopter system. Another important factor to consider is that unlike the

quadcopter that is inherently stable due to even number of rotors and counter-rotating

propellers, the tricopter is inherently unstable. This may account for the initially large

demanded pitch angle on take-off.
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Figure 3.9: Attitude of tricopter.
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The control torques (τx, τy, τz) are small within a range of -0.05 to 0.05kg.m2/s2

as observed from Figure 3.10 and so the controller is practicable. The rotor speeds

(ω1, ω2, ω3) are also within the physical limits of the selected motor. It is worth noting

that the speed of rotor 3 is higher than that of rotors 1 and 2 which are close in value.

This higher speed of rotor 3 compared to rotors 1 and 2 is because, to stabilize the

yaw attitude, α ≈ 0.27rad (non-zero) in steady hover as observed from Figure 3.10.
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Figure 3.10: Control inputs and rotor speeds of the tricopter.

It then follows from Figure 3.1 that, ktω2
1 ≈ ktω

2
2 ≈ ktω

2
3 cosα ≈ 2.4N in steady

hover and for this to be valid, rotor 3 has to spin faster than rotors 1 and 2. It can also

be noted that the thrust at hover given as Fhover = −mtg = −7.2422kg.m/s2 is also

evident from Figure 3.10 which further proves the feasibility of the proposed methods.
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3.6 Experimental Results

3.6.1 Platform Description

The hardware setup of the proposed single-tilt tricopter UAV is depicted in Figure 3.11

and was developed at the Control, Dynamics and Robotics laboratory at the University

of Manchester. It weighs 0.739kg, has a triangular structure with three identical arms

of length l0, with a fixed pitch propeller driven by a Brushless DC motor mounted at

the end of each arm.

Figure 3.11: Side view of the single-tilt tricopter assembly.

The tilting mechanism of the tail rotor which controls the Yaw motion is a servo-

motor to which the propeller-motor assembly is attached. The servo-motor tilts the

propeller-motor assembly through α ∈ (−π
2 ,

π
2 ) to generate a lateral component of the

generated thrust, thereby generating a yaw torque. See Appendices A and B.1 for a

full specification of the single-tilt tricopter.

3.6.2 Hover flight test

From trial tests performed, the proposed method is able to stabilize the tricopter’s

attitude around hover as shown in Figure 3.12 although there are some peaks in roll and

pitch, which is expected from the simulations. But this may be due to uncertainties in

the plant which have not been considered by the linear model and noisy measurements

from the optical flow sensor. Moreover, the PID loops were tuned independently not
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considering the interactions and coupling which exist between the loops of the UAV,

being that it is a multi-variable system. Also, even though the PWM commands

(signals sent to the individual rotors) show some oscillatory behaviour, they are not

very noisy and are within configured values of 1000 to 2000µs. This implies a low

probability of saturations occurring which is important for good performance. The

oscillatory behaviour may be due to inconsistencies in altitude measurements from the

range finder since the test was done indoors. Also, the servo angle is tilted (away from

the center) on take-off as evident from the PWM value of 1478µs since the standard

servo center is approximately 1520µs. The tilt angle changes as necessary at different

points during flight in order to stabilize the heading.
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3.7 Summary

In this chapter, a novel tricopter UAV with a single tilt rotor has been developed. The

mathematical model has been presented and intuitive methods to obtain the model

parameters have been proposed. A control allocation scheme for obtaining motor

speeds by inversion of a mixer matrix has also been proposed. These were then used

to show how the loops can be closed independently and sequentially using simple

PIDs. The proposed methodology aids with an intuitive design which can be tuned

easily on practical hardware. The proposed control scheme has been implemented on

a simulation model using parameters obtained from the tricopter platform, and some

trials have been done on the developed platform for hover control. Although some

areas can be improved, the test results are acceptable and provide good grounds for

further research into this problem.



Chapter 4

Development and control of

Multirotor-tilting tricopter with

direct actuation for position control

All the material in this chapter was submitted for publication in [79].

4.1 Introduction

In this chapter, the hardware for a tricopter vehicle with three independently tilting

rotors is developed so as to have a fully actuated vehicle made possible by use of

a custom tilt mechanism for the airframe. A quaternion feedback controller is then

proposed, which uses a model with attitude represented in unit quaternions to avoid the

gimbal lock problem of Euler angles. Experiments to obtain the model parameters from

experimental data are developed. The PD-type quaternion feedback controller is used

to stabilize the attitude of the tricopter and the performance is tested in simulations.

A linear MPC controller for the system is then designed but instead of linearising

the system using classic methods based on operating points, the model is put in a

Linear Parameter Varying (LPV) form such that the nonlinearities of the tricopter are

captured in the model. Linearising around an operating point leads to less precision

when the system moves further away from the operating point. Next, the ability of the

airframe to translate in the lateral and longitudinal directions without changing its

attitude is demonstrated by feedback linearizing the nonlinear translational equations

69
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of the tricopter, to produce the control forces in the x and y direction which are

directly applied to the tricopter UAV. While this is straight-forward in simulation, it

is noted that implementing this in reality is limited by the available radio transmitters

which support only 4 degrees of freedom. And to solve this problem, direct actuation

is proposed to control the longitudinal and lateral motions via thrust vectoring of

the rotors by tilting them in certain directions based on commands from mapped

transmitter knobs. Unlike [21] where a specific controller has been proposed, here

the position is controlled by implementing direct actuation in the control allocation

algorithm via the PX4 flight stack mixing system. The feasibility and applicability of

the control alloation is tested indoors on the developed platform test-bed.

The key contributions of this chapter to the state-of-the-art are as follows:

• Design and construction of servo tilt-mechanism which extends the tilt angle

range of the rotors in a multi-tilt tricopter.

• Demonstration of the capability of the airframe to translate in the lateral and

longitudinal directions without changing its attitude by feedback linearization of

the nonlinear translational equations of the tricopter to obtain control forces in

x and y axes which are directly applied to the tricopter UAV.

• Noting that there is a limitation to implementing full 6 DOF control using regular

Radio Transmitters which support only 4 DOF, direct actuation is proposed to

control the lateral and longitudinal motions via thrust vectoring of the rotors by

tilting them in certain directions based on commands from mapped transmitter

knobs. This is implemented in the control allocation algorithm of the PX4 flight

stack mixing system, and experiments on the platform test-bed are used to

validate the method.

The other technical contributions of this chapter are summarized as follows:

• Different from existing works, a quaternion feedback (QFB) controller which uses

a model with attitude represented in unit quaternions is proposed. This avoids

the gimbal lock problem of Euler angles.

• Development of identification platform and experiment to obtain model parame-

ters from experimental data.
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• Design of linear Model Predictive Controller for the system using a Quasi Lin-

ear Parameter Varying (Quasi-LPV) model of the tricopter which captures the

nonlinearities of the tricopter, rather than classic linearisation methods based

on operating points which leads to less precision when the system moves further

away from the operating point. The advantage of the LPV method is that we

are able to use a linear control method on the nonlinear system.

The rest of this chapter is organised as follows: The nonlinear dynamic model

of the multi-tilt tricopter UAV is described in Section 4.2. The propsed quaternion

feedback control scheme is given in Section 4.4 and the LPV-MPC scheme is detailed

in Section 4.5. Section 4.6 is devoted to the presentation of the simulation results and

comparisons between the control schemes. The full 6-DOF control of the tricopter is

demonstrated in Section 4.7. Section 4.8 describes the experimental aspects and a

summary is given in Section 4.9.

4.2 Modelling of the multirotor-tilting tricopter

In this section, the model for the proposed tricopter hardware is developed. The

forces and moments which act on the proposed airframe are derived first, and then

the kinematics and rigid-body dynamics are developed. Note that a similar model had

been proposed in [20] and [80].

4.2.1 Tricopter Forces and Moments

The proposed airframe is given in Figure 4.1 with 3 rotors each mounted on a servo

and whose propellers rotate in the clockwise direction. As shown in Figure 4.1,

(Xe, Y e, Ze) denotes the earth coordinate system which is assumed to be inertial,

(Xb, Y b, Zb) denotes the body coordinate system with its origin fixed to the center

of mass G of the vehicle and (X l1 , Y l2 , Z l3) denotes the local coordinate system with

its origin at (O1, O2, O3) which are the application points of the forces f 1,f 2,f 3

respectively. Also, Figure 4.2 shows the top view of the same coordinate systems. The

reader should note that diagram in Figure 3.2 applies to the multi-tilt tricopter as

well. The individual uni-directional forces and drag torques produced by each rotor
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Figure 4.1: Forces and torques acting on tricopter and coordinate systems
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clockwise and counter clockwise respectively.

are assumed to be proportional to the square of the angular speeds ωi [76] since the

propeller is directly coupled with the DC motor so that

fi = ktω
2
i and τi = kdω

2
i ∀i ∈ {1, 2, 3} (3.1 revisited)

where fi and τi denote the forces and drag torques respectively, kt is the thrust constant

and kd is the drag-torque constant. The 3D force produced by the ith rotor from Figure

4.1 is

f l
i

i =


0

−ktω2
i sinαi

−ktω2
i cosαi

 , αi ∈
[
−π/2, π/2

]
∀i ∈ {1, 2, 3}, (4.1)

and this is given relative to the local frame with αi as the angle of tilt about each

local x axis. In order to align the rotor forces f lii ∀i ∈ {1, 2} with the body frame,
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f l
1

1 is rotated clockwise through ψ = 2π/3 while f l22 is rotated counter-clockwise

through ψ = −2π/3 (as depicted in Figure 4.2) corresponding to q1 =
[

1
2 0 0

√
3

2

]T
and

q2 =
[

1
2 0 0 -

√
3

2

]T
respectively using (2.37), to yield the following rotation matrices,

Rb
l1 =


−1

2

√
3

2 0

−
√

3
2 −1

2 0

0 0 1

 ,Rb
l2 =


−1

2 −
√

3
2 0

√
3

2 −1
2 0

0 0 1


so that f bi = Rb

li
f lii for i ∈ {1, 2}. Note that f b3 = f l33 . The total force from the three

rotors is then computed as

Fb
m =

3∑
i=1
f bi

=


−
√

3
2 f1 sinα1 +

√
3

2 f2 sinα2

1
2f1 sinα1 + 1

2f2 sinα2 − f3 sinα3

−f1 cosα1 − f2 cosα2 − f3 cosα3

 . (4.2)

Let Goi =
[
Goix Goiy Goiz

]>
be the vector of the ith rotor’s distance from the center

of mass G, and (O1, O2, O3) be the application points of f 1,f 2,f 3 respectively. It

follows from Figure 4.1 that Go1 = [l2, l1, 0]> , Go2 = [l2, −l1, 0]> and Go3 =

[−l0, 0, 0]> where l0 is the length of each rotor arm, l1 =
√

3
2 l0 and l2 = 1

2 l0. Then,

the total 3D moments produced in the body-fixed frame is

Tb
r =

3∑
i=1

(Goi × f bi)

=


√

3
2 l0f2 cosα2 −

√
3

2 l0f1 cosα1

1
2 l0f1 cosα1 + 1

2 l0f2 cosα2 − l0f3 cosα3

l0f1 sinα1 + l0f2 sinα2 + l0f3 sinα3

 . (4.3)

Like the rotor force, the drag torque acts in an opposite direction to the ith rotor’s

spin direction and is given as

τ l
i

d,i =


0

−kdω2
i sinαi

−kdω2
i cosαi

 ∀i ∈ {1, 2, 3}, (4.4)
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given relative to the local frame. The total drag-torque produced in the body frame is

thus

Tb
d =

3∑
i=1

(Rb
li
τ l

i

d,i)

=


−
√

3
2 τ1 sinα1 +

√
3

2 τ2 sinα2

1
2τ1 sinα1 + 1

2τ2 sinα2 − τ3 sinα3

−τ1 cosα1 − τ2 cosα2 − τ3 cosα3

 , (4.5)

so that the total torque acting on the tricopter is

Tb
m = Tb

r + Tb
d (4.6)

Finally, combining (4.2) and (4.6), the relationship between the control inputs and

actuator outputs may be represented as

U = MΩ (4.7)

where

M =



−
√

3
2 kt

√
3

2 kt 0 0 0 0
1
2kt

1
2kt −kt 0 0 0

0 0 0 −kt −kt −kt
−
√

3
2 kd

√
3

2 kd 0 −
√

3
2 ktl0

√
3

2 ktl0 0
1
2kd

1
2kd −kd 1

2ktl0
1
2ktl0 −ktl0

ktl0 ktl0 ktl0 −kd −kd −kd


, Ω =



ω2
1 sinα1

ω2
2 sinα2

ω2
3 sinα3

ω2
1 cosα1

ω2
2 cosα2

ω2
3 cosα3


and U =

[
Fb
m Tb

m

]>
.

Remark 4.1. Considering (4.7), the matrix M represents the relationship between

the control inputs U and the actuator control outputs Ω which are the angular speeds

and tilt angles. As there are 6 available control inputs as evident from the rows of M,

the multi-tilt tricopter is fully actuated because all of its 6-DOF can be independently

controlled. The first 2 rows of M represent the translational forces (lateral and

longitudinal) making it feasible to compute the forces needed to directly control the

lateral and longitudinal motions of the tricopter without varying the roll, pitch or yaw

angles as is the case with other classic multicopters where the longitudinal and lateral

motions cannot be independently controlled.
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To check if the matrix M is invertible, its row echelon form MREC was obtained

via row reduction (see Appendix D for details) and is given by,

MREC =



−
√

3
2 kt

√
3

2 kt 0 0 0 0

0 kt −kt 0 0 0

0 0 3ktl0 −kd −kd −kd
0 0 0 −

√
3

2 ktl0
√

3
2 ktl0 0

0 0 0 0 ktl0 −ktl0
0 0 0 0 0 −3kt


.

It is evident that MREC is full rank if kt, l0 > 0 and since kt and l0 are positive

constants, M is invertible according to definitions 2.2 and 2.3.

4.2.2 Dynamic model

Similar to the single-tilt case, the multi-tilt tricopter is considered to be a rigid-body

with mass mt and the total force acting on the tricopter body Fb
t is the sum of the

rotor force Fb
m and the force of gravity Fe

g = [0 0 mtg]> where g is the gravity constant.

By relating (2.21) and (2.38), the attitude dynamics is given in terms of quaternion as,

q̇ = 1
2Q(q)

 0

ωb



=

 −1
2qvω

b

1
2
(
S(qv) + q0I3

)
ωb

 , (4.8)

where ωb is the angular velocity. The other dynamic equations of the multi-tilt tricopter

are identical to those of the single-tilt case as given in subsection 3.2.2.

4.3 Parameter Identification

In this section, a series of experiments are developed and carried out to identify the

model parameters of the proposed platform. In Section 4.3.1, the moments of inertia

for the tricopter’s three main axes are identified while in Section 4.3.2 the constants

of the DC motor are identified.
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4.3.1 Moment of Inertia

An experiment based on the trifilar pendulum method was developed and used to

obtain the moments of inertia accross the tricopter’s axes. Rather than using a CAD

model for the multi-tilt tricopter as done in the single-tilt case, this method was used

because it was relatively simple and easier to setup but despite its simplicity, this

method allows for very high accuracy [81]. Furthermore, the multi-tilt tricopter has a

more complex configuration and developing a precise CAD model capable of providing

useful estimates of the moments of inertia would require a considerable amount of

time. These two reasons motivated the choice of using the trifilar method. The

experimental platform as depicted in Figures 4.3 and 4.4 consists of a plastic hoop of

mass mh = 0.105kg suspended by three parallel steel wire ropes of length L = 1m such

that the perpendicular distance of each wire to the vertical axis through the center of

gravity is the radius of the hoop R = 0.25m, and the angle between the wires is 1200.

Figure 4.3: Trifilar experiment with tricopter set for measuring Jz

The body whose inertia is to be measured is placed on the hoop with the axis along

which the inertia needs to be found aligned parallel to the wires that is, parallel to the

vertical axis. The moment of inertia about the vertical axis can then be obtained from

the relation [82]

Jz = mgR2T 2

4π2L
, (4.9)

where m is the mass of the body whose inertia is to be measured and T is the period

of 1 oscillation. Noting that the hoop of the platform also has inertia, the inertia of

the hoop is separated from that of the tricopter body, so that the moment of inertia
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Figure 4.4: Trifilar experiment with tricopter set for measuring Jx and Jy

of the tricopter only, along the vertical axis becomes

Jtz = gR2T 2

4π2L
(mh +mt)− Jhz , (4.10)

where Jhz is the inertia of the unloaded hoop obtained using (4.9). This was done

to reduce error in measurements thereby improving the accuracy of the experiment.

The tricopter’s mass including the battery was measured using a weighing scale and

obtained as mt = 1.448kg. Let us start with the moment of inertia around the z

axis. The tricopter was placed on the hoop with the z axis aligned parallel to the

wires that is, parallel to the vertical axis, and then a small disturbance was applied to

make the body oscillate. The time taken for 10 oscillations was then recorded using

a stop-watch. Similarly, the x and y axes of the tricopter were each aligned parallel

to the wires (refer to Figure 4.4) and in each case, the time taken for 10 oscillations

around the vertical axis was recorded. Five trials were done and the average taken

to reduce random errors in the measurement so as to improve accuracy and this was

used to obtain the period for 1 oscillation. Table 4.1 shows the obtained measurements

and the moments of inertia were then computed as Jx = 0.1035 kg.m2, Jy = 0.1031

kg.m2 and Jz = 0.1709 kg.m2 so that J = diag{Jx, Jy, Jz}.

Remark 4.2. It should be noted that no comparison has been made to the CAD

method of estimating moments of inertia used in chapter 3. This is because the CAD

method was used on the single-tilt tricopter which is a different platform to the multi-

tilt tricopter. Also, an error analysis of the trifilar method has not been performed here.

Being an experimental method, there will be errors introduced into the measurements
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from different parts of the setup. The interested reader should therefore see [81,83] for

an analysis of the errors in a trifilar inertia experiment. Also, for a general review and

comparison of methods used in estimating moments of inertia see [84].

4.3.2 Thrust and Torque Constants

An experiment consisting of an RCBenchmark thrust stand and dynamometer fitted

to a wooden board and mounted on a bench was setup as in Figure 3.5 just like

in subsection 3.3.2 for measuring the thrust, torque and speed. The constants are

then obtained by plotting the thrust and drag torque against the square of the speed

respectively, so that kt and kd are gradients of the best fitting line through the data

points, constructed via least squares. The results are shown in Figure 4.5 as kt =

1.084± 0.1× 10−5 N/(rad/s)2 and kd = 1.726± 0.001× 10−7 N.m/(rad/s)2 when using

FlashHobby D2836 880KV motors with 10 × 4.5 propellers (10 inches long with 4.5

degrees pitch angle) on 4S (14.8 Volts).
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Figure 4.5: Thrust and drag-torque constants data with 93.82% fit for kt and 96.78%
fit for kd.
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Table 4.1: Trifilar experiment: Time for 10 oscillations. Ax means axis hence tx is
the measured time for 10 oscillations around x axis, hz is the measured time for 10
oscillations of the empty hoop around the z-axis. All measurements are in seconds.

Ax Five Trials Mean T

tx 21.65 21.43 21.37 21.42 21.32 21.438 2.144
ty 21.58 21.57 21.16 21.32 21.37 21.400 2.140
tz 27.79 27.70 27.50 27.49 27.29 27.554 2.755
hz 17.43 17.02 17.23 17.11 17.02 17.162 1.716

4.4 Attitude control using Quaternion feedback con-

trol (QFB) technique

In this section, a nonlinear PD-type feedback controller based on quaternions similar

to the work of [85], is proposed to stabilize the attitude of the tricopter as depicted in

Figure 4.6.

Figure 4.6: Quaternion feedback control scheme.

4.4.1 QFB control scheme

The scheme in Figure 4.6 consists of an inner angular rate controller Dw and an

outer quaternion attitude controller P q. The Nonlinear Tricopter block represents the

model of the tricopter, the mixer block represents the control allocation which is the

computation of the actuator outputs from the control inputs achieved using (4.7) and

the Compute qerr block represents the computation of the quaternion error vector. The

Controller block represents the QFB controller which is mathematically denoted by,

τ = −P qsgn(qerr0)qe −Dwω
b (4.11)

where P q ∈ R3×3,Dw ∈ R3×3 are diagonal matrices, sgn represents the signum func-

tion, qerr0 and qe ∈ R3×1 are the scalar and vector components respectively, of the error
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quaternion (discussed later) in body frame. As noted in [86], selecting P q = 2ω2
nI3

and Dw = 2ζωnI3 yields stability of the closed loop and this is used as a starting point

in tuning the controllers. The natural frequency ωn affects the speed of the response

and ζ is the damping ratio. Designing for settling time ts of 4s and using the relation

ts ≈ 4
ζωn

[78], we obtain a requirement of ωn = 1.5rad/s for ζ = 0.65s.

4.4.2 Quaternion error

The quaternion error is the relative rotation between a desired attitude qd and actual

attitude q. A commonly used formulation presented in [4] and [86] is utilised to form

a set of error angles as qerr = q−1
d ⊗ q = qerr0 + qe. This implies,

qerr = q∗d ⊗ q,

= Q(qd)>q,

=



q0d q1d q2d q3d

−q1d q0d q3d q2d

−q2d −q3d q0d q1d

−q3d q2d −q1d q0d





q0

q1

q2

q3



, (4.12)

so that,

qerr0 = q0dq0 + q1dq1 + q2dq2 + q3dq3. (4.13)

It is worth noting that all unit quaternions possess the double cover property over

the SO(3) group of rotations [87] and if the reference is demanding a rotation greater

than π radians, it is ensured that the vehicle is always commanded to rotate in the

shortest direction by setting the sign of P q in (4.11) to be the same as that of qerr0

hence the reason for the term sgn(qerr0). However, arbitrarily small disturbances might

trap the system at π radians as noted in [88].

It is also important to mention that from a practical perspective, switching con-

trollers have several issues which ultimately determine the applicability of the control

technique. One of such issues is robustness as noted in [89]. While the concept of

robustness with respect to parameter variations is well-defined for linear time invariant

systems, it is more difficult to quantify for switched linear systems. The presence of

the switching element in the loop causes transients which have an effect on controller

realisation.



CHAPTER 4. CONTROL OF TRICOPTER WITH DIRECT ACTUATION 81

4.5 Attitude control using MPC

In this section, a linear MPC based on a Linear Parameter Varying (LPV) model is

designed to stabilise the attitude of the tricopter. The scheme is given in Figure 4.7

and it can be seen that the MPC has several blocks. For linear control, we normally

have to first obtain the linearised equations of the model. The issue is that linearisation

makes the control less precise when the system moves away from the operating point.

For this reason, the system is instead put into a Linear Parameter Varying (LPV) form

which encapsulates the tricopter’s nonlinearities. As MPC is more complex, Euler

angles are used for simplicity.

4.5.1 Quasi-LPV modelling of the tricopter

Since the main concern is with attitude control close to the hovering point, only the

rotational equations of the tricopter are considered and an assumption is made that

the angles φ and θ are small so that from (2.41), Γ ≈ I3. Consequently, η̇ = ωb from

(3.10) so that η̈ = ω̇b. Then using this to relate (3.10) and (3.11) and expanding, we

have
φ̈ = Jy − Jz

Jx
θ̇ψ̇ + τ1

Jx
,

θ̈ = Jz − Jx
Jy

φ̇ψ̇ + τ2

Jy
,

ψ̈ = Jx − Jy
Jz

φ̇θ̇ + τ3

Jz
.

(4.14)

The states, inputs and outputs are chosen respectively as x = [φ φ̇ θ θ̇ ψ ψ̇]>,

u = [τ1 τ2 τ3]> and y = [φ θ ψ]> so that the system (4.14) can be put in the LPV

form
ẋ(t) = A(φ̇, θ̇)x(t) +Bu(t),

y = Cx(t),
(4.15)
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Figure 4.7: LPV-MPC scheme

where

A(φ̇, θ̇) =



0 1 0 0 0 0

0 0 0 0 0 Jy−Jz
Jx

θ̇

0 0 0 1 0 0

0 0 0 0 0 Jz−Jx
Jy

φ̇

0 0 0 0 0 1

0 Jx−Jy
2Jz θ̇ 0 Jx−Jy

2Jz φ̇ 0 0


,B =



0 0 0
1
Jx

0 0

0 0 0

0 1
Jy

0

0 0 0

0 0 1
Jz


,

and

C =


1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

 .
As seen from the system matrix A, the nonlinearities of the system (4.14) are

captured in the LPV form implying that the matrix A will be updated at each time

step and the MPC will compute a new input at each step.

4.5.2 MPC formulation

The MPC problem is formulated as a quadratic optimisation problem of the form

J = min
∆uk

1
2

N−1∑
i=0

(
e>k+iV ek+i + ∆u>k+iW∆uk+i

)
+ 1

2e>k+NZek+N (4.16)

s.t. xk+1 = Ad(φ̇, θ̇)xk +Bd∆uk, yk = Cdxk, (4.17)

where k is the present state and k + i is i samples away from the present state,

x ∈ Rn is the state vector, ek ∈ Rm is the error vector of the angles which we

want to drive to 0, ∆uk = uk − uk−1 ∈ Rm is the change in inputs, V ∈ Rm×m,



CHAPTER 4. CONTROL OF TRICOPTER WITH DIRECT ACTUATION 83

W ∈ Rm×m and Z ∈ Rm×m are positive definite weights, Ad ∈ Rn×n, Bd ∈ Rn×m and

Cd ∈ Rm×n are matrices of the system with n states and m inputs and outputs, and

N is the prediction horizon which defines how many future samples of the states are

predicted.

Remark 4.3. For reference tracking (ek = 0), uk 6= 0 but in the optimisation if ek = 0

and we use uk as the input, then the error terms in (4.16) will be 0 but the input terms

will not tend to 0. The optimiser will then try to drive uk to 0 resulting in ek 6= 0

at steady state [90]. Hence, minimising the change in input ∆uk is preferred since

∆uk = 0 when ek = 0.

Since the MPC algorithm is in discrete time, the LPV system (4.15) is discretized

using the forward Euler method [91] and then to account for the new input ∆uk in

the system (4.15), the input one sample in the past uk−1 is selected as an extra state

to yield the augmented discrete time system asxk+1

uk

 =

 Ad Bd

0m×n Im


 xk
uk−1

+

Bd

Im

∆uk,

yk =
[
Cd 03

]  xk
uk−1

 ,
(4.18)

where Ad(φ̇, θ̇) = In + A(φ̇, θ̇)∆t, Bd = B∆t and Cd = C (see Appendix C.1 for

discretization process) are the discretized matrices and ∆t is the sample time. More

compactly, (4.18) is given as

x̃k+1 = Ã(φ̇, θ̇)k+1x̃k + B̃∆uk,

ỹk = C̃x̃k,
(4.19)

where Ã(φ̇, θ̇) ∈ R(n+m)×(n+m), B̃ ∈ R(n+m)×m, C̃ ∈ Rm×(n+m) and x̃k ∈ R(n+m)×1.

Using the augmented system, the attitude error vector may be defined as ek = rk−C̃x̃k
where rk is the demanded attitude and by substituting this in (4.16) and expanding

(see Appendix C.2.1), the cost function becomes

J = min
∆uk

N−1∑
i=1

[
−r>k+iV C̃x̃k+i + 1

2 x̃
>
k+iC̃

>
V C̃x̃k+i

]
+

N−1∑
i=0

[
1
2∆u>k+iW∆uk+i

]

−1
2r>k+NZC̃x̃k+N + 1

2 x̃
>
k+NC̃

>
ZC̃x̃k+N + c1.

(4.20)
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Note that c1 represents constant offsets which are ignored since in a minimization

problem constants play no role and do not affect the result and from [92], it is standard

practice to ignore them. Instead of using the summation operator, we may present

(4.20) by stacking the future values of r, ∆u and x̃ into long global vectors containing

all samples for a given horizon period N as

r =



rk+1

rk+2
...

rk+N


∈ RNm×1, x̃ =



x̃k+1

x̃k+2
...

x̃k+N


∈ RN(n+m)×1,∆u =



∆uk
∆uk+1

...

∆uk+N−1


∈ RNm×1,

with x̃k ∈ R(n+m)×1 as the current state so that (4.20) may be written as

J = min
∆uk

1
2 x̃
>V x̃− r>Tx̃+ 1

2∆u>W∆u + c1 (4.21)

where

V =



C̃
T
V C̃ . . . 0

C̃
T
V C̃

... . . . ...

0 . . . C̃
T
ZC̃


, T =



V C̃ . . . 0

V C̃
... . . . ...

0 . . . ZC̃


,

W =



W . . . 0

W
... . . . ...

0 . . . W


,

with V ∈ RN((n+m)×(n+m)),T ∈ RN(m×(n+m)) andW ∈ RN(m×m). We want to write

(4.21) in terms of the change in input ∆uk and the present state x̃k rather than the

future states. If we choose a horizon period N = 4, the corresponding states for the

whole horizon period that is, x̃1, x̃2, x̃3 and x̃4 may be computed by using (4.19) (see

Appendix C.2.2) and we can compactly represent the state space system for the N

future states in terms of the current state x̃k as

x̃ =Ax̃k +B∆u (4.22)
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with x̃ = [x̃1 x̃2 x̃3 x̃4]>, ∆u = [∆u0 ∆u1 ∆u2 ∆u3]>,

A=



Ã1

Ã2Ã1

Ã3Ã2Ã1

Ã4Ã3Ã2Ã1


andB=



B̃ . . . . . . 0

Ã2B̃ B̃
...

Ã3Ã2B̃ Ã3B̃ B̃

Ã4Ã3Ã2B̃ Ã4Ã3B̃ Ã4B̃ B̃


,

where A ∈ RN(n+m)×(n+m) andB ∈ RN((n+m)×m). These matrices are constructed at

each time step based on the tricopter’s A(φ̇, θ̇) and B matrices where the A(φ̇, θ̇) is

discretized at each time step since some of its parameters change with time. It is worth

noting that the reference and states start from time period k + 1 and end at k + N

while the change in input starts at the current time period k and ends at k +N − 1.

This is because the input in the current time step affects the states and output in the

next time step. Finally, if we substitute (4.22) in (4.21) and simplify the expression

ignoring constant terms (see Appendix C.2.3), we obtain the cost function as,

J = min
∆uk

1
2∆u>

[
B
>
VB+W

]
∆u +

[
x̃>k r>

] A
>
VB

−TB

∆u + c1 + c2 (4.23)

which is of the form
1
2∆u>H∆u + F>∆u

which can be solved in Matlab using the quadprog function.

4.6 Matlab simulation results for attitude control

This section shows the simulation results with proper illustrations, and gives a com-

parative study of the proposed control schemes (QFB and MPC).

4.6.1 Simulation results using QFB technique

The quaterion feedback control scheme in Figure 4.6 was simulated in Matlab/Simulink

for 10 seconds using the identified parameters and measured arm length l0 = 0.33m.

The controller gains were computed as P q = 4.5I3 andDw = 1.95I3 as per the require-

ments. Initial conditions of ω(0)b = [0 0 0]> and q(0) = [0.8 0.1701 -0.1671 0.1077]>

were set for the angular velocity and attitude respectively and the results show that

the controller effectively stabilizes the attitude after approximately 4s.
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Figure 4.8: Attitude response to demanded heading of -0.12 rad (−7 deg.) after 3s,
([φ = 0, θ = 0, ψ = −0.12]> ⇒ [q0 = 1, q1 = 0, q2 = 0, q3 = −0.059]>).

It can be observed from Figure 4.8 that q0 which is the sclar part of the quaternion

is approximately unity, q1 and q2 which are related to the roll and pitch respectively are

regulated to 0, while q3 which is related to the heading tracks the value of −0.06 rad

(corresponding to ψ = −0.12rad) which is demanded after 3 seconds. We recover the

equivalent Euler angles from the quaternions using (2.42) and as shown in Figure 4.9,

the yaw angle tracks the demanded value while the roll and pitch are regulated to zero as

time increases. Also, both the error and angular velocity tend to zero as time increases.

That is, qe → 0 and ωb → 0 as seen from Figure 4.10. The control torques are small

with the control input for the demanded heading as τψ = −0.3kg.m2/s2 from Figure

4.11 showing the practicability of such controller. It can also be seen that the servo

angles αi ≈ 0.05rad and the motor speeds ωi ≈ 660rad/s, for i ∈ {1, 2, 3}. Equal servo

angles and rotor speeds are expected since f1 cos(α1) ≈ f2 cos(α2) ≈ f3 cos(α3) ≈ mtg
3

via symmetry in Figure 4.1. It should also be noted that all three rotors tilt to provide

lateral torque to stabilize the heading rather than only the tail rotor (as in the classic

case) as evident from Figure 4.11. Consequently, the servo angles are non-zero at

steady hover.
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4.6.2 Comparative simulation study between QFB and MPC

The MPC scheme in Figure 4.7 was then simulated in Matlab using the tricopter’s

identified parameters with the quadprog function used to optimize the cost (4.23),

and the results were compared with the results from the QFB. This comparison was

done in order to analyse the performance of the linear MPC scheme which uses the

quasi-LPV model, with respect to that of the QFB which is a nonlinear scheme. The

controller weights were chosen as V = W = diag{5, 5, 5} and Z = diag{6, 6, 6}. The

horizon period has been noted as N = 4 meaning besides the current state, 4 states in

the future would be predicted by the controller at each time step.
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Figure 4.11: Control torques and actuator outputs, τ bm, αi and ωi stand for torques,
servo angles and motor speeds respectively.

It can be observed from Figure 4.12, that the MPC performs better than the QFB

control method driving the angles to the desired values after 2 seconds, faster than the

QFB. The QFB however provides a smoother signal than the MPC at earlier time steps

but it should be noted that the choppy MPC signals occur in very small magnitude in

the order of approximately 0.05 rad and hence does not negatively affect the overall

control or tricopter system. Furthermore, as MPC is a discrete control method, we

would expect such a response [93]. Comparing the control actions between the two

control techniques shows that the MPC scheme provides cheaper control compared to

the QFB as seen from Figure 4.13. The peak control torques for the demanded yaw

reference are -0.55 and -0.3 kg.m2/s2 using the QFB, -0.2 and -0.04 kg.m2/s2 when

using the MPC. The same situation can be observed for the control torques for the roll

and pitch channels whose angles are regulated to 0 rad respectively. This is because

unlike the QFB, the MPC controller minimizes the cost function to obtain the minimal

inputs required for each channel, while at the same time minimizing the state variables.

It is interesting to note that although a linear MPC is used as compared with the

nonlinear quaternion feedback scheme, the MPC still performs better since it makes

use of a LPV model of the system which takes into account the change in the model
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Figure 4.12: Attitude response to demanded heading of -0.14 rad with QFB and MPC
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Figure 4.13: Comparing control torques between QFB and MPC schemes

parameters at each time step as seen in the varying A system matrix. Like the control

inputs, the generated motor speeds for the MPC are smaller compared to those of the
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QFB as observed from Figure 4.14.
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Figure 4.14: Comparing motor speeds between QFB and MPC schemes

The steady state speed from each motor can be observed to be 660 rad/s when

using the QFB controller and 645 rad/s when using the MPC indicating a drop in

demanded motor speed of about 15 rad/s which highlights the benefit of the MPC

over the QFB scheme. One physical advantage of this is that lower motor speeds

mean less power usage which in turn leads to longer flight times. Also, Figure 4.15

shows that there is no significant difference in the servo angles at steady state when

using either the QFB or the MPC scheme but it can be observed that the peak of

the changes in servo angles is higher when using the QFB than when using the MPC

scheme. Although an in-depth robustness analysis from a theoretical standpoint has

not been carried out, it is necessary to mention that this MPC scheme does not have

any guaranteed stability margins. The stability and robustness depends mainly on the

prediction horizon and the specific properties of the system under consideration.
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Figure 4.15: Comparing servo angles between QFB and MPC schemes

4.7 6-DOF control of tricopter

In addition to attitude control, this section describes the design of position controllers

to perform lateral and longitudinal motions for the proposed tricopter, as a way of

showing that the multi-tilt tricopter can achieve full 6-DOF control.

As noted in Remark 4.1, one important benefit of the proposed tricopter airframe

compared to the classic one [75] or other common multicopters like the quadcopter [94],

is that it provides the opportunity to directly and independently obtain the forces Fx
and Fy, and hence control the longitudinal and lateral positions respectively of the

tricopter, without changing the attitude. Consequently, full 6-DOF control is possible.

In the practical sense, this position control is achieved by changing the servo angles αi,

i ∈ {1, 2, 3} thereby directing the thrust from the rotors towards the desired direction of

motion. This capability is demonstrated in simulation by designing position controllers

to compute Fx and Fy based on linearising the tricopter’s translational equations (3.9)

by feedback. It is assumed that for motion in the z direction (altitude), ΣFx = 0,

ΣFy = 0, and ΣFz 6= 0. Similarly, for longitudinal motion, ΣFx 6= 0, ΣFy = 0, ΣFz 6= 0

and for lateral motion, ΣFx = 0, ΣFy 6= 0, ΣFz 6= 0. Note that for lateral and

longitudinal motions, we need the vertical thrust to maintain the altitude of the drone

hence Fz 6= 0. Applying this information in (3.9), the translation equations for the
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tricopter become,

ẍ = 1
mt

[
(cθcψ)Fx + (cφsθcψ + sφsψ)Fz

]
, (4.24)

ÿ = 1
mt

[
(sφsθsψ + cφcψ)Fy + (cφsθsψ − sφcψ)Fz

]
, (4.25)

z̈ = 1
mt

[
(cφcθ)Fz

]
+ g. (4.26)

Let us first consider the z axis, and define the tracking errors as, ez = zd−z, ėz = żd− ż

and ëz = z̈d − z̈, then a linear control vz = ëz based on pole placement is used to

stabilize the error dynamics to ensure tracking and closed-loop stability hence

vz = −kz2 ėz − kz1ez

where kz1 and kz2 are chosen such that the characteristic polynomial s2 +kz2s+kz1 = 0

is Hurwitz. Note that zd is the desired altitude. Then from vz = z̈d − z̈, we get

z̈ = z̈d − vz and by substituting this in (4.26) we obtain the control input Fz as,

Fz = mt(z̈d − vz − g)
cφcθ

. (4.27)

Following a similar process, the control forces for the lateral and longitudinal motions

are obtained as,

Fx = mt(ẍd − vx)− (cφsθcψ + sφsψ)Fz
cφcθ

, (4.28)

Fy = mt(ÿd − vy)− (cφsθsψ − sφcψ)Fz
sφsθsψ + cφcθ

(4.29)

where vx = ëx, vy = ëy.

Remark 4.4. Note that for all simulations, the actuator outputs from the mixer are

computed from (4.7) as Ω = M−1U where ωi = 4
√

Ω2
i + Ω2

i+3 and αi = atan( Ωi
Ωi+3

) for

i ∈ {1, 2, 3}. In the earlier simulations (QFB and MPC) where only attitude control

is considered, the control forces are arbitrarily set as Fx = Fy = 0 and Fz = −mtg 6= 0

in order to simulate the hover position. In the simulation of the position controllers

however, Fx 6= 0 and Fy 6= 0 as expected due to (4.28) and (4.29).

For the three position axes, the poles are chosen at s = −1,−2 which yields the

gain k = [2 3]. The QFB scheme in Figure 4.6 is then simulated but with the position

controllers now included to achieve 6-DOF control hence full actuation. The reference
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Figure 4.16: Position of tricopter using translational forces only without changing
attitude

attitude is zero that is, qd = [1 0 0 0]> and a 60 seconds trajectory is demanded where

the drone takes off to an altitude of 5m, follows a rectangular path and then returns

back to the ground level. From Figures 4.16 and 4.17, the output positions track the

desired values and corresponding trajectory.
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Figure 4.17: Tricopter response to rectangular trajectory with motion achieved using
translational control forces only.

This motion is made possible using the forces Fx, Fy and Fz only, unlike a typical

multicopter where position control is achieved by changing the attitude based on



CHAPTER 4. CONTROL OF TRICOPTER WITH DIRECT ACTUATION 94

0 10 20 30 40 50 60
−1.5

−1

−0.5

0

0.5

1

1.5

0.05

time (s)
se
rv
o
an

gl
es

(r
ad

)

α1
α2
α3

Figure 4.18: Tilt angles applied to the servo motors to enable motions in x or y
directions.

generated roll, pitch and yaw reference values which are computed from the desired x

and y positions as in [95–97]. The tilting angles αi, i ∈ {1, 2, 3} are given in Figure 4.18.

It can be observed that these angles change as the demanded position changes, before

returning to their steady state value of 0.05 rad. The change in these angles results

in the respective motor being tilted clockwise or counter-clockwise thereby directing

the thrust of that motor from the vertical axis towards the desired direction of motion.

It can also be observed that the peak value of the tilt angle is approximately 1.57rad

(900) since the servo motor in the physical hardware is limited to the range [−π
2 ,

π
2 ].

Although, this has not caused significant issues in the simulation, it is worth mentioning

that actuator saturations in real systems can cause instability. We normally want to

avoid tilt angle demands that reach the limits of the servo motor as this may lead to

wind-up which if left unchecked, can destabilize the system.

For completeness, the attitude response is given in Figure 4.19 (in terms of euler

angles) for the first 10 seconds, and it can be observed that the roll, pitch and yaw

angles are regulated to 0 by the QFB controller as desired.
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4.8 Experiments

This section describes the experimental aspects of this work. Firstly, a description of

the hardware components used in realising the proposed airframe is provided. The

developed tilt mechanism which allows for a greater tilting range is then discussed

followed by a description of the control allocator (mixer) to achieve independent

position control and its software implementation. Finally, some experimental tests

are done to confirm that the mixer enables the tricopter to vector its thrusts from

the rotors onto the longitudinal and lateral axes as required, to achieve independent

position control on these axes.

Figure 4.20: Tricopter platform on test stand
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4.8.1 Platform Description

The proposed multi-tilt tricopter UAV platform is shown in earlier figures and in Figure

4.20 where it is affixed to a test stand. The platform consists of three identical arms,

with a fixed pitch propeller driven by a Brushless DC motor mounted at the end of

each arm. Each motor is mounted on a MG996R Tower-pro servo-motor which controls

the tilting of the motors in the range αi ∈ (−π
2 ,

π
2 ) for i ∈ {1, 2, 3} to achieve lateral

and longitudinal motion as well as heading control. It is worth mentioning that the

airframe is adapted from the HobbyKing Talon tricopter airframe where the classic

tail servo tilting mechanism is extended to the two front rotors so that all three rotors

can tilt. One problem is that the classic Talon servo tilting mechanism was designed

for tilting in the range α ∈ (−π
4 ,

π
4 ) which limits the agility of the airframe. To solve

this problem, a custom tilting mechanism is designed as in Figure 4.21 based on a

standard hub shaft servoblock from ServoCity with 25T spline.

Figure 4.21: Tilting mechanism assembly.

Top and buttom mounts with landing gears are made to hold the tricopter arms

in place, an L-shaped bracket on which the rotor sits is then attached to the hub

shaft while the MG996R servo is attached on the other end of the hub shaft. As the

servo rotates, the hub shaft rotates the assembly thereby rotating the rotor through

the desired angle. This mechanism allows for tilting in the range
[
−π/2, π/2

]
(which

allows for more agility in the airframe). The Pixhawk autopilot [98] which runs a 32bit

processor with 256KB RAM, is used as the flight controller. The PX4 firmware which

is compatible with Pixhawk is used to run the guidance and control algorithms and

QGroundControl [99] is used as the ground station software for setup and calibration.

See Appendix B.2 for full specifications. This platform was developed in the Control,
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Dynamics and Robotics (CDR) lab at the University of Manchester. The platform was

fixed to a safe test stand for indoor tests.

4.8.2 Mixer for position control

The control allocation (or Mixer) computes the actuator inputs based on the geometry

of the UAV to be controlled. The tricopter under investigation has 6 control inputs U

and 6 actuators (3 servos and 3 motors) from (4.7). The problem however is that only

four [Fz, τφ, τθ, τψ]> (the altitude, roll, pitch and yaw) of the six degrees-of-freedom

can be controlled by any typical radio transmitter. So in line with section 4.7, a direct

actuation method using the mixer is proposed, where the servos are used to direct the

thrust of the vehicle in the x or y direction to create longitudinal or lateral motion as

depicted in Figure 4.22. That is, forces for Fx and Fy are manually achieved using

Figure 4.22: Thrust vectoring via direct actuation

inputs from specific knobs on the transmitter. We can explain this concept from Figure

4.22. If we view each rotor from the outer edge of the respective arm, then for +x

motion, servo 1 rotates clockwise and servo 2 rotates counter-clockwise so that motors

1 and 2 are tilted forwards thereby directing the thrust from the motors towards the

+x axis. Note that in Figure 4.22(a), the shorter arrows represent the direction of

rotation of individual servos while the longer arrow represents the resultant direction of

motion of the tricopter. Then for +y motion as depicted in Figure 4.22(b), both servos

1 and 2 rotate counter-clockwise when each of them are viewed from the outer edge

of their respective arms, while servo 3 rotates clockwise. Here the rotation of servos 1

and 3 together tilts motors 1 and 3 such that the thrust from these motors is directed
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diagonally and opposite to the arm (axis) of rotor 2. At this state, the tricopter will

move diagonally between the −x and +y axes at an angle of approximately 600 from

the −x axis. But we desire a straight-line motion in +y direction and the correction

needed to achieve this is delivered by the thrust created due to the tilting of motor 2

in the counter-clockwise direction so that the resultant motion of the tricopter is in

the +y direction. Note here that the intermediate thrusts are indicated by the medium

sized arrows in Figure 4.22(b) while the resultant motion of the tricopter is indicated

with the longer arrow. The attitude in the mixer is specified similar to a standard

multicopter, where roll and pitch motions are controlled via differential speeds of the

rotors as defined by (4.6). The difference is that in the proposed airframe, there are

three servos which all contribute to yaw control rather than only the tail servo as with

the classic tricopter [75].

4.8.3 Mixer Implementation

From the controller diagrams for multicopters in PX4 documentation [19], we see

that in the inner loop, the attitude controller feeds setpoints to the angular rate

controller which then outputs normalized torques to the mixer. Also, the outer loop

position controller outputs a normalized thrust to the mixer. No part of the control

scheme considers the precise geometry of the UAV platform to be controlled. The

platform’s characteristics are present only in the Mixer block. Hence, in the initial

case, the existing PX4 control algorithms are used and only the mixing algorithm is

modified to reflect the geometry in Figure 4.1 that is, the relationship described in (4.7).

Consequently, we only need to tune the existing controllers to operate the airframe.

Using the identified parameters, a multicopter-type PX4 mixer for the geometry in

Figure 4.1 is developed, to generate PWMs to the motors for attitude mixing. For

direct actuation in x and y, additional mixers are written for the servos. As an example,

a mixer block is given in Figure 4.23 for servo 1 (see Appendix E for complete mixers)

where in line 31, M: defines the number of inputs to this actuator (3 inputs/scalers)

since servo 1 is requested for yaw, longitudinal and lateral motions. The next three

lines define the output scalers.

So considering line 32 from left to right, S: takes an input from control group #0

(which is flight control in PX4) and the yaw input given by the index #2 (#0=roll,
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Figure 4.23: Pseudo-code for AUX mixer implementation

#1=pitch, #2=yaw in PX4 flight control options). It scales the yaw input by 1 and

reverts the sign #-10000 -10000, it applies no offset #0 and outputs the full range

#-10000 10000 (that is, [−1,+1]). Note that the values stored in the PX4 mixer

definition are scaled by a factor of 10000 that is, [−1,+1] is encoded as [−10000, 10000].

Similarly in line 34, S: takes an input from control group #3 (manual passthrough)

and from a specific knob mapped via AUX2 RC channel #6 (input is direct from

RC transmitter rather than flight controller, #5=RC_MAP_AUX1 and #6=RC_MAP_AUX2

in PX4 manual passthrough options). It scales the input by 1 and reverts the sign,

applies no offset and outputs the full range [−1,+1]. The signs of the scalers determine

whether the servo rotates clockwise or counter-clockwise when it receives an input from

either the flight controller or transmitter. It should be noted that RC_MAP_AUX1 and

RC_MAP_AUX2 are parameters in the PX4 firmware and they were configured to specific

knobs (channels) on a TaranisX9D transmitter. To test the mixer, the PX4 firmware

is rebuilt with the modified airframe setup and flashed on the Pixhawk.

4.8.4 Experimental Results

The tricopter platform affixed to the test stand was armed (powered on) and allowed

for about a minute before the tests were started. Note that the tests were done in

closed-loop. As described in subsection 4.8.2, the motion in Figure 4.22(a)(positive

x direction) is achieved by tilting servos 1 and 2 clockwise and counter-clockwise

respectively. And this is implemented using a knob on the radio transmitter mapped

to RC_MAP_AUX1 as noted in subsection 4.8.3, while the angle of servo 3 stays close

to the servo center. This servo tilting (and resultant rotor tilting) was achieved by

turning the knob (dial) on the radio transmitter (which was mapped to the x axis)

in the direction of positive PWM resulting in the two front rotors tilting forwards

as desired. The data was logged to an SD-card on the PX4 flight controller and the
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motion of the servos is depicted in the top plot of Figure 4.24 between t = 68 and

t = 70 seconds.

66 68 70 72 74 76 78
1,000

1,500

2,000

time (s)
PW

M
(µ
s)

α1
α2
α3

66 68 70 72 74 76 78
−1

−0.5

0

0.5

time (s)

RC
in
pu

ts

RC_MAP_AUX1
RC_MAP_AUX2

Figure 4.24: Servo outputs when using direct actuation for x motion

Between t = 66 and t = 68 seconds or t = 70 and t = 74 seconds, we have the

reverse case, where rotor 1 tilts counter-clockwise and rotor 2 tilts clockwise with rotor

3 staying close to the center, and this corresponds to motion in the negative x direction.

The buttom plot shows the corresponding radio transmitter (RC) signals. It can also

be observed from the top plot of Figure 4.24 that servo 3 (α3) has output approximately

1500µs which is close to the standard servo center PWM value of 1520µs. Similarly,

to achieve the motion in Figure 4.22(b) (positive y direction), servos 1 and 2 are tilted

counter-clockwise while servo 3 tilts clockwise via a knob mapped to RC_MAP_AUX2.

This servo motion was achieved by turning the knob (dial) on the radio transmitter

(which was mapped to the lateral axis) in the direction of positive PWM yielding the

desired tilting of the servos (and consequently the rotors), and this is observed in the

top plot of Figure 4.25, between t = 89 and t = 91 seconds, for example.
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Figure 4.25: Servo outputs when using direct actuation for y motion

4.9 Summary

In this chapter, the hardware for a tricopter where all rotors can independently tilt is

developed together with its mathematical model. The parameters of the model were

identified via experimental methods. A quaternion-based feedback controller was then

proposed to stabilize the attitude of the tricopter and this was done with the attitude

represented as unit quaternions to avoid gimbal lock. A linear MPC scheme based

on a linear-parameter-varying model of the tricopter was also proposed to stabilize

the attitude. These control schemes have been implemented in simulation using the

identified parameters and a comparative study was carried out to reflect on the perfor-

mance of the control schemes. The simulation results reported show the effectiveness

of the proposed QFB and MPC control schemes, their similarities and differences. The

LPV-MPC showed superior performance to the quaternion feedback scheme and this

is expected since MPC is based on optimizing a cost function. The capability of the

proposed tricopter to directly control the motions in x and y directions is demonstrated

via simulations, and then a control allocator/mixer which is implemented using the

PX4 framework is proposed and this is validated in indoor experiments. Also, the

tilting limit of the airframe tilt mechanism is relaxed by developing a custom tilt

mechanism that allows for tilting in a wider range of
[
−π/2, π/2

]
which increases the

capabilities of the airframe. The experimental results have highlighted the benefits

of the proposed control allocation (and airframe) and provided an important base for
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further research into this tricopter problem.



Chapter 5

A negative imaginary robust

formation control scheme for a

group of networked tricopters over

inner-loop sliding-mode control

All the material in this chapter was submitted for publication in [100].

5.1 Introduction

Cooperative control of multicopter Unmanned Aerial Vehicles (UAVs) has gained sig-

nificant attention both from academia and industry due to the improved reliability

and efficiency it offers, leading to a vast number of applications [101] including search

and rescue [102], pipeline inspection and surveillance [103] among others. This atten-

tion has led to more efficient configurations and innovations in terms of size, flight

range, airframe configuration and other factors (see [104] for a detailed review of mul-

ticopters). An example of an innovative platform with significant properties is the

multi-tilt tricopter [20] with three rotors which can independently tilt, which offers

greater agility and flexibility (same tricopter considered in chapter 4). In constrast

to the more common quadcopter [94] where trajectory tracking is achieved by manip-

ulating the attitude, the multi-tilt tricopter which is considered in this work is able

to achieve simultaneous independent attitude and trajectory tracking (full 6 degrees

103
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of freedom control), due to its airframe configuration. In other words, it is possible

to translate in the lateral and longitudinal directions without changing the attitude,

thereby overcoming the limitation of quadcopters. This serves as the justification and

motivation for investigating the cooperative control of the multi-tilt tricopter rather

than the quadcopter, thus creating more possibilities when performing specialized and

more complex tasks. One of the most investigated coordination problems of multiagent

systems (MAS) is the formation control problem with the key concern being the devel-

opment of control strategies to achieve group formation tracking. Consequently, several

approaches [30,36,37] have been proposed to solve the formation control problem in-

cluding the more recent Negative Imaginary (NI) approach [41,42]. NI systems theory

was originally inspired by the ‘positive position feedback control’ of highly resonant

mechanical systems [47]. It initially drew attention as a control technique for vibration

control of flexible structures [49], large space structures and robotic manipulators [48],

and later saw applications in nano-positioning [105], vehicle platooning [51] and control

of networked MAS [31,58]. The key feature driving this growth is its simple internal

stability condition that says a necessary and sufficient condition for the internal stabil-

ity of a positive feedback interconnection of NI and SNI systems, say M(s) and N(s),

is λmax[N(0)M(0)] < 1 [47, 54], which is a condition that depends on the loop gain

at zero frequency only. In addition, the NI theory offers a stand-alone robust control

analysis and synthesis framework [106,107]. Ref. [41] presents a framework for swarm

multiagent systems based on the relative-position output feedback consensus combined

with adaptive strictly negative imaginary controllers, leveraging the learning capability

of artificial neural networks. A case study of two quadcopters moving together while

carrying a dynamic load is used to validate the proposed method in experiments. NI

theory is utilized in [55] to design a consensus-based formation control framework for a

multi-vehicle system together with an obstacle detection and avoidance algorithm. The

performance of the obstacle avoidance technique proposed is compared to that of [56]

which is based on artificial potential field function control technique. In [56] and [57],

authors have utilised the results of [31] and [32] to develop a particular consensus

and formation control framework for a group of heterogeneous autonomous vehicles

facilitating time-invariant switching. Also, a rendezvous control scheme for a group

of two-wheeled mobile robots connected via a directed and balanced graph has been
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designed in [58] using NI theory. The concept of utilising the NI-SNI closed-loop sta-

bility result to develop a cooperative control scheme stems from the fact that a certain

class of systems can be modelled as a group of networked single/double integrator

agents typically by feedback linearization, which inherently satisfies the NI property

with poles at the origin.

Consequently, a cooperative control scheme can be deployed as the outer-loop

controller. The nonlinear model of the multi-tilt tricopter system using force and torque

kinematic analysis and subsequent dynamic modelling is first presented. Different

from [20] where feedback linearization has been employed, sliding mode technique

is used for designing control laws to linearize the inner-loop of the nonlinear multi-

tilt tricopter UAV. The SMC technique was used because it is a nonlinear control

method and therefore could be applied directly to the tricopter which is a highly

nonlinear system. Secondly, it is straight-forward to implement and is known to have

inherent robustness properties which is desirable as we want to avoid any issues in the

inner-loop since the outer-loop cooperative controller depends on it. As a result of

using the SMC technique, an SMC-linearized closed-loop system with six inputs and

outputs is obtained, corresponding to the tricopter’s cartesian position and attitude.

To characterize the SMC-linearized inner-loop as an NI system, a closed-loop system

identification algorithm that guarantees that the resultant model is NI, is proposed.

The algorithm presented exploits the classic subspace method but in continuous time

by use of the Laguerre filter [59] in the identification process, and its advantages

and simplicity are highlighted. This algorithm is then applied to the identification of

NI models for all channels of the SMC-linearized multi-tilt tricopter and frequency

responses of the identified models are used to verify that the models exhibit the NI

property. An output feedback distributed SNI+VSP control law is then designed

for achieving robust cooperative control combining both leader-following consensus

and formation control. Rather than the Lyapunov-based approach, a methodology

proposed in [42,70] is utilized in proving the convergence of the control problem which

encompasses formation control and cooperative tracking, exploiting the characteristics

of the eigenvalue loci of networked NI and SNI systems. Finally, a simulation case

study involving a group of six SMC-linearized multi-tilt tricopter agents is provided

to demonstrate the usefulness and effectiveness of the proposed scheme.
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The key contributions of this chapter to the state-of-the-art are as follows:

• Development of a closed-loop system identification algorithm that guarantees

that the resultant model is NI. The algorithm presented exploits the classic

subspace method but in continuous time by use of the Laguerre filter [59] in the

identification process, and its advantages and simplicity are highlighted.

• Development of closed-loop stability result for a network of NI/SNI systems

which are controlled by ‘mixed’ Strictly Negative Imaginary (SNI) plus Very

Strictly Passive (VSP) controllers in a negative feedback interconnection.

• Design of an output feedback distributed SNI+VSP control law (making use of the

closed-loop stability result for networked NI/SNI systems) for achieving robust

cooperative control combining both leader-following consensus and formation

control, utilizing the characteristics of the eigenvalue loci of networked NI and

SNI systems for proving the convergence of the control problem, rather than the

Lyapunov-based approach.

The other technical contributions of this chapter are summarized as follows:

• Design of Sliding Mode Controller (SMC) to linearize the inner-loop of the

nonlinear multi-tilt tricopter UAV, different from feedback linearization which

is commonly used in such situations. This yields an SMC-linearized closed-loop

system with six inputs and outputs corresponding to the multi-tilt tricopter’s

cartesian positions and attitude.

• Identification of NI models for all channels of the SMC-linearized multi-tilt

tricopter using the developed closed-loop identification algorithm, and frequency

responses of the identified models are used to verify that the models exhibit the

NI property.

• Provision of simulation case study involving a group of six SMC-linearized multi-

tilt tricopter agents, achieving group formation tracking and inherent consensus

tracking, demonstrating the usefulness and effectiveness of the proposed scheme.

The rest of this chapter is organized as follows: A problem formulation is provided

next, then the derivation and SMC linearization of the nonlinear dynamic model
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of the tricopter UAV is described in Section 5.2. The proposed closed-loop system

identification algorithm is presented in Section 5.3 together with the identification of

NI models for the inner-loop of the linearized tricopter UAV. Section 5.4 develops the

key stability result for the SNI+VSP controller and applies it to the formation control

of a network of multi-tilt tricopter systems. Section 5.5 is devoted to the presentation

of the case study and simulation results, and a summary is provided in Section 5.6.

5.1.1 Problem Formulation

Given a multi-agent system with N nodes, distributed on a communication graph G and

modelled as a group of networked agents with identical dynamics, the control problem

is to design distributed output feedback SNI+VSP controllers ui ∀i ∈ {1, 2, . . . , N} in

G such that all nodes converge to the state trajectory of the leader node and the agents

asymptotically reach the desired static formation. That is, lim
t→∞

(xi(t) − x0(t)) = 0,

∀i ∈ {1, 2, . . . , N}, where x0 is the state of the leader node and xi is the state of each

individual agent.

5.2 Multi-tilt tricopter modelling

This section presents the model of the tricopter UAV under consideration. Note that

the same model has been developed in Section 4.2 of Chapter 4. Hence, the nonlinear

model of the multi-tilt tricopter from Section 4.2 is still applicable. The linearization of

the model using sliding mode control technique in closed-loop is discussed next. This

SMC-linearized closed-loop system will be used in later sections of this chapter.

5.2.1 Linearisation using Sliding Mode Control

Considering the attitude dynamics (3.10), an assumption is made that the angles φ

and θ are small and hence Γ−1 ≈ I3 from (2.41), such that from (3.10) η̈ = ω̇b and

expanding yields

φ̈ =
[
(Jy − Jz)θ̇ψ̇ + τφ

]
/Jx, (5.1)

θ̈ =
[
(Jz − Jx)φ̇ψ̇ + τθ

]
/Jy, (5.2)

ψ̈ =
[
(Ix− Iy)φ̇θ̇ + τψ

]
/Jz. (5.3)
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Let us first consider the roll dynamics (5.1) and using classical methods [45, 108],

define a sliding surface s̃φ = ėφ + λφeφ where λφ > 0 and eφ = φ − φd is the error

between the actual and desired roll angles. A control law ˙̃s = −kφ sgn(s̃φ), kφ > 0

is chosen for the attractive surface and to analyse stability, a Lyapunov candidate

function Vφ = 1
2 s̃

2
φ > 0 is chosen so that

V̇φ = s̃φ ˙̃sφ = s̃φ(−kφ sgn(s̃φ)) = −kφ|s̃φ| ≤ 0,

⇒ s̃φ

(
1
Jx

[
(Jy − Jz)θ̇ψ̇ + τφ

]
− φ̈d + λφėφ

)
= −kφ|s̃φ|,

⇒ τφ = Jx
(
−kφ sgn(s̃φ) + φ̈d − λφėφ

)
− (Jy − Jz)φ̇ψ̇

where

sgn(s̃) = |s̃|
s̃

=



−1, s̃ < 0

0, s̃ = 0

1, s̃ > 0

. (5.4)

Since Vφ > 0 and the control law ˙̃sφ satisfies V̇φ ≤ 0, then s̃φ = 0 is an equilibrium point

and is finite-time stable [45], implying that the input τφ stabilizes the roll attitude.

Similarly,

τθ = Jy
(
−kθ sgn(s̃θ) + θ̈d − λθėθ

)
− (Jz − Jx)θ̇ψ̇,

τψ = Jz
(
−kψ sgn(s̃ψ) + ψ̈d − λψėψ

)
− (Jx − Jy)φ̇θ̇.

For the translational dynamics (3.9), the following assumptions are made similar

to those made in Section 4.7. For vertical motion, ΣFz 6= 0, ΣFx = ΣFy = 0 since only

vertical thrust is required for hovering. For longitudinal motion, ΣFy = 0, ΣFx 6= 0,

ΣFz 6= 0 since vertical thrust is required to hold the altitude and a longitudinal

force is required for motion in the x direction. And for lateral motion, ΣFy 6= 0,

ΣFx = 0,ΣFz 6= 0 since vertical thrust is required for altitude and lateral force is

required for y motion. Expanding (3.9) and applying these assumptions yields

ẍ =
[
(cθcψ)Fx + (cφsθcψ + sφsψ)Fz

]
/m,

ÿ =
[
(sφsθsψ + cφcψ)Fy + (cφsθsψ − sφcψ)Fz

]
/m,

z̈ = g +
[
(cφcθ)Fz

]
/m.
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Figure 5.1: SMC control scheme for linearising tricopter dynamics

By choosing sliding surfaces s̃x, s̃y, s̃z and position errors ex, ey, ez similar to the

attitude control case, together with matching reaching laws, the SMC linearizing

control inputs for the translational dynamics are

Fx = m

cφcψ

(
−kx sgn(s̃x) + ẍd − λxėx

)
− Fz
cφcψ

(cφsθcψ + sφsψ),

Fy = m

(sφsθsψ + cφcψ)
(
−ky sgn(s̃y) + ÿd − λyėy

)
− Fz

(sφsθsψ + cφcψ)(cφsθsψ − sφcψ),

Fz = m

cφcθ

(
−kz sgn(s̃z)− g + z̈d − λz ėz)

)
.

Using these SMC laws for both attitude and position, the scheme depicted in Figure

5.1 is then simulated using the multi-tilt tricopter’s parameters given in Table 5.1 (same

as those identified in Chapter 4) with λx = λy = λz = 1.4, λφ = λθ = λψ = 1.3, kx =

ky = 1, kz = 1.5 and kφ = kθ = kψ = 2.5, to yield a linearized closed loop with six

inputs and outputs corresponding to the three positions and three attitude angles. Note

that although some methods exist in the literature for choosing optimal parameters for

SMC gains, the parameters used here were chosen using a heuristic approach bearing

in mind that higher gains will achieve stability faster but would amplify disturbances

while lower gains will reduce disturbances and sacrifice some stability. Furthermore,

some approximations to discontinuities have been used in simulation to reduce the

effects of chattering.

Figures 5.2 and 5.3 show the responses of the multi-tilt tricopter to a spiral trajectory

with zero attitude change. It is worth recalling at this point that the tricopter under

consideration can achieve independent x and y motions without changing its attitude

due to its airframe configuration.

It is also evident that the 6-DOF controller from section 4.7 with a settling time

of approximately 3 seconds performs better than the SMC with a settling time of

approximately 5 seconds as observed from Figure 5.3. This is not a significant difference
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Table 5.1: Summary of tricopter parameters

Parameter Value
l0 0.33 m
m 1.448 kg
kt 1.084× 10−5 kg-m
kd 1.726× 10−7 kg-m2

Jx 1.035× 10−1 kg-m2

Jy 1.03× 10−1 kg-m2

Jz 1.709× 10−1 kg-m2
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Figure 5.2: Tricopter response to spiral trajectory with SMC

and may be because the demanded trajectory in the case of SMC is different and more

complex (spiral) compared to that of the 6-DOF controller.
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Figure 5.3: Tricopter attitude with SMC

5.3 System Identification of NI systems

It is often important to obtain an NI model of a physical system in order to apply NI

control techniques to such a system. This section presents a continuous time method

for identifying NI models by enforcing the NI property and applies it in identifying an

NI model for the SMC-linearized multi-tilt tricopter UAV. This identified NI model will

be used later to develop a leader-following formation scheme for networked linearized

multi-tilt tricopters.

5.3.1 Continuous time closed-loop system identification

In this subsection, a continuous time closed-loop identification method which guar-

antees that the resultant model is negative imaginary is developed. Ref. [47] gives a

state-space characterization of NI systems referred to as the negative imaginary lemma

given in Lemma 2.8. This result has been generalized in [73] to include poles on the

imaginary axis except at the origin. Let us now recall the NI lemma as follows:

Lemma 2.8 (NI Lemma, [47,73]). Let G(s) be the real, rational and proper transfer

function matrix of a finite-dimensional, square and causal system G having a minimal

state-space realization

 A B

C D

. Then, G(s) is NI without poles at the origin if and
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only if det(A) 6= 0, D = D> and there exists a real matrix X = X> > 0 such that

AX +XA> ≤ 0 and

B = −AXC>.
(2.14)

Linearized UAV dynamics in closed-loop have been shown to have negative imagi-

nary transfer functions [41, 55, 57]. The problem is that in order to use the result in

lemma 2.8 in model identification, the identification method must be one that can char-

acterize state-space systems. This suggests that subspace methods would be suitable.

However, this poses another problem as subspace identification is typically performed

in discrete time but the conditions (2.14) are in continuous time. If we transform

them to discrete equivalents as done in [109] for example, the conditions (2.14) become

non-convex and are no longer LMIs making the identification process more complex

and less intuitive. To solve this problem, a continuous time method for identifying

state-space NI models is proposed. The identification method presented is an extension

of the works of [60] and [59] to characterize NI systems.

Let us consider a minimal state-space realization of a real-rational proper transfer

function M(s) as (A,B,C,D) where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, D ∈ Rm×m,

with u(t) ∈ Rm as the input and y(t) ∈ Rm as the output and x(t) ∈ Rn as the states

in the system. The identification process may be summarized to three main steps.

1. The bilinear relationship w = s−p
s+p with p > 0 based on the the Laguerre filter [59]

is used to obtain filtered input-output data matrices.

2. The classic subspace error-in-variables method (EIV) [110] is used to obtain the

A and C matrices.

3. The B and D matrices are obtained by optimizing a least squares problem using

the estimated A and C matrices with the model structure as

y(t|B,D) = C(qIn − A)−1Bu(t) +Du(t) (5.5)

where q is used to represent the Laplace operator in order to differentiate from

‘s’ used in the bilinear transformation in step 1.

The reader is referred to [59, 60] for full details of estimating the A and C matrices

from closed-loop data (steps 1 and 2). In the method proposed in this work, only step
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3 is modified using Lemma 2.8 to enforce the identification of an NI system. The steps

and algorithm for estimating the A and C matrices (steps 1 and 2) in this study are

identical to those described in [60] and are therefore, not discussed here.

Noting that for a proper system, D = DT = 0, and let Â and Ĉ be the estimated

A and C matrices (from steps 1 and 2), (5.5) may be defined as

y(t1)

y(t2)
...

y(tδ)


=



Ĉ(qIn − Â)−1u(t1)

Ĉ(qIn − Â)−1u(t2)
...

Ĉ(qIn − Â)−1u(tδ)


[
B

]
,

⇔ Y (t) = Φ(t)B,

⇔ Y (t) = −Φ(t)ÂXĈ> from (2.14) of Lemma 2.8 (5.6)

where X = X> ∈ Rn×n, ti ∀i ∈ {1, 2, . . . , δ} denotes the respective time periods of the

data samples and δ is the total no. of input-output data samples. By relating (5.6) to

the normal equations for least squares [110], the constrained optimization problem is

then formulated using Lemma 2.8 as

min
X

δ∑
t=1

∥∥∥Φ(t)>Y (t) + Φ(t)>Φ(t)ÂXĈ>
∥∥∥2

(5.7)

subject to:

ÂX +XÂ> ≤ 0,

X > 0.

The cost function (5.7) is quadratic in X and the constraints are affine in X. Thus, the

constrained optimization problem is convex and can be solved using cvx package in

Matlab. Finally, the B matrix of the identified system is computed as B̂ = −ÂXĈ>.

5.3.2 System identification of a tricopter enforcing NI prop-

erty

In this subsection, the linearized multi-tilt tricopter from section 5.2.1 with six inputs

(xd, yd, zd, φd, θd, ψd) and their outputs (respectively) is considered as the closed-loop sys-

tem to be identified. The input-output data is obtained by exciting each channel with

a square wave and measuring the corresponding output signal. The continuous time



CHAPTER 5. FORMATION CONTROL OF NETWORKED TRICOPTERS 114

identification algorithm described in section 5.3.1 is then used to identify a model for

each channel (channel by channel taking each channel as a SISO system). The Laguerre

filter gain for each channel was heuristically chosen as 0.55, 0.45, 0.34, 0.35, 0.4 and 0.45

respectively, and by inspecting the singular values in the identification process, the

model order was chosen as n = 2 for all channels, yielding the following SISO NI

transfer functions for the respective channels:

m1(s) = x

xd
= 2.3662× 10−5s+ 3.515× 10−5

s2 + 0.006301s+ 4.357× 10−5 , (5.8)

m2(s) = y

yd
= 2.659× 10−14s+ 2.714× 10−5

s2 + 0.006625s+ 3.682× 10−5 , (5.9)

m3(s) = z

zd
= 8.769× 10−14s+ 2.38× 10−5

s2 + 0.006368s+ 3.067× 10−5 , (5.10)

m4(s) = φ

φd
= 6.114× 10−17s+ 4.827× 10−5

s2 + 0.01231s+ 5.206× 10−5 , (5.11)

m5(s) = θ

θd
= 7.62× 10−14s+ 5.676× 10−5

s2 + 0.01357s+ 5.849× 10−5 , (5.12)

m6(s) = ψ

ψd
= 1.419× 10−14s+ 1.49× 10−4

s2 + 0.003192s+ 1.325× 10−4 . (5.13)
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Figure 5.4: Frequency response comparison: x and y channels

Equations (5.8) to (5.13) together represent the SMC-linearized dynamics of the

multi-tilt tricopter in closed-loop with six inputs and six outputs. Figures 5.4 to

5.6 show the frequency response validation of the identified models together with a

comparison of these models with the classic subspace identification algorithm [110,111].

In Figures 5.4 to 5.6, unconstrained refers to the classic subspace algorithm [111]

while constrained refers to the proposed continuous time algorithm which solves the

constrained optimization problem (5.7) and guarantees that the identified model is NI.



CHAPTER 5. FORMATION CONTROL OF NETWORKED TRICOPTERS 115

Frequency  (rad/s)

-300

-200

-100

0

M
a
g
n
it
u
d
e
 (

d
B

)

10
-5

10
0

-360

-180

0

180

360

P
h
a
s
e
 (

d
e
g
)

zdata

Unconstrained (80.18%)

Constrained (81.42%)

z channel

Frequency  (rad/s) Frequency  (rad/s)

-150

-100

-50

0

M
a
g
n
it
u
d
e
 (

d
B

)

10
-4

10
-2

10
0

-360

-270

-180

-90

0

P
h
a
s
e
 (

d
e
g
)

rolldata

Unconstrained (92.81%)

Constrained (90.88%)

roll channel

Frequency  (rad/s)

Figure 5.5: Frequency response comparison: z and roll channels
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Figure 5.6: Frequency response comparison: pitch and yaw channels

It is evident from Figures 5.4 to 5.6 that the identified models for each channel using

the proposed algorithm have phase in the range [−π, 0] which is required for a negative

imaginary system. Furthermore, it can also be observed from Figures 5.4–5.6 that for

all channels except roll and yaw, the proposed algorithm (constrained) yields better fits

with the validation data compared to the classic subspace algorithm (unconstrained).
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Figure 5.7: A formation control scheme for a group of networked SMC-linearized
tricopter agents (being SNI) involving a decoupled ‘mixed’ SNI+VSP controller K(s)
with K(0) > 0.

5.4 Formation control of multi-tilt tricopters

This section lays down the foundational results which underpin the main contributions

of this chapter that will be developed in the subsequent sections. Here, it will be

established that a network of SMC-linearized agents can be made closed-loop stable

via a distributed ‘mixed’ SNI+VSP controller depending only on the sign definiteness

of the DC-gain matrix of the controller transfer function. This result will be invoked

later to develop a leader-following formation control scheme (shown in Figure 5.7) for

networked SMC-linearized multi-tilt tricopter agents.

5.4.1 Closed-loop stability of networked NI/SNI system with

‘mixed’ SNI+VSP controller

In this subsection, it will first be established (in Lemma 5.1) that a network of SMC-

linearized multi-tilt tricopter agentsM(s) = diag{m1(s),m2(s), . . . ,mm(s)} as derived

in (5.8)–(5.13), being stable NI or SNI with M(0) > 0, connected via an undirected

graph, can be stabilized in a negative feedback loop shown in Figure 5.7 by a dis-

tributed ‘mixed’ SNI+VSP controller K(s) having K(0) > 0. The terminology ‘mixed’

SNI+VSP controller signifies that the elements of K(s) exhibit either purely SNI
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( )NI M s ( )NI K s   mG I 
yu y



Figure 5.8: Closed-loop stability of a negative feedback interconnection containing a
networked ‘mixed’ SNI+VSP system K(s) cascaded with a decentralised SNI system
M(s).

property, or purely VSP property, or a mixture of SNI and VSP properties. In other

words, some of the elements of K(s) may be SNI, some of the elements may be VSP

while the rest satisfy both SNI and VSP properties. Theorem 5.1 is the main contribu-

tion of this section which proves that a group of networked multi-tilt tricopter agents

achieves a predefined time-invariant or time-varying formation under the application

of a distributed ‘mixed’ SNI+VSP controller K(s), described before, when K(0) > 0.

Lemma 5.1 is an essential technical pre-requisite result, which will be invoked for

proving Theorem 5.1. The proof of Lemma 5.1 significantly relies on the Eigenvalue

loci theory [71,72] and has been done taking inspiration from [70] and [42].

Lemma 5.1. Consider a network of N identical, decoupled stable NI/SNI systems

M(s) ∈ RHm×m
∞ with M(0) > 0. Let the graph G associated with the network satisfy

Assumption 2.1. Then, there exists a finite range of σ ∈ (0, σ?] for which the negative

feedback interconnection of
[
(L+G)⊗ σK(s)

]
and M(s) shown in Figure 5.8 remains

asymptotically stable where K(s) ∈ RHm×m
∞ is a decoupled, ‘mixed’ SNI+VSP system

satisfying K(0) > 0.

Proof. In this proof, the notation ρi(s) is used to represent the eigenvalue loci of

the networked loop transfer function matrix [(L+G)⊗K(s)M(s)]. For convenience, let

us define the following two sets of the complex variable s along the s-plane D-contour

shown in Figure 5.9b

Ω±j = {s| s = jω, ω ∈ (−∞,∞)},

ΩR = {s| s = Rejθ, R ∈ R>0, R→ +∞, −π2 ≤ θ ≤ π

2 }.

The negative feedback interconnection of M(s) and
[
(L+G)⊗K(s)

]
, as shown in

Figure 5.8, remains asymptotically stable if none of the eigenvalue loci ρi(jω) encircles
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Figure 5.9: (a) All the eigenvalue loci ρi(jω) of (L+G)⊗K(s)M(s) remain confined
within the Green coloured region ∀ω ∈ R ∪ {∞} when M(s) is SNI with M(0) > 0
and K(s) is ‘mixed’ SNI+VSP with K(0) > 0; (b) Nyquist D-contour in the s-plane.

the critical point (− 1
σ

+ j0) for any σ ∈ (0, σ?] via Theorem 2.2. Let us now establish

via the following two parts (Parts I and II) that all the eigenvalue loci ρi(s) remain

confined within the Green coloured region portrayed in Figure 5.9a. Before starting

the proof, it is worth noting that both M(s) ∈ RHm×m
∞ and K(s) ∈ RHm×m

∞ have

decoupled structures, that is, M(s) = diag{m1(s),m2(s), · · · ,mm(s)} and K(s) =

diag{k1(s), k2(s), · · · , km(s)}. Since M(s) is stable NI and K(s) is ‘mixed’ SNI+VSP

respectively, ∠mi(jω) ∈ [−π, 0] and ∠ki(jω) ∈ (−π, π2 ) for all ω ∈ (0,∞) and for all

i ∈ {1, 2, . . . ,m}. Also, ∠mi(0) = 0 and ∠ki(0) = 0 for all i since M(0) = M(0)> > 0

and K(0) = K(0)> > 0 via supposition and due to satisfying the stable NI/SNI

properties. It is also assumed that [M(s)−M∼(s)] has full normal rank.

Part I: When s ∈ Ω±j [i.e. when ω ∈ (−∞,∞)]

Let λi
[
(L+G)⊗K(jω)M(jω)

]
= λi

[
(L+G)

]
|ki(jω)| |mi(jω)|ej(φi+ψi) at each

ω ∈ (0,∞) and for all i ∈ {1, 2, . . . , Nm}. Since M(s) is stable NI and K(s) is

‘mixed’ SNI+VSP, ψi(ω) ∈ [−π, 0] and φi(ω) ∈ (−π, π2 ) for all ω ∈ (0,∞) and hence,

∠ρi(jω) = (φi(ω) + ψi(ω)) ∈ [−2π, 0] for all ω ∈ (0,∞) and for all i. Similarly, for

all ω ∈ (−∞, 0), ∠ρi(jω) ∈ [−2π, 0]. At ω = 0, we have λi
[
(L+G)⊗K(0)M(0)

]
=

λi
[
(L+G)

]
|ki(0)||mi(0)|∠0 as K(0) > 0 andM(0) > 0. Therefore, the zero-frequency

points ρi(j0−) and ρi(j0+) of all the eigenvalue loci ρi(s) lie on the positive real axis

of the eigenvalue loci plane and they coincide as both K(s) and M(s) do not have any
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pole(s) at the origin. Thus, when s ∈ Ω±j, the angle contribution ∠ρi(jω) of each of

the eigenvalue loci belongs to the range [−2π, 0] ∀ω ∈ R. Most importantly, there is

no infinite crossover on the negative and positive real axis as neither of K(s) and M(s)

contains a pole at the origin. Furthermore, the eigenvalue loci ρi(s) may intersect the

negative real axis one or multiple times at finite distances since the intercept, given by

λi
[
(L+G)

]
|ki(jω)||mi(jω)|, remains finite at all ω ∈ R. Since the eigenvalue loci ρi(s)

intersect the negative real axis at finite distances, there always exists a finite range

(0, σ?] of the parameter σ for which the critical point
(
− 1
σ

+ j0
)
is never encircled by

any of the eigenvalue loci. The fact has been graphically demonstrated in Figure 5.9a.

It shows that all ρi(jω) stay within the Green coloured region of the eigenvalue loci

plane such that the critical point
(
− 1
σ

+ j0
)
is never encircled for any σ ∈ (0, σ?].

Part II: When s ∈ ΩR

Similar to the zero-frequency points ρi(j0−) and ρi(j0+), the infinite frequency

points ρi(+j∞) and ρi(−j∞) can be expressed as λi
[
(L+G)⊗K(∞)M(∞)

]
=

λi
[
(L+G)

]
|ki(∞)| |mi(∞)|∠

(
φi(∞) + ψi(∞)

)
for all i ∈ {1, 2, . . . , Nm}. Since

the eigenvalues of K(∞)M(∞) are always real numbers (positive/negative/zero),

λi
[
(L+G)

]
> 0 for all i and neither of K(s) and M(s) contains a pole at the origin,

the infinite frequency points ρi(+j∞) and ρi(−j∞) coincide and lie either at the origin

or on the real axis at finite distances from the origin. Combining all these arguments,

we can conclude that there always exists a finite range (0, σ?] of the gain parameter σ

for which none of the eigenvalue loci ρi(jω) encircles the critical point (− 1
σ

+ j0) for

the entire frequency range ω ∈ R ∪ {∞} [this has been demonstrated in Figure 5.9a,

which shows that all ρi(s) remain within the Green coloured region and the worst-case

critical point (− 1
σ?

+ j0) also lies outside the Green coloured region].

Parts I and II together prove that all the eigenvalue loci ρi(s) of the loop transfer

function
[
(L+G)⊗K(s)M(s)

]
remain within the Green coloured region shown in

Figure 5.9a and hence, none of the eigenvalue loci ρi(s) encircles the critical point (− 1
σ

+

j0) for any σ ∈ (0, σ?]. This proves asymptotic stability of the negative feedback closed-

loop system shown in Figure 5.8 exploiting Theorem 2.2. This completes the proof.

It is worth mentioning that the same proof holds for the cases when M(s) ∈ RHm×m
∞

belongs to the SNI class for which the full normal rank condition [i.e. M(s)−M∼(s)

has full normal rank] is inherently satisfied. �
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5.4.2 Formation control of networked multi-tilt tricopters us-

ing ‘mixed’ SNI+VSP controller

This subsection presents the key contribution of this chapter. NI and passivity theories

are used to design a simple leader-following formation-seeking scheme as depicted

in Figure 5.7 for a class of UAVs that can be modelled as (or transformed into) a

network of linearized dynamics. Before discussing the scheme, let us declare the set of

admissible reference input signals r(t) (generated by the leader or the root node) to

be followed by the agents.

Assumption 5.1. Let r0(t) =
[
r1(t) r2(t), . . . , rm(t)

]>
∈ Rm ∀t ≥ 0 be the given

tracking reference signal from the root node where ri is an L∞-bounded signal for all i,

so that r =
[
r>0 r

>
0 , . . . , r

>
0

]>
∈ RmN .

Theorem 5.1. Consider a network of N identical SMC-linearised, multi-tilt, tricopter

agents M(s) = diag{m1(s),m2(s), . . . ,mm(s)} ∈ RHm×m
∞ with M(0) > 0, as derived

in (5.8)–(5.13), connected via the topology G that satisfies Assumption 2.1. The set

of admissible formation reference inputs r(t) satisfies Assumption 5.1 and let h =[
h>1 h

>
2 , . . . ,h

>
N

]>
∈ RmN be the desired formation configuration vector. Let K(s) ∈

RHm×m
∞ be a decoupled, ‘mixed’ SNI+VSP system satisfying K(0) > 0 and there exists

a finite σ? > 0. Then, the network of tricopter agents achieves the desired formation

with respect to r(t) and h by the following distributed dynamic output feedback control

law (shown in Figure 5.7)

ui = σK(s)
N∑
j=1

aij
(
(yj − hj)− (yi − hi)

)
+ gi(r0 + hi − yi) (5.15)

∀i ∈ {1, 2, . . . , N} and for any σ ∈ (0, σ?] with gi as the pinning gain.

Proof: Let us first note that the SMC-linearised model M(s) ∈ RH6×6
∞ of the

multi-tilt tricopter considered in this paper satisfies SNI property with M(0) > 0. The

proposed formation control scheme for networked multi-tilt tricopter agents is shown

in Figure 5.7. An equivalent block diagram of Figure 5.7 has been drawn in Figure 5.10

to assist the proof of Theorem 5.1. Let us denote LG = L + G. The proof builds on

Lemma 5.1, which establishes the internal asymptotic stability of a negative feedback

interconnection containing a networked stable NI/SNI system M(s) and a decoupled
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Figure 5.10: An equivalent block diagram of the formation control scheme shown in
Figure 5.7 for SMC-linearised networked tricopter agents. Note LG = (L+G).

‘mixed’ SNI+VSP system K(s) exploiting the eigenvalue loci technique. We may recall

here that the interaction topology (G) among the agents satisfies Assumption 2.1 and

the admissible set of formation reference signals (generated by a command generator,

which can be treated as an exo-system) obeys Assumption 5.1.

In Figure 5.10, the Green dotted box represents the distributed ‘mixed’ SNI+VSP

controller LG⊗σK(s). For the purpose of the proof, the network part (i.e. LG = L+G)

has been decoupled from the plant and attached with the controller block. Now, the

negative feedback interconnection of the SMC-linearised multi-tilt tricopter system

diag{M(s), M(s), · · · ,M(s)} and the networked controller LG⊗σK(s) in Figure 5.10

is internally asymptotically stable for a finite range of the gain factor σ ∈ (0, σ?] via

Lemma 5.1 as the block diagram shown in Figure 5.8 is equivalent to Figure 5.10.

The asymptotic stability of the networked loop ensures that trajectory tracking error

will asymptotically decay to zero, that is, lim
t→∞

e(t) = 0 or lim
t→∞

r(t) + h(t)− y(t) = 0.

This part readily follows from Theorem 1 of [112]. Hence, we can conclude that the

group of SMC-linearised multi-tilt tricopter agents will achieve the desired formation

specified by r and h under the influence of the distributed ‘mixed’ SNI+VSP controller

K(s) ∈ RH6×6
∞ with K(0) > 0 following the scheme shown in Figure 5.7 [equivalently

Figure 5.10]. �

Remark 5.1. The negative feedback consensus-seeking scheme developed for SMC-

linearized tricopter agents may be easily modified to cater to single and double inte-

grator agents. In that respect, the results presented in [42, 80] where tricopters were

feedback-linarized to single/double integrator systems can be captured by the scheme

presented in this chapter. However, it has been investigated that in the case of single
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integrator agents, if a negative feedback consensus scheme is used, then the requirement

of an SNI controller can be relaxed to a stable NI (as opposed to an SNI) controller.

This reduces the conservatism of the proposed consensus scheme and hence, is worth

detailed analysis.

5.5 Case study and simulation results

This section presents the formation control design for a network of six multi-tilt tricopter

agents using the results developed in section 5.4. These six agents have identical NI

dynamics based on the SMC-linearized model identified in subsection 5.3.2. Matlab

simulation results are presented to show the effectiveness of the proposed scheme.

5.5.1 Formation control of a group of six tricopters

For this case study, consider a set of six multi-tilt tricopter UAVs escorting a leader or

target and whose goal is to track a predefined formation. Each of the six agents has

identical dynamics which can be described by the linear state-space model

ẋi = Axi +Bui and yi = Cxi ∀i ∈ {1, 2, . . . , 6},

where xi =
[
ẋi xi ẏi yi żi zi φ̇i φi θ̇i θi ψ̇i ψi

]>
, ui =

[
xdi ydi zdi φdi θdi ψdi

]>
, yi =[

xi yi zi φi θi ψi
]>

and the matrices A,B,C are given as

A =



-63 -56 0 0 0 0 0 0 0 0 0 0

78 0 0 0 0 0 0 0 0 0 0 0

0 0 -66 -47 0 0 0 0 0 0 0 0

0 0 78 0 0 0 0 0 0 0 0 0

0 0 0 0 -64 -39 0 0 0 0 0 0

0 0 0 0 78 0 0 0 0 0 0 0

0 0 0 0 0 0 -123 -67 0 0 0 0

0 0 0 0 0 0 78 0 0 0 0 0

0 0 0 0 0 0 0 0 -136 -75 0 0

0 0 0 0 0 0 0 0 78 0 0 0

0 0 0 0 0 0 0 0 0 0 -32 -85

0 0 0 0 0 0 0 0 0 0 156 0



× 10-4,
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B =



625 0 0 0 0 0

0 0 0 0 0 0

0 625 0 0 0 0

0 0 0 0 0 0

0 0 625 0 0 0

0 0 0 0 0 0

0 0 0 625 0 0

0 0 0 0 0 0

0 0 0 0 625 0

0 0 0 0 0 0

0 0 0 0 0 1250



× 10-4 and

C =



4 720 0 0 0 0 0 0 0 0 0 0

0 0 0 556 0 0 0 0 0 0 0 0

0 0 0 0 0 487 0 0 0 0 0 0

0 0 0 0 0 0 0 989 0 0 0 0

0 0 0 0 0 0 0 0 0 1162 0 0

0 0 0 0 0 0 0 0 0 0 0 763


× 10-4.

The above model represents the SMC-linearized multi-tilt tricopter system M(s) =

diag{mj(s)} ∈ RH6×6
∞ ∀j ∈ {1, 2, . . . , 6} using (5.8) to (5.13), with m inputs and

outputs, which was identified in subsection 5.3.2, and satisfies the NI property. It can

also be easily verified that (A,B,C) is stabilizable and detectable. The undirected

interaction topology among the six vehicles is given in Figure 5.11, where the leader

agent or target (labelled 0) provides the formation reference signal.

It follows from Figure 5.11 that the Laplacian of the network is

L =



2 -1 -1 0 0 0

-1 4 -1 -1 -1 0

-1 -1 4 0 -1 -1

0 -1 0 2 -1 0

0 -1 -1 -1 4 -1

0 0 -1 0 -1 2


, (5.16)
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10

32

54 6

Figure 5.11: Undirected network interaction topology.

and since only agent 1 is connected to the leader, an edge (0,1) exists between them

with a pinning gain g1 = 1 while gi = 0 for i ∈ {2, . . . , 6}.

A high-gain SNI controller is chosen as k1(s) = 107

(s+ρ1) to stabilize the x position, and

a set of high-gain VSP controllers of the form kj(s) = 8×107(s+2)
(s+ρj) ∀j ∈ {2, 3, . . . , 6} are

chosen for the rest of the channels with ρ =
[
ρ1, ρ2, . . . , ρ6

]
=
[
15, 100, 80, 90, 95, 49

]
.

These high gains were necessary to satisfy the control requirements. Consequently, the

‘mixed’ SNI+VSP controller is given as K(s) = diag{kj} ∀j ∈ {1, 2, . . . , 6} with σ = 1,

and it is trivial to show thatK(0) > 0 as required. As depicted in Figure 5.10, the group

formation reference which achieves the desired formation is given as (r+h) ∈ R36 where

r =
[
r>0 r

>
0 , . . . , r

>
0

]>
∈ R36 is the formation reference and h =

[
h>1 h

>
2 , . . . ,h

>
6

]>
∈

R36 is the formation configuration. The reference for the leader or root node is selected

as r0 =
[
4 3 2 0 0 0

]>
∀t < 10s and r0 =

[
−1 5 3.2 0 0 0

]>
∀t ≥ 10s.

The formation configuration for the followers was chosen as

hi =



γ cos
(

(i+1)π
3

)
γ sin

(
(i+1)π

3

)
0

γ sin
(

(i+1)π
3

)
γ cos

(
(i+1)π

3

)
0


∀t < 10s
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and

hi =



βi cos
(

(2i+1)π
6

)
βi sin

(
(2i+1)π

6

)
0

0

0

0


∀t ≥ 10s, ∀i ∈ {1, 2, . . . , 6},

where γ = 2.0 m is the radius of the formation, βi = γ ∀i ∈ {1, 3, 5} and βi =

γ/2 ∀i ∈ {2, 4, 6}. Initially with t < 10s, the follower agents track a diamond formation

bordering the leader agent, while for t ≥ 10s, the follower agents track a triangle

formation with respect to the formation configuration hi, taking into account a change

in the leader reference r at t = 10s. Figure 5.12 shows that the six multi-tilt tricopter

agents achieve consensus and leader-following formation tracking as t→∞. Note that

if h = 0, the entire scheme in Figure 5.10 reduces to a consensus problem. It therefore

follows that the SNI+VSP controller inherently achieves consensus tracking.

Figure 5.12: Group formation of six tricopter agents with SNI+VSP controllers with

formation configuration switched from diamond to triangle after 10 seconds.
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Figure 5.13: x position responses.

When the leader reference and demanded group formation changes at t = 10s,

the SNI+VSP control scheme maintains stability of the entire network and ensures

that the six multi-tilt tricopter agents track the newly demanded triangle formation.

Figures 5.13 to 5.15 show the responses of the positions xi, yi, zi ∀i ∈ {1, 2, . . . , 6} to

the demanded references.
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Figure 5.14: y position responses.
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Figure 5.15: altitude z responses.

It is clear that for the six follower agents, the actual positions track the demanded

position with respect to the leader within 5 seconds both before and after the time

period t ≥ 0 which corresponds to a change in the demanded group formation. Similarly,

Figures 5.16 to 5.18 show that the attitudes of the six multi-tilt tricopter agents track

the target attitude.
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Figure 5.16: roll attitude responses.
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Figure 5.17: pitch attitude responses.

Considering Figures 5.16 to 5.18, it is also worth noting that for t < 10s, the

motion of the multi-tilt tricopter agents occurs with a change in attitude, implying

simultaneous position and attitude control, which is an advantage of the tricopter

under consideration due to its airframe configuration.
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Figure 5.18: yaw attitude responses.

For t > 10s, the case where the tricopter agents translate to track the leader or target

without a change in attitude is evident, indicating the ability of the tricopter under

consideration to achieve simultaneous independent attitude and trajectory control,

extending the limits of the classic tricopter [75] and other commonly used multicopters

such as the quadcopter.
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5.6 Summary

In this chapter, the NI theory has been exploited to solve a formation tracking problem

for a network of linearized multi-tilt tricopter agents using a distributed SNI+VSP

control protocol. A continuous-time system identification method has also been de-

veloped to obtain the model of a physical system in closed-loop, while guaranteeing

that the model is negative imaginary. This algorithm has been applied in the iden-

tification of the closed-loop dynamics of the multi-tilt tricopter UAV. Sliding mode

control laws are then developed to linearize the highly-coupled and nonlinear model.

As SMC is a nonlinear technique, it preserves robustness as it does not invert all

nonlinear dynamics, unlike the classic Jacobi linearization (using the pseudo inverse of

the Jacobian matrix) [113] for example. Using the developed identification method, the

SMC-linearized inner-loop is then identified as a negative imaginary system with six

inputs and outputs corresponding to the three cartesian positions and three attitudes.

A distributed formation tracking control protocol was then developed for a group of

multi-tilt tricopter agents connected via an undirected graph, which guarantees that

the target position and attitude of each UAV can be achieved independently. The

method relies on the eigenvalue loci technique instead of the Lyapunov stability ap-

proach commonly used in the cooperative control literature. The advantage of this

method is that it reduces the complexity of the results and makes the controller selec-

tion process more manageable. This is because the proposed scheme depends only on

the DC gain of the SNI controller. Furthermore, by exploring the eigenvalue loci of

NI/SNI systems instead of using the traditional NI/SNI stability result, the proposed

results are applicable to both positive and negative feedback interconnections thereby

reducing their conservatism as compared to conventional NI/SNI results which do not

apply to negative feedback interconnections. The simulation results have shown the

efficiency of the proposed methods with the design of a formation control scheme for

a group of six NI tricopter agents. In the future, obstacle avoidance and collision will

be taken into consideration.



Chapter 6

Concluding Remarks

In this chapter the main contributions of this thesis are summarised and possible

directions for future research are outlined. The aim of this thesis is to develop advanced

control techniques for tricopter UAVs going from platform design and development

to operation and control. This aim has been achieved with the scratch build of two

tricopter platforms together with design of varied control techniques some of which

have been validated with experiments.

6.1 Contributions

The main contributions of this thesis to the state-of-the-art are summarized as follows:

• Design and construction of servo tilt-mechanism which extends the tilt angle

range of the rotors in a multi-tilt tricopter.

• Development of control allocation scheme which allocates the actuator signals

via a non-square mixer matrix due to higher number of forces and drag torques

acting on the single-tilt tricopter than actuators.

• Demonstration of the capability of the multi-tilt airframe to translate in the

lateral and longitudinal directions without changing its attitude by feedback

linearization of the nonlinear translational equations to obtain control forces in

x and y axes which are directly applied to the UAV.

• Development of a direct (manual) actuation method implemented via the control

allocation of the PX4 setup, to control the lateral and longitudinal motions of

130
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the multi-tilt tricopter while overcoming the limitation of regular Radio trans-

mitters in supporting more than 4 DOF control. The developed method allows

a regular transmitter to be used in controlling both the attitude and positions

independently.

• Development of a closed-loop system identification algorithm that guarantees

that the resultant model is NI. The algorithm presented exploits the classic

subspace method but in continuous time (rather than discrete) by use of the

Laguerre filter in the identification process.

• Development of closed-loop stability result for a network of NI/SNI systems

which are controlled by ‘mixed’ Strictly Negative Imaginary (SNI) plus Very

Strictly Passive (VSP) controllers in a negative feedback interconnection.

• Design of an output feedback distributed SNI+VSP control law (making use of the

closed-loop stability result for networked NI/SNI systems) for achieving robust

cooperative control combining both leader-following consensus and formation

control. Rather than the Lyapunov-based approach, the characteristics of the

eigenvalue loci of networked NI and SNI systems is used to prove the convergence

of the states.

The other technical contributions of this thesis are summarized as follows:

• Development of a single-tilt tricopter using low-cost materials and open-source

software (PX4) with optical flow included for GPS-denied environments. The

dynamic model is derived, an experiment to obtain actuator constants from ac-

quired data is developed, and a CAD model is drafted from measured parameters

and used for estimating moments of inertia.

• Design of cascaded-PID control to stabilize the single-tilt tricopter UAV, tested

first in simulation and later validated with trial experiments on the developed

hardware. This was done to show the feasibility and applicability of the methods.

• Development of hardware for a multi-tilt tricopter vehicle with three indepen-

dently tilting rotors using open source tools, to yield a fully actuated vehicle.

The tilt action of the rotors was made possible by use of a custom-made tilt

mechanism for the airframe.
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• Development of trifilar experimental identification platform together with an ex-

periment to obtain model parameters of the multi-tilt tricopter from experimental

data.

• Design, simulation and analysis of a quaternion feedback (QFB) controller which

uses a model with attitude represented in unit quaternions avoiding the gimbal

lock problem of Euler angles.

• Design simulation and analysis of linear Model Predictive Controller for the

multi-tilt tricopter system using a Linear Parameter Varying (LPV) model of the

tricopter which captures the nonlinearities of the tricopter, rather than classic

linearisation methods based on operating points which leads to less precision

when the system moves further away from the operating point.

• Design of sliding mode controllers to linearize the inner-loop of the nonlinear

multi-tilt tricopter UAV. This yields an SMC-linearized closed-loop system with

six inputs and outputs corresponding to the multi-tilt tricopter’s cartesian posi-

tions and attitude which is later characterized as a negative imaginary system,

offering a different approach from feedback linearization which is common in

literature.

• Identification of NI models for all channels of the SMC-linearized multi-tilt

tricopter using the developed closed-loop identification algorithm, and frequency

responses of the identified models are used to verify that the models exhibit the

NI property.

6.2 Directions for Future Research

Although the set aims of this thesis have been achievied, some possible improvements

and future research directions for problems tackled in this thesis are outlined below:

• Although optical flow was setup and used for indoor positioning of the single-tilt

tricopter as a more affordable alternative to Motion Capture systems (such as

MOCAP), the state estimation was not precise and had several errors. It is

therefore necessary to develop an alternative indoor navigation system as this
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is a key problem especially for researchers who want to perform indoor UAV

experiments safely on manageable budgets.

• Even though the system identification method developed to characterize NI

system yields satisfactory performance, the precision of the identified model

varies with the selection of the Laguerre filter parameter p. Currently, this

parameter is not chosen via a systematic approach but through trial and error

making the process a bit tedious. It is therefore necessary to extend this method

to provide a more established method for choosing the parameter p.

• In the NI-based formation control scheme presented, obstacle avoidance and

collision have not been considered and these are important considerations for

such systems. It is therefore an open problem which offers opportunities for

future research.
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Appendix A

Platform Description

This appendix provides a generic overview of the hardware and software tools used

in the development of the tricopter UAV platforms (single-tilt/classic tricopter and

multi-tilt tricopter) which are considered in this thesis. The material here is therefore

not specific, and applies to both tricopter platforms. Hence, the reader should note that

the term ‘tricopter’ as used within this appendix applies to both the single-tilt/classic

and multi-tilt tricopters.

A.1 Hardware Design

The tricopter consists of a carbon fibre frame to which several hardware components

are attached. It makes use of an onboard computer which is the central point of the

UAV, responsible for stabilizing the system and is usually called a flight controller.

For this research, the Pixhawk autopilot is used as the flight controller. A high-level

wiring diagram of the entire setup for the tricopter is given in Figure A.1. In

Figure A.1: Block diagram of the setup.

general, Brushless Direct Curent (BLDC) motors are used together with propellers for

147
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propulsion. A Lithium Polymer (LiPo) battery is used as the power source, and this

is connected via a power module to rectify the supplied battery power to 5 volts for

the Pixhawk, while also supplying the battery’s voltage to a power distribution board

which distributes power to all the Electronic Speed Controllers (ESCs) and hence the

motors. The servos are powered directly from the servo output rail of the Pixhawk.

The Pixhawk is designed to support power redundancy so it is powered from its main

supply using the power module and also via the servo rail from a Power Distribution

Board (PDB) as depicted in Figure A.1. The ESCs are used to internally regulate

the speed of the motors as is typically done in multicopter systems. The full list of

components and their technical specification is given in Appendices B.1 and B.2, for

the single-tilt and multi-tilt tricopters respectively.

A.1.1 Pixhawk Flight Controller

The Pixhawk autopilot was designed by the open-hardware project [98] carried out by a

team from the Computer Vision and Geometry lab of ETH Zurich. Several versions of

the Pixhawk have been developed over the years, but the first generation of the autopilot

(Pixhawk 1) is the one used in this work. It runs a 168MHz 32bit STM32F427 Cortex-

M4F processor with 256KB RAM and 2MB Flash. It has a total of 14 PWM/servo

outputs, and several ports for connecting additional peripherals including UART, I2C,

CAN etc). For sensing, the Pixhawk includes on-board gyroscopes, accelerometers,

magnetometers and barometers, with support for a wide range of peripherals. The

reader may refer to [19] for a full hardware specification of the Pixhawk.

Figure A.2: Pixhawk 1 Flight controller.

The Pixhawk 1 was chosen primarily because it supports all the necessary features

for guidance, navigation and control of several systems including UAVs and yet is

relatively easy to setup and customize. Also, on commencement of this project, only
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the Pixhawk 1 had some support from Mathworks through a Pilot Support Package

(PSP). At the time of writing this report, Mathworks has official support for other

Pixhawk-based autopilots such as Pixhawk Cube, Pixhawk 4 and Pixracer. It should

be noted that the Pixhawk project has a number of open designs/schematics and all

boards based on a particular design should run the same firmware. Each design is

named using the designation: FMUvX. For example, FMUv1, FMUv2 etc., where FMU

stands for Flight Manangement Unit. Higher FMU numbers indicate a more recent

board but not necessarily increased capabilities or features. The choice of autopilot

will however depend on the specific requirements of the project to be carried out and

the physical constraints/form factor rather than FMU version. The main differences

as noted in [19] are seen in the speed and sizes of the memories on each FMU version.

For example, Pixhawk Cube uses FMUv3 with 2MB Flash memory while the Pixhawk

1 uses FMUv2 which supports 1MB Flash memory but all other features are identical.

Furthermore, the Pixracer supports FMUv4 with increased RAM, faster CPU and

more serial ports compared to FMU versions 2 and 3. Besides these, most of its other

features are identical to those of FMU versions 2 and 3. Another important point to

note is that manufacturers have recently updated the Pixhawk 1 hardware to support

2MB Flash and as a result FMUv2 can be used on these newer Pixhawk1 boards such

as the one used in this thesis.

A.1.2 Additional Sensors

To obtain estimates of the x and y states when indoors, an optical flow sensor is used.

The PX4Flow camera is an optical flow sensor with a resolution of 752 × 480 pixels

and calculates the optical flow at 250Hz [114,115].

Figure A.3: PX4Flow optical flow sensor.

A top and bottom pictorial view is shown in Figure A.3. It is an ARM Cortex

M4 based sensor system which processes optical flow at 250 frames per second and
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is designed to work indoors as well as outdoors in low light conditions, making use

of a mounted lens and ultrasonic distance sensor. Although the ultrasonic distance

sensor on-board the PX4Flow is mostly sufficient, it is recommended by the PX4 com-

munity to use an external range-finder, such that the dedicated range-finder computes

the height independently allowing all the resources of the PX4Flow to be dedicated

to obtaining optical flow measurements only, thereby yielding improved precision in

the state estimates. For this purpose, the Lidar-Lite v3 range-finder [116] shown in

Figure A.4 was used.

Figure A.4: Lidar-Lite V3 range-finder.

It is a high performance optical distance measurement sensor for unmanned vehicle

applications with a range of 40 m (131 ft) weighing about 0.022 Kg only. The Lidar-Lite

can be connected to the autopilot using either I2C or PWM which makes it flexible.

For more details and full list of technical specification, the reader should see [116].

A.1.3 Propulsion and Power System

The propulsion system is a standard motor-propeller setup typically used in multicopter

systems. A DC motor with a fixed-pitch propeller is mounted on the tricopter frame

and powered by an ESC, which regulates the angular speed of the motors based on

setpoints from the flight controller outputs. For clean wiring and ease of maintenance,

the Matek XT60 PDB was utilized. The XT60 PDB can distribute power from a

LiPo pack to up to 6 ESCs, while providing regulated 5V and 12V DC for connecting

receivers, cameras and other components (see [117] for full specifications). The PDB

utilizes an inbuilt XT60 connector for ease of connecting to a LiPo battery pack. The

LiPo battery specifications for each tricopter are given in Appendices B.1 and B.2, for

the single-tilt/classic and multi-tilt tricopter UAVs respectively.
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(a) Matek PDB (b) LiPo pack

Figure A.5: Main Power supply components

A.1.4 Heading control concept

Unlike a traditional multicopter which has rotors in pairs (even number of rotors) such

that inherent aerodynamic reaction torques are cancelled by using counter-rotating

propellers, the tricopter has an odd number of rotors. Consequently, there is an

imbalance due to the reaction (drag) torques from the spinning rotors. Hence, to

control the heading (yaw angle), a servo is attached to the rotors (only the tail rotor for

the single-tilt case) and used to create a resultant balancing torque which compensates

for the reaction torques from the spinning rotors. This concept is depicted in Figure

A.6.

𝝎𝟏

CCW

reaction torque 

CCW 

reaction torque

0 3

balancing torque 

sin( )

due to tilt rotor.
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𝑭 𝐬𝐢𝐧 𝛂    

(b) tilt action

Figure A.6: Heading control; CW and CCW mean Clockwise and Counter clockwise
respectively.

As observed from Figure A.6a, all rotors spin clockwise so that counter-clockwise

reaction torques are produced. If left at this state, the tricopter will rotate uncon-

trollably counter-clockwise around the vertical axis (yaw motion or heading will be
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unstable). To balance the heading and achieve stable hover, the tail servo will tilt

counter-clockwise as depicted in Figure A.6b so that rotor 3 is tilted counter-clockwise

thereby producing a balancing torque to compensate for the reaction torques from

each rotor.

The final assembly for both tricopters is given in Figures A.7 and A.8 below.

Figure A.7: Single-tilt tricopter Assembly

Figure A.8: Multi-tilt tricopter Assembly
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A.2 Software Description

The Pixhawk controller supports two commonly used flight control software; PX4 and

Ardupilot Mega (APM) [118] flight control software. In this work, the PX4 flight

control software is used as it was developed mainly for Pixhawk products.

A.2.1 PX4 Architecture

The current version of the PX4 flight control software consists of two main layers:

the flight stack and the middleware [115]. The flight stack is a collection of guidance,

navigation and control algorithms for autonomous drones, with controllers for fixed

wing, multirotor and Vertical Take-off and Landing (VTOL) airframes. It also contains

estimators for attitude and position. The middleware is a general robotics layer that

supports any type of autonomous robot, providing internal and external communica-

tions and hardware integration. The PX4 flight control software was chosen because

it can be customized for multiple airframes and control allocations.

A.2.2 QGroundControl Interface

The PX4 vehicle setup and flight control tuning was done using QGroundControl

(QGC) station software [99, 119] (also see http://docs.qgroundcontrol.com/en).

QGC contains parameters which control all the settings that can be customized for

any autonomous robot application, such as selection of PID gains, ESC and battery

calibration, autonomous path planning and sensor calibrations. A screenshot of QGC

showing the interface and some customizable parameters is given in Figure A.9.

http://docs.qgroundcontrol.com/en
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Figure A.9: QGroundControl Ground station application.

A.3 Summary

This brief chapter has provided an overview of the hardware and software for the

tricopters considered in this thesis. Firstly, details of the hardware design have been

provided, together with relevant information on the key hardware components and

concepts used to realise the platforms. Then, the software used for the flight controller

and ground station has also been discussed.
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Tricopter System Specification

B.1 Single-tilt tricopter

B.1.1 Identification

Feature Description
Drone name Tri-ST-Exp
UOM ID UAS-0040-FSE-SOE-EEE
Primary purpose To test and validate first principles model and cus-

tom control allocation with control design. Also
used to test flights in GPS-denied environments
using optical flow.

B.1.2 Performance Summary

Feature Description
Speeds Minimum speed 0 m/s

Cruise speed 3 m/s (limit set in flight controller)
Top speed 10 m/s (limit set in flight controller)

Weights Empty weight1 0.56 kg (exc. battery / GPS)
Take-off weight 0.74 kg (inc. battery)

Limits Maximum Altitude2 40 m (limit set in flight controller)
Return to Land Altitude 30 m (limit set in flight controller)
Flying Area radius 50 m
Projected endurance 10− 15 minutes

155
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B.1.3 System Hardware Description

B.1.3.1 Airframe

Feature Description
Original manufacturer3 RC-Explorer
Model/Configuration Tricopter-Y geometry, upward facing
Material Carbon fibre

B.1.3.2 Propulsion System

Feature Description
Motors Motor configuration three motors upward facing, with the

tail one mounted on a servo.
No. of motors 3
Manufacturer / Type Emax / 2207-eco Brushless DC

Servos
Servo configuration One servo for tail motor

Manufacturer / Type KST / DS215MG digital

Propeller
No. of propellers 3(3× CW)

Material Carbon fibre
Size 6× 4.5 inches

Battery Chemistry Lithium-Polymer (LiPo)
Cell rating 3S (11.1 Volts)
Capacity 1800 mAh
No. of batteries4 1

Speed
Con-
troller

Supplier / Type Aikon / AK32

Input voltage 3-6S LiPo.
Continuous current5 35 Amps

1The Empty weight is the weight of the drone including motors, speed controllers, propeller,
telemetry radio, receiver and associated connections. It is also the same as the Indoor operating
weight which is when the drone is operated on a Gimbal tethered to an external power supply or
battery and without the GPS module mounted.

2Maximum Altitude here is also the maximum height set in the flight controller for geofencing.
If for any reason, the drone breaches this height, RETURN mode is activated.

3The original airframe has undergone some customizations to achieve a novel airfame concept
4This is the number of batteries used for flying.
5The maximum amount of continuous current which the ESC can safely handle.
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B.1.3.3 Control System

Feature Description
Radio
Con-
troller

Manufacturer FrSky (Transmitter and Receiver)

Model Taranis X9D-Plus Transmitter and X8R re-
ceiver (Mode D16)

No. of channels Up to 16
Operating frequency 2.4 GHz

Telemetry Manufacturer 3DR
Firmware SiK v1.9
Operating frequency 433 MHz

B.1.3.4 Avionics System

Feature Description
Flight Controller Manufacturer UnmannedTech

Model Pixhawk 1 (with 2 MB flash)
Firmware6 PX4 v1.10.1
Operating modes Manual, Stabilize, Altitude Hold, Position

GPS/Compass Manufacturer UnmannedTech
Model Ublox NEO-M8N
Firmware Ublox

Optical flow Manufacturer 3D-Robotics
Model PX4Flow v1.3
Firmware / Estimator Px4 / EKF

Range finder Manufacturer Garmin
Model Lidar-Lite v3
Range 40m (131ft.)

6A stable release of the original PX4 firmware is customized.
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B.2 Multi-tilt tricopter

B.2.1 Identification

Feature Description
Drone name Tri-MT-Talon
UOM ID UAS-0039-FSE-SOE-EEE
Primary purpose To validate novel airframe concept with advanced control

B.2.2 Performance Summary

Feature Description
Speeds Minimum speed 0 m/s

Cruise speed 3 m/s (limit set in flight controller)
Top speed 10 m/s (limit set in flight controller)

Weights Empty weight 1.0 kg (exc. battery / GPS)
Take-off weight 1.23 kg (inc. battery)

Limits Maximum Altitude 40 m (limit set in flight controller)
Return to Land Altitude 30 m (limit set in flight controller)
Flying Area radius 50 m
Projected endurance 10− 15 minutes

B.2.3 System Hardware Description

B.2.3.1 Airframe

Feature Description
Original manufacturer7 Turnigy
Model/Configuration Tricopter-Y geometry, upward facing
Material Carbon fibre

7The original airframe has undergone some customizations to achieve a novel airfame concept
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B.2.3.2 Propulsion System

Feature Description
Motors Motor configuration upward facing, mounted on servos

in range
(
−π
2 ,

π
2

)
No. of motors / servos 3
Manufacturer / Type Turnigy / D2836-11 Brushless

Outrunner
Power per motor 220 Watts

Propeller No. of propellers 3(3× CW)
Material Carbon fibre
Size 10× 4.5 inches

Battery Chemistry Lithium-Polymer (LiPo)
Cell rating 3S (11.1 Volts)
Capacity 1800 mAh
No. of batteries 1

Speed Controller Supplier Chaos
Input voltage 3-6S LiPo.
Continuous current 30 Amps

B.2.3.3 Control System

Feature Description
Radio Controller Manufacturer FrSky (Transmitter and Receiver)

Model Taranis X9D-Plus Transmitter
and X8R receiver (Mode D16)

No. of channels Up to 16
Operating frequency 2.4 GHz

Telemetry Manufacturer 3DR
Firmware SiK v1.9
Operating frequency 433 MHz
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B.2.3.4 Avionics System

Feature Description
Flight Controller Manufacturer UnmannedTech

Model Pixhawk 1 (with 2 MB flash)
Firmware8 PX4 v1.10.1
Operating modes Manual, Stabilize, Altitude Hold, Position

GPS/Compass Manufacturer UnmannedTech
Model Ublox NEO-M8N
Firmware Ublox

8A stable release of the original PX4 firmware is customized.
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MPC Formulation

C.1 Forward Euler method of discretization

Given an initial time condition tk and initial state xk, the forward Euler method is

given by the difference equation [91],

yk+1 = yk + ẏk∆t.

where ∆t is the sample time. Thus,

ẏk = yk+1 − yk
∆t . (C.1)

Consider the following linear time invariant system,

ẋ(t) = Ax(t) +Bu(t),

y = Cx(t).
(C.2)

The derivative ẋ may be represented using (C.1) as

xk+1 − xk
∆t = Axk +Buk,

ẋk+1 = ẋk +Axk∆t+Buk∆t,

ẋk+1 =
(
I +A∆t

)
xk +B∆tuk,

ẋk+1 = Adxk +Bd

161
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where Ad = I + A∆t, Bd = B∆t and the matrix C of (C.2) is unchanged. By

applying these results to (4.15),

Ad(φ̇, θ̇) =



1 ∆t 0 0 0 0

0 1 0 0 0 Jy−Jz
Jx

θ̇∆t

0 0 1 ∆t 0 0

0 0 0 1 0 Jz−Jx
Jy

φ̇∆t

0 0 0 0 1 ∆t

0 Jx−Jy
2Jz θ̇∆t 0 Jx−Jy

2Jz φ̇∆t 0 1


, and Bd =



0 0 0
∆t
Jx

0 0

0 0 0

0 ∆t
Jy

0

0 0 0

0 0 ∆t
Jz


.

C.2 Cost function simplification

C.2.1 Part I

Given the cost function as

J = min
∆uk

1
2

N−1∑
i=0

(
e>k+iV ek+i + ∆u>k+iW∆uk+i

)
+ 1

2e>k+NZek+N , (4.16 revisited)

= min
∆uk

N−1∑
i=0

(
LHS

)
+ RHS

Let ek = rk − C̃x̃k, then expanding the LHS yields:

LHS = 1
2
(
e>k+iV ek+i + ∆u>k+iW∆uk+i

)
,

= 1
2

[(
r>k+i − x̃>k+1C̃

>)
V
(
rk+i − C̃x̃k+1

)
+ ∆u>k+iW∆uk+i

]
,

= 1
2r
>
k+iV rk+i −

1
2r
>
k+iV C̃x̃k+1 −

1
2 x̃
>
k+1C̃

>
V rk+i + 1

2 x̃
>
k+1C̃

>
V C̃x̃k+1

+1
2∆u>k+iW∆uk+i,

= 1
2r
>
k+iV rk+i −

1
2r
>
k+iV C̃x̃k+1 −

1
2
(
r>k+iV C̃x̃k+1

)>
+ 1

2 x̃
>
k+1C̃

>
V C̃x̃k+1

+1
2∆u>k+iW∆uk+i,

The term r>k+iV C̃x̃k+1 ∈ R1×1 so that,

LHS = 1
2r
>
k+iV rk+i − r>k+iV C̃x̃k+1 + 1

2 x̃
>
k+1C̃

>
V C̃x̃k+1 + 1

2∆u>k+iW∆uk+i. (C.3)

Similarly,

RHS = 1
2e>k+NZek+N ,
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= 1
2

[(
rk+N − C̃x̃k+N

)>
Z
(
rk+N − C̃x̃k+N

)]
,

= 1
2

[(
r>k+N − x̃>k+NC̃

>)
Z
(
rk+N − C̃x̃k+N

)]
,

= 1
2r
>
k+NZrk+N −

1
2r
>
k+NZC̃x̃k+N −

1
2 x̃
>
k+NC̃

>
Zrk+N + 1

2 x̃
>
k+NC̃

>
ZC̃x̃k+N ,

= 1
2r
>
k+NZrk+N −

1
2r
>
k+NZC̃x̃k+N −

1
2
(
r>k+NZC̃x̃k+N

)>
+ 1

2 x̃
>
k+NC̃

>
ZC̃x̃k+N ,

= 1
2r
>
k+NZrk+N − r>k+NZC̃x̃k+N + 1

2 x̃
>
k+NC̃

>
ZC̃x̃k+N , (C.4)

since the term r>k+NZC̃x̃k+N ∈ R1×1 which is a scalar quantity. Combining the LHS

(C.3) and RHS (C.4) the cost function (4.16) becomes,

J = min
∆uk

N−1∑
i=0

[
1
2r
>
k+iV rk+i − r>k+iV C̃x̃k+i + 1

2 x̃
>
k+iC̃

>
V C̃x̃k+i + 1

2∆u>k+iW∆uk+i

]

+1
2r
>
k+NZrk+N −

1
2r>k+NZC̃x̃k+N + 1

2 x̃
>
k+NC̃

>
ZC̃x̃k+N ,

= min
∆uk

N−1∑
i=1

[
−r>k+iV C̃x̃k+i + 1

2 x̃
>
k+iC̃

>
V C̃x̃k+i

]
+

N−1∑
i=0

[
1
2∆u>k+iW∆uk+i

]

−1
2r>k+NZC̃x̃k+N + 1

2 x̃
>
k+NC̃

>
ZC̃x̃k+N + c1.

(4.20 revisited)

where

c1 = 1
2

(
r>k+iV rk+i + r>k+NZrk+N

)
− r>k V C̃x̃k + 1

2 x̃
>
k C̃

>
V C̃x̃k. (C.5)

The terms −r>k V C̃x̃k and 1
2 x̃
>
k C̃

>
V C̃x̃k in (C.5) are from the LHS when i = 0

implying the current/present state which is known and not predicted, and is hence, a

constant offset.

C.2.2 Part II - Future State Prediction Formula

Given the augmented system,

x̃k+1 = Ãk+1x̃k + B̃∆uk,

ỹk = C̃x̃k,
(4.19 revisited)

with prediction horizon N = 4. If the curent state is x̃k=0, then the MPC predicts 4

states in the future from the current state as follows:



APPENDIX C. MPC FORMULATION 164

x̃1 = Ã1x̃0 + B̃∆u0,

x̃2 = Ã2x̃1 + B̃∆u1,

= Ã2
[
Ã1x̃0 + B̃∆u0

]
+ B̃∆u1,

= Ã2Ã1x̃0 + Ã2B̃∆u0 + B̃∆u1.

...

x̃4 = Ã4x̃3 + B̃∆u3,

= Ã4
[
Ã3Ã2Ã1x̃0 + Ã3Ã2B̃∆u0 + Ã3B̃∆u1 + B̃∆u2

]
+ B̃∆u3,

= Ã4Ã3Ã2Ã1x̃0 + Ã4Ã3Ã2B̃∆u0 + Ã4Ã3B̃∆u1 + Ã4B̃∆u2 + B̃∆u3.

More compactly,

x̃1

x̃2

x̃3

x̃4


=



Ã1

Ã2Ã1

Ã3Ã2Ã1

Ã4Ã3Ã2Ã1


x̃k=0 +



B̃ . . . . . . 0

Ã2B̃ B̃
...

Ã3Ã2B̃ Ã3B̃ B̃

Ã4Ã3Ã2B̃ Ã4Ã3B̃ Ã4B̃ B̃





∆u0

∆u1

∆u2

∆u3


,

⇔ x̃ =Ax̃k=0 +B∆u. (4.22 revisited)

C.2.3 Part III

Recall the cost function which includes all the future states for a given horizon period

as

J = min
∆uk

1
2 x̃
>V x̃− r>Tx̃+ 1

2∆u>W∆u + c1. (4.21 revisited)

Then, by substituting for x̃ as in (4.22), we obtain

J = 1
2
(
B∆u +Ax̃k

)>
V
(
B∆u +Ax̃k

)
− r>T

(
B∆u +Ax̃k

)
+ 1

2∆u>W∆u + c1,

= 1
2∆u>B

>
VB∆u + 1

2∆u>B
>
VAx̃k + 1

2 x̃
>
kA
>
VB∆u + 1

2 x̃
>
kA
>
VAx̃k

−r>TB∆u− r>TAx̃k + 1
2∆u>W∆u + c1,

= 1
2∆u>B

>
VB∆u + 1

2
(
x̃>kA

>
VB∆u

)>
+ 1

2 x̃
>
kA
>
VB∆u + 1

2 x̃
>
kA
>
VAx̃k

−r>TB∆u− r>TAx̃k + 1
2∆u>W∆u + c1,
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Since the term x̃>kA
>
VB∆u ∈ R1×1 which is scalar,

J = 1
2∆u>B

>
VB∆u + x̃>kA

>
VB∆u− r>TB∆u + 1

2∆u>W∆u + c1 + c2, (C.6)

where

c2 = 1
2 x̃
>
kA
>
VAx̃k − r>TAx̃k.

Rearranging (C.6) and collecting like terms,

J = 1
2∆u>

[
B
>
VB+W

]
∆u +

[
x̃>k r>

] A
>
VB

−TB

∆u + c1 + c2. (4.23 revisited)
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Row Reduction using Gaussian

Elimination

Given the matrix M in (4.7) as follows:

M =



−
√

3
2 kt

√
3

2 kt 0 0 0 0
1
2kt

1
2kt −kt 0 0 0

0 0 0 −kt −kt −kt
−
√

3
2 kd

√
3

2 kd 0 −
√

3
2 ktl0

√
3

2 ktl0 0
1
2kd

1
2kd −kd 1

2ktl0
1
2ktl0 −ktl0

ktl0 ktl0 ktl0 −kd −kd −kd


.

It can be reduced to its row echelon form (upper triangular matrix) denoted by MREC

by performing row operations. Note that at each step, the row operations to be

performed next are stated on the right-hand side of the matrix, and the resultant

matrix is given afterwards.

−
√

3
2 kt

√
3

2 kt 0 0 0 0
1
2kt

1
2kt −kt 0 0 0 R2+ 1√

3
R1

0 0 0 −kt −kt −kt
−
√

3
2 kd

√
3

2 kd 0 −
√

3
2 ktl0

√
3

2 ktl0 0 R4− kd
kt
R1

1
2kd

1
2kd −kd 1

2ktl0
1
2ktl0 −ktl0 R5+ kd√

3kt
R1

ktl0 ktl0 ktl0 −kd −kd −kd R6+ 2l0√
3
R1


,
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=⇒



−
√

3
2 kt

√
3

2 kt 0 0 0 0

0 kt −kt 0 0 0

0 0 0 −kt −kt −kt
0 0 0 −

√
3

2 ktl0
√

3
2 ktl0 0

0 kd −kd 1
2ktl0

1
2ktl0 −ktl0 R5− kd

kt
R2

0 2ktl0 ktl0 −kd −kd −kd R6−2l0R2


,

=⇒



−
√

3
2 kt

√
3

2 kt 0 0 0 0

0 kt −kt 0 0 0

0 0 0 −kt −kt −kt
0 0 0 −

√
3

2 ktl0
√

3
2 ktl0 0

0 0 0 1
2ktl0

1
2ktl0 −ktl0

0 0 3ktl0 −kd −kd −kd


.

Interchanging rows 3 and 6 yields,

−
√

3
2 kt

√
3

2 kt 0 0 0 0

0 kt −kt 0 0 0

0 0 3ktl0 −kd −kd −kd
0 0 0 −

√
3

2 ktl0
√

3
2 ktl0 0

0 0 0 1
2ktl0

1
2ktl0 −ktl0

0 0 0 −kt −kt −kt


,

=⇒



−
√

3
2 kt

√
3

2 kt 0 0 0 0

0 kt −kt 0 0 0

0 0 3ktl0 −kd −kd −kd

0 0 0 -
√

3
2 ktl0

√
3

2 ktl0 0

0 0 0 1
2ktl0

1
2ktl0 −ktl0 R5+ 1√

3
R4

0 0 0 −kt −kt −kt R6− 2√
3l0

R4



,
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=⇒



−
√

3
2 kt

√
3

2 kt 0 0 0 0

0 kt −kt 0 0 0

0 0 3ktl0 −kd −kd −kd
0 0 0 −

√
3
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Appendix E

Mixer Implementation in Pixhawk

E.1 Airframe Configuration file

#!/bin/sh

#

# @name Mt_Tri_Exp

#

# @type Tricopter Y-

# @class Copter

#

# @output MAIN1 motor 1

# @output MAIN1 motor 2

# @output MAIN1 motor 3

# @output AUX1 yaw servo on motor 1

# @output AUX2 yaw servo on motor 2

# @output AUX3 yaw servo on motor 3

#

# @maintainer DA <dabara2004@yahoo.com>

sh /etc/init.d/rc.mc_defaults
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if [ $AUTOCNF = yes ]

then

param set THR_MDL_FAC 0.7

param set CBRK_USB_CHK 197848

param set MPC_XY_CRUISE 3

param set MPC_XY_VEL_MAX 10

param set LNDMC_ALT_MAX 3

param set RTL_RETURN_ALT 30

param set COM_DISARM_LAND 5

param set COM_DISARM_PRFLT 15

param set SDLOG_PROFILE 11

param set EKF2_HGT_MODE 1

param set EKF2_AID_MASK 1

fi

# Configure this as Tricopter

set MAV_TYPE 15

# Set MAIN mixer / Activate outputs

set MIXER mt_tri_y_yaw-

set PWM_OUT 123

# Set AUX mixer / Activate outputs

set MIXER_AUX mt_tri_y_yaw-

set PWM_AUX_OUT 123
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E.2 Multi-tri Geometry file

This file defines the geometry of the multi-tilt tricopter following the PX4 framework.

# Tri Y

[info]

key = "3ym"

description = "Experimental Tricopter"

[rotor_default]

axis = [0.0, 0.0, -1.0]

Ct = 1.0

Cm = 0.0

direction = "CW"

[[rotors]]

name = "front_right"

position = [0.1650, 0.2858, 0.0]

[[rotors]]

name = "front_left"

position = [0.1650, -0.2858, 0.0]

[[rotors]]

name = "rear"

position = [-0.33, 0.0, 0.0]
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E.3 MAIN Mixer file - mt_tri_y_yaw-.main.mix

This file defines the mixer for the MAIN outputs of the Pixhawk where the motors are

connected.

# Multi-rotor tilt tricopter Main Outputs MIXER

# <Tricopter> <roll scale> <pitch sacale> <yaw scale> <idle speed>

#

# Motors

R: 3ym 10000 10000 10000 0

E.4 AUX Mixer file - mt_tri_y_yaw-.aux.mix

This file defines the AUX outputs of the Pixhawk where the servos are connected. This

was done for ease of wiring. The servos may also be connected to the MAIN output

depending on choice.

# Multi-rotor tilt tricopter Aux Mixer

# Yaw servos x3 +Output ==> -Yaw Vehicle rotation

#

# Manual passthrough for servos 1, 2 using one

# RC channel via RC_MAP_AUX1

#

# Manual passthrough for servos 1, 2, 3 using

# another RC channel via RC_MAP_AUX2

#

# Servo 1

M: 3

S: 0 2 -10000 -10000 0 -10000 10000

S: 3 5 10000 10000 0 -10000 10000

S: 3 6 -10000 -10000 0 -10000 10000

# Servo 2

M: 3

S: 0 2 -10000 -10000 0 -10000 10000
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S: 3 5 -10000 -10000 0 -10000 10000

S: 3 6 -10000 -10000 0 -10000 10000

# Servo 3

M: 2

S: 0 2 -10000 -10000 0 -10000 10000

S: 3 6 10000 10000 0 -10000 10000
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