10 research outputs found

    A VLSI architecture for enhancing software reliability

    Get PDF
    As a solution to the software crisis, we propose an architecture that supports and encourages the use of programming techniques and mechanisms for enhancing software reliability. The proposed architecture provides efficient mechanisms for detecting a wide variety of run-time errors, for supporting data abstraction, module-based programming and encourages the use of small protection domains through a highly efficient capability mechanism. The proposed architecture also provides efficient support for user-specified exception handlers and both event-driven and trace-driven debugging mechanisms. The shortcomings of the existing capability-based architectures that were designed with a similar goal in mind are examined critically to identify their problems with regard to capability translation, domain switching, storage management, data abstraction and interprocess communication. Assuming realistic VLSI implementation constraints, an instruction set for the proposed architecture is designed. Performance estimates of the proposed system are then made from the microprograms corresponding to these instructions based on observed characteristics of similar systems and language usage. A comparison of the proposed architecture with similar ones, both in terms of functional characteristics and low-level performance indicates the proposed design to be superior

    Terrier: an embedded operating system using advanced types for safety

    Get PDF
    Operating systems software is fundamental to modern computer systems: all other applications are dependent upon the correct and timely provision of basic system services. At the same time, advances in programming languages and type theory have lead to the creation of functional programming languages with type systems that are designed to combine theorem proving with practical systems programming. The Terrier operating system project focuses on low-level systems programming in the context of a multi-core, real-time, embedded system, while taking advantage of a dependently typed programming language named ATS to improve reliability. Terrier is a new point in the design space for an operating system, one that leans heavily on an associated programming language, ATS, to provide safety that has traditionally been in the scope of hardware protection and kernel privilege. Terrier tries to have far fewer abstractions between program and hardware. The purpose of Terrier is to put programs as much in contact with the real hardware, real memory, and real timing constraints as possible, while still retaining the ability to multiplex programs and provide for a reasonable level of safety through static analysis

    Programming language abstractions for extensible software components

    Get PDF
    With the growing demand for software systems that can cope with an increasing range of information processing tasks, the reuse of code from existing systems is essential to reduce the production costs of systems as well as the time to manufacture new software applications. For this reason, component-based software development techniques gain increasing attention in industry and research. Component technology is driven by the promise of building software by composing off-the-shelf components provided by a software component industry. Therefore, component technology emphasizes the independent development and deployment of components. Even though components look like perfect reusable assets, they embody general software solutions that need to be adapted to deploymentspecific needs and therefore cannot be deployed "as is" in general. Furthermore, as architectural building blocks, components are subject to continuous change. For these reasons, it is essential that components can easily be extended by both the component manufacturer to create new versions of components and by thirdparties that have to adapt components for use in specific software systems. Since in both cases concrete changes cannot be foreseen in general, mechanisms to integrate unanticipated extensions into components and component systems are required. While today many modern programming techniques, methodologies, and languages provide means that are well suited for creating static black-box components, the design and implementation of extensible components and extensible software systems often remains a challenge. In practice, extensibility is mostly achieved through ad-hoc techniques, like the disciplined use of design patterns and component frameworks, often in conjunction with meta-programming. The use of design patterns and component frameworks requires a rigorous coding discipline and often forces programmers to write tedious "boilerplate" code by hand, which makes this approach fragile and error-prone. Meta-programming techniques on the other hand are rather code-centric and mostly source code-based. Therefore, they are often not very suitable for today's component technology practice that stresses the binary reuse of black-box components. In this thesis I argue that technical difficulties in the development of extensible software components are due to the lack of appropriate programming language abstractions. To overcome the problems, concrete programming language mechanisms are proposed to facilitate the creation of extensible software. The proposed language features are strongly typed to help the programmer extend systems safely and consistently. The first part of the thesis illustrates the vision of truly extensible software components by proposing a simple theoretical model of first-class components built on top of a conventional class-based object-oriented language. This typed model includes a small set of primitives to dynamically build, compose, and extend software components safely, while supporting features like explicit context dependencies, late composition, unanticipated component extensibility, and strong encapsulation. The second part takes some ideas from the theoretical model and applies them in the design of the programming language Keris. Keris extends Java with an expressive module system featuring extensible modules. The main contributions are: A module system that combines the benefits of classical module systems for imperative languages with the advantages of modern component-oriented formalisms. In particular, modules are reusable, generic software components that can be linked with different cooperating modules without the need for resolving context dependencies by hand. A module composition scheme based on aggregation that makes the static architecture of a system explicit, and A type-safe mechanism for extending atomic modules aswell as fully linked systems statically by replacing selected subsystems with compatible versions without needing to re-link the full system. The extensibility mechanism is non-invasive; i.e. it preserves the original version and does not require access to source code. The overall design of the language was guided by the aim to develop a pragmatic, implementable, and conservative extension of Java which supports software development according to the open/closed principle: Systems written in Keris are closed in the sense that they can be executed, but they are open for unanticipated extensions that add, refine, or replace modules or whole subsystems. The last part of the thesis finally presents a case study which compares an extensible Java compiler implemented using mainstream object-oriented language features with one that was written in Keris. It shows how in practice, extensible modules can be used to develop extensible systems safely and efficiently

    Projeto de uma linguagem de programação

    Get PDF
    Orientador: Tomasz KowaltowskiDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Ciencia da ComputaçãoResumo: A proposta deste trabalho é a apresentação dos aspectos principais da linguagem de programação MG, que foi engendrada com o objetivo de incorporar algumas facilidades, chamadas do baixo nível, da linguagem C à estrutura da linguagem Modula-2. Como evoluções de MC em relação a Modula-2 e C podem-se citar, entre outras, a inclusão de tratamento de exceções, vetores com limites abertas, subprogramas com número variável de parâmetros c processos. O resultado é uma linguagem simples e precisa, de propósito geral, mas adequada à programação de sistemasAbstract: Not informedMestradoMestre em Ciência da Computaçã

    Larch/C++ Reference Manual

    Get PDF
    Larch/C++ is a notation for formally specifying the behavior and interfaces of C++ classes and functions. The goal of this reference manual is to precisely record the design of Larch/C++. We try to give examples and explanations, and we hope that these will be helpful to readers trying to learn about formal specification using Larch/C++

    Mostly-static decentralized information flow control

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.Includes bibliographical references (p. 169-174) and index.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.The growing use of mobile code in downloaded programs such as applets and servlets has increased interest in robust mechanisms for ensuring privacy and secrecy. Common security mechanisms such as sand boxing and access control are either too restrictive or too weak -- they prevent applications from sharing data usefully, or allow private information to leak. For example, security mechanisms in Java prevent many useful applications while still permitting Trojan horse applets to leak private information. This thesis describes the decentralized label model, a new model of information flow control that protects private data while allowing applications to share data. Unlike previous approaches to privacy protection based on information flow, this label model is decentralized: it allows cooperative computation by mutually distrusting principals, without mediation by highly trusted agents. Cooperative computation is possible because individual principals can declassify their own data without infringing on other principals' privacy. The decentralized label model permits programs using it to be checked statically, which is important for the precise detection of information leaks. This thesis also presents the new language J flow, an extension to the Java programming language that incorporates the decentralized label model and permits static checking of information flows within programs. Variable declarations in J flow programs are annotated with labels that allow the static checker to check programs for information leaks efficiently, in a manner similar to type checking. Often, these labels can be inferred automatically, so annotating programs is not onerous. Dynamic checks also may be used safely when static checks are insufficiently powerful. A compiler has been implemented for the J flow language. Because most checking is performed statically at compile time, the compiler generates code with few additional dynamic tests, improving performance.by Andrew C. Myers.Ph.D

    A note on “protecting against uninitialized abstract objects in Modula-2”

    No full text

    The Hob system for verifying software design properties

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 157-164).This dissertation introduces novel techniques for verifying that programs conform to their designs. My Hob system, as described in this dissertation, allows developers to statically ensure that implementations preserve certain specified properties. Hob verifies heap-based properties that can express important aspects of a program's design. The key insight behind my approach is that Hob can establish detailed software design properties--properties that lie beyond the reach of extant static analysis techniques due to scalability or precision issues-by focusing the verification task. In particular, the Hob approach applies scalable static analysis techniques to the majority of the modules of a program and very precise, unscalable, static analysis or automated theorem proving techniques to certain specific modules of that program: those that require the precision that such analyses can deliver. The use of assume/guarantee reasoning allows the analysis engine to harness the strengths of both scalable and precise static analysis techniques to analyze large programs (which would otherwise require scalable, imprecise analyses) with sufficient precision to establish detailed data structure consistency properties, e.g. heap shape properties.(cont.) A set-based specification language enables the different analysis techniques to cooperate in verifying the specified design properties. My preliminary results show that it is possible to successfully verify detailed design-level properties of benchmark applications: I have used the Hob system to verify user-relevant properties of a water molecule simulator, a web server, and a minesweeper game. These properties constrain the behaviour of the program by stating that selected sets of objects are always equal or disjoint throughout the program's execution.by Patrick Lam.Ph.D

    Proceedings of the 4th International Conference on Principles and Practices of Programming in Java

    Full text link
    This book contains the proceedings of the 4th international conference on principles and practices of programming in Java. The conference focuses on the different aspects of the Java programming language and its applications

    Climate change 2013: the physical science basis

    Get PDF
    This report argues that it is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century. This is an an unedited version of the Intergovernmental Panel on Climate Change\u27s Working Group I contribution to the Fifth Assessment Report following the release of its Summary for Policymakers on 27 September 2013.  The full Report is posted in the version distributed to governments on 7 June 2013 and accepted by Working Group I and the Panel on 27 September 2013. It includes the Technical Summary, 14 chapters and an Atlas of Global and Regional Climate Projections. Following copy-editing, layout, final checks for errors and adjustments for changes in the Summary for Policymakers, the full Report will be published online in January 2014 and in book form by Cambridge University Press a few months later
    corecore