28,553 research outputs found

    Model Reduction of Multi-Dimensional and Uncertain Systems

    Get PDF
    We present model reduction methods with guaranteed error bounds for systems represented by a Linear Fractional Transformation (LFT) on a repeated scalar uncertainty structure. These reduction methods can be interpreted either as doing state order reduction for multi-dimensionalsystems, or as uncertainty simplification in the case of uncertain systems, and are based on finding solutions to a pair of Linear Matrix Inequalities (LMIs). A related necessary and sufficient condition for the exact reducibility of stable uncertain systems is also presented

    Canonical lossless state-space systems: Staircase forms and the Schur algorithm

    Get PDF
    A new finite atlas of overlapping balanced canonical forms for multivariate discrete-time lossless systems is presented. The canonical forms have the property that the controllability matrix is positive upper triangular up to a suitable permutation of its columns. This is a generalization of a similar balanced canonical form for continuous-time lossless systems. It is shown that this atlas is in fact a finite sub-atlas of the infinite atlas of overlapping balanced canonical forms for lossless systems that is associated with the tangential Schur algorithm; such canonical forms satisfy certain interpolation conditions on a corresponding sequence of lossless transfer matrices. The connection between these balanced canonical forms for lossless systems and the tangential Schur algorithm for lossless systems is a generalization of the same connection in the SISO case that was noted before. The results are directly applicable to obtain a finite sub-atlas of multivariate input-normal canonical forms for stable linear systems of given fixed order, which is minimal in the sense that no chart can be left out of the atlas without losing the property that the atlas covers the manifold

    An efficient algorithm for positive realizations

    Full text link
    We observe that successive applications of known results from the theory of positive systems lead to an {\it efficient general algorithm} for positive realizations of transfer functions. We give two examples to illustrate the algorithm, one of which complements an earlier result of \cite{large}. Finally, we improve a lower-bound of \cite{mn2} to indicate that the algorithm is indeed efficient in general

    Finding complex balanced and detailed balanced realizations of chemical reaction networks

    Full text link
    Reversibility, weak reversibility and deficiency, detailed and complex balancing are generally not "encoded" in the kinetic differential equations but they are realization properties that may imply local or even global asymptotic stability of the underlying reaction kinetic system when further conditions are also fulfilled. In this paper, efficient numerical procedures are given for finding complex balanced or detailed balanced realizations of mass action type chemical reaction networks or kinetic dynamical systems in the framework of linear programming. The procedures are illustrated on numerical examples.Comment: submitted to J. Math. Che

    A lowerbound on the dimension of positive realizations

    Get PDF
    A basic phenomenon in positive system theory is that the dimension N of an arbitrary positive realization of a given transfer function H(z) may be strictly larger than the dimension n of its minimal realizations. The aim of this brief is to provide a non-trivial lower bound on the value of N under the assumption that there exists a time instant k0 at which the (always nonnegative) impulse response of H(z) is 0 but the impulse response becomes strictly positive for all k > k0. Transfer functions with this property may be regarded as extremal cases in positive system theory

    Backward Linear Control Systems on Time Scales

    Full text link
    We show how a linear control systems theory for the backward nabla differential operator on an arbitrary time scale can be obtained via Caputo's duality. More precisely, we consider linear control systems with outputs defined with respect to the backward jump operator. Kalman criteria of controllability and observability, as well as realizability conditions, are proved.Comment: Submitted November 11, 2009; Revised March 28, 2010; Accepted April 03, 2010; for publication in the International Journal of Control

    Quasi maximum likelihood estimation for strongly mixing state space models and multivariate L\'evy-driven CARMA processes

    Full text link
    We consider quasi maximum likelihood (QML) estimation for general non-Gaussian discrete-ime linear state space models and equidistantly observed multivariate L\'evy-driven continuoustime autoregressive moving average (MCARMA) processes. In the discrete-time setting, we prove strong consistency and asymptotic normality of the QML estimator under standard moment assumptions and a strong-mixing condition on the output process of the state space model. In the second part of the paper, we investigate probabilistic and analytical properties of equidistantly sampled continuous-time state space models and apply our results from the discrete-time setting to derive the asymptotic properties of the QML estimator of discretely recorded MCARMA processes. Under natural identifiability conditions, the estimators are again consistent and asymptotically normally distributed for any sampling frequency. We also demonstrate the practical applicability of our method through a simulation study and a data example from econometrics
    • …
    corecore