422 research outputs found

    Approximate Hypergraph Coloring under Low-discrepancy and Related Promises

    Get PDF
    A hypergraph is said to be χ\chi-colorable if its vertices can be colored with χ\chi colors so that no hyperedge is monochromatic. 22-colorability is a fundamental property (called Property B) of hypergraphs and is extensively studied in combinatorics. Algorithmically, however, given a 22-colorable kk-uniform hypergraph, it is NP-hard to find a 22-coloring miscoloring fewer than a fraction 2k+12^{-k+1} of hyperedges (which is achieved by a random 22-coloring), and the best algorithms to color the hypergraph properly require n11/k\approx n^{1-1/k} colors, approaching the trivial bound of nn as kk increases. In this work, we study the complexity of approximate hypergraph coloring, for both the maximization (finding a 22-coloring with fewest miscolored edges) and minimization (finding a proper coloring using fewest number of colors) versions, when the input hypergraph is promised to have the following stronger properties than 22-colorability: (A) Low-discrepancy: If the hypergraph has discrepancy k\ell \ll \sqrt{k}, we give an algorithm to color the it with nO(2/k)\approx n^{O(\ell^2/k)} colors. However, for the maximization version, we prove NP-hardness of finding a 22-coloring miscoloring a smaller than 2O(k)2^{-O(k)} (resp. kO(k)k^{-O(k)}) fraction of the hyperedges when =O(logk)\ell = O(\log k) (resp. =2\ell=2). Assuming the UGC, we improve the latter hardness factor to 2O(k)2^{-O(k)} for almost discrepancy-11 hypergraphs. (B) Rainbow colorability: If the hypergraph has a (k)(k-\ell)-coloring such that each hyperedge is polychromatic with all these colors, we give a 22-coloring algorithm that miscolors at most kΩ(k)k^{-\Omega(k)} of the hyperedges when k\ell \ll \sqrt{k}, and complement this with a matching UG hardness result showing that when =k\ell =\sqrt{k}, it is hard to even beat the 2k+12^{-k+1} bound achieved by a random coloring.Comment: Approx 201

    On the critical exponents of random k-SAT

    Full text link
    There has been much recent interest in the satisfiability of random Boolean formulas. A random k-SAT formula is the conjunction of m random clauses, each of which is the disjunction of k literals (a variable or its negation). It is known that when the number of variables n is large, there is a sharp transition from satisfiability to unsatisfiability; in the case of 2-SAT this happens when m/n --> 1, for 3-SAT the critical ratio is thought to be m/n ~ 4.2. The sharpness of this transition is characterized by a critical exponent, sometimes called \nu=\nu_k (the smaller the value of \nu the sharper the transition). Experiments have suggested that \nu_3 = 1.5+-0.1, \nu_4 = 1.25+-0.05, \nu_5=1.1+-0.05, \nu_6 = 1.05+-0.05, and heuristics have suggested that \nu_k --> 1 as k --> infinity. We give here a simple proof that each of these exponents is at least 2 (provided the exponent is well-defined). This result holds for each of the three standard ensembles of random k-SAT formulas: m clauses selected uniformly at random without replacement, m clauses selected uniformly at random with replacement, and each clause selected with probability p independent of the other clauses. We also obtain similar results for q-colorability and the appearance of a q-core in a random graph.Comment: 11 pages. v2 has revised introduction and updated reference

    Solving Hard Computational Problems Efficiently: Asymptotic Parametric Complexity 3-Coloring Algorithm

    Get PDF
    Many practical problems in almost all scientific and technological disciplines have been classified as computationally hard (NP-hard or even NP-complete). In life sciences, combinatorial optimization problems frequently arise in molecular biology, e.g., genome sequencing; global alignment of multiple genomes; identifying siblings or discovery of dysregulated pathways.In almost all of these problems, there is the need for proving a hypothesis about certain property of an object that can be present only when it adopts some particular admissible structure (an NP-certificate) or be absent (no admissible structure), however, none of the standard approaches can discard the hypothesis when no solution can be found, since none can provide a proof that there is no admissible structure. This article presents an algorithm that introduces a novel type of solution method to "efficiently" solve the graph 3-coloring problem; an NP-complete problem. The proposed method provides certificates (proofs) in both cases: present or absent, so it is possible to accept or reject the hypothesis on the basis of a rigorous proof. It provides exact solutions and is polynomial-time (i.e., efficient) however parametric. The only requirement is sufficient computational power, which is controlled by the parameter αN\alpha\in\mathbb{N}. Nevertheless, here it is proved that the probability of requiring a value of α>k\alpha>k to obtain a solution for a random graph decreases exponentially: P(α>k)2(k+1)P(\alpha>k) \leq 2^{-(k+1)}, making tractable almost all problem instances. Thorough experimental analyses were performed. The algorithm was tested on random graphs, planar graphs and 4-regular planar graphs. The obtained experimental results are in accordance with the theoretical expected results.Comment: Working pape
    corecore