42,525 research outputs found

    A Note on Graphs of Linear Rank-Width 1

    Full text link
    We prove that a connected graph has linear rank-width 1 if and only if it is a distance-hereditary graph and its split decomposition tree is a path. An immediate consequence is that one can decide in linear time whether a graph has linear rank-width at most 1, and give an obstruction if not. Other immediate consequences are several characterisations of graphs of linear rank-width 1. In particular a connected graph has linear rank-width 1 if and only if it is locally equivalent to a caterpillar if and only if it is a vertex-minor of a path [O-joung Kwon and Sang-il Oum, Graphs of small rank-width are pivot-minors of graphs of small tree-width, arxiv:1203.3606] if and only if it does not contain the co-K_2 graph, the Net graph and the 5-cycle graph as vertex-minors [Isolde Adler, Arthur M. Farley and Andrzej Proskurowski, Obstructions for linear rank-width at most 1, arxiv:1106.2533].Comment: 9 pages, 2 figures. Not to be publishe

    Linear rank-width of distance-hereditary graphs II. Vertex-minor obstructions

    Full text link
    In the companion paper [Linear rank-width of distance-hereditary graphs I. A polynomial-time algorithm, Algorithmica 78(1):342--377, 2017], we presented a characterization of the linear rank-width of distance-hereditary graphs, from which we derived an algorithm to compute it in polynomial time. In this paper, we investigate structural properties of distance-hereditary graphs based on this characterization. First, we prove that for a fixed tree TT, every distance-hereditary graph of sufficiently large linear rank-width contains a vertex-minor isomorphic to TT. We extend this property to bigger graph classes, namely, classes of graphs whose prime induced subgraphs have bounded linear rank-width. Here, prime graphs are graphs containing no splits. We conjecture that for every tree TT, every graph of sufficiently large linear rank-width contains a vertex-minor isomorphic to TT. Our result implies that it is sufficient to prove this conjecture for prime graphs. For a class Φ\Phi of graphs closed under taking vertex-minors, a graph GG is called a vertex-minor obstruction for Φ\Phi if GΦG\notin \Phi but all of its proper vertex-minors are contained in Φ\Phi. Secondly, we provide, for each k2k\ge 2, a set of distance-hereditary graphs that contains all distance-hereditary vertex-minor obstructions for graphs of linear rank-width at most kk. Also, we give a simpler way to obtain the known vertex-minor obstructions for graphs of linear rank-width at most 11.Comment: 38 pages, 13 figures, 1 table, revised journal version. A preliminary version of Section 5 appeared in the proceedings of WG1

    Graphs of Small Rank-width are Pivot-minors of Graphs of Small Tree-width

    Full text link
    We prove that every graph of rank-width kk is a pivot-minor of a graph of tree-width at most 2k2k. We also prove that graphs of rank-width at most 1, equivalently distance-hereditary graphs, are exactly vertex-minors of trees, and graphs of linear rank-width at most 1 are precisely vertex-minors of paths. In addition, we show that bipartite graphs of rank-width at most 1 are exactly pivot-minors of trees and bipartite graphs of linear rank-width at most 1 are precisely pivot-minors of paths.Comment: 16 pages, 7 figure

    Linear rank-width of distance-hereditary graphs I. A polynomial-time algorithm

    Full text link
    Linear rank-width is a linearized variation of rank-width, and it is deeply related to matroid path-width. In this paper, we show that the linear rank-width of every nn-vertex distance-hereditary graph, equivalently a graph of rank-width at most 11, can be computed in time O(n2log2n)\mathcal{O}(n^2\cdot \log_2 n), and a linear layout witnessing the linear rank-width can be computed with the same time complexity. As a corollary, we show that the path-width of every nn-element matroid of branch-width at most 22 can be computed in time O(n2log2n)\mathcal{O}(n^2\cdot \log_2 n), provided that the matroid is given by an independent set oracle. To establish this result, we present a characterization of the linear rank-width of distance-hereditary graphs in terms of their canonical split decompositions. This characterization is similar to the known characterization of the path-width of forests given by Ellis, Sudborough, and Turner [The vertex separation and search number of a graph. Inf. Comput., 113(1):50--79, 1994]. However, different from forests, it is non-trivial to relate substructures of the canonical split decomposition of a graph with some substructures of the given graph. We introduce a notion of `limbs' of canonical split decompositions, which correspond to certain vertex-minors of the original graph, for the right characterization.Comment: 28 pages, 3 figures, 2 table. A preliminary version appeared in the proceedings of WG'1

    Finiteness conditions for graph algebras over tropical semirings

    Full text link
    Connection matrices for graph parameters with values in a field have been introduced by M. Freedman, L. Lov{\'a}sz and A. Schrijver (2007). Graph parameters with connection matrices of finite rank can be computed in polynomial time on graph classes of bounded tree-width. We introduce join matrices, a generalization of connection matrices, and allow graph parameters to take values in the tropical rings (max-plus algebras) over the real numbers. We show that rank-finiteness of join matrices implies that these graph parameters can be computed in polynomial time on graph classes of bounded clique-width. In the case of graph parameters with values in arbitrary commutative semirings, this remains true for graph classes of bounded linear clique-width. B. Godlin, T. Kotek and J.A. Makowsky (2008) showed that definability of a graph parameter in Monadic Second Order Logic implies rank finiteness. We also show that there are uncountably many integer valued graph parameters with connection matrices or join matrices of fixed finite rank. This shows that rank finiteness is a much weaker assumption than any definability assumption.Comment: 12 pages, accepted for presentation at FPSAC 2014 (Chicago, June 29 -July 3, 2014), to appear in Discrete Mathematics and Theoretical Computer Scienc

    Rank-width of Random Graphs

    Get PDF
    Rank-width of a graph G, denoted by rw(G), is a width parameter of graphs introduced by Oum and Seymour (2006). We investigate the asymptotic behavior of rank-width of a random graph G(n,p). We show that, asymptotically almost surely, (i) if 0<p<1 is a constant, then rw(G(n,p)) = \lceil n/3 \rceil-O(1), (ii) if 1/n<< p <1/2, then rw(G(n,p))= \lceil n/3\rceil-o(n), (iii) if p = c/n and c > 1, then rw(G(n,p)) > r n for some r = r(c), and (iv) if p <= c/n and c<1, then rw(G(n,p)) <=2. As a corollary, we deduce that G(n,p) has linear tree-width whenever p=c/n for each c>1, answering a question of Gao (2006).Comment: 10 page

    Canonisation and Definability for Graphs of Bounded Rank Width

    Full text link
    We prove that the combinatorial Weisfeiler-Leman algorithm of dimension (3k+4)(3k+4) is a complete isomorphism test for the class of all graphs of rank width at most kk. Rank width is a graph invariant that, similarly to tree width, measures the width of a certain style of hierarchical decomposition of graphs; it is equivalent to clique width. It was known that isomorphism of graphs of rank width kk is decidable in polynomial time (Grohe and Schweitzer, FOCS 2015), but the best previously known algorithm has a running time nf(k)n^{f(k)} for a non-elementary function ff. Our result yields an isomorphism test for graphs of rank width kk running in time nO(k)n^{O(k)}. Another consequence of our result is the first polynomial time canonisation algorithm for graphs of bounded rank width. Our second main result is that fixed-point logic with counting captures polynomial time on all graph classes of bounded rank width.Comment: 32 page
    corecore