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Abstract

Thegrowing use of mobile codein downloaded programssuch asappletsand servletshasincreased interest in
robust mechanismsfor ensuring privacy and secrecy. Common security mechanisms such as sandboxing and
access control are either too restrictive or too weak—they prevent applications from sharing data usefully,
or alow private information to leak. For example, security mechanisms in Java prevent many useful
applicationswhile still permitting Trojan horse appletsto leak private information. Thisthesis describesthe
decentralized label model, anew model of information flow control that protects private datawhile allowing
applicationsto share data. Unlike previous approachesto privacy protection based on information flow, this
label model is decentralized: it allows cooperative computation by mutually distrusting principal s, without
mediation by highly trusted agents. Cooperative computation is possible because individual principals can
declassify their own data without infringing on other principals' privacy. The decentralized label model
permits programsusing it to be checked statically, which isimportant for the precise detection of information
leaks.

This thesis also presents the new language JFlow, an extension to the Java programming language
that incorporates the decentralized label model and permits static checking of information flows within
programs. Variable declarationsin JFlow programs are annotated with labels that allow the static checker
to check programs for information leaks efficiently, in a manner similar to type checking. Often, these
labels can be inferred automatically, so annotating programs is not onerous. Dynamic checks also may be
used safely when static checks are insufficiently powerful. A compiler has been implemented for the JFlow
language. Because most checking is performed statically at compile time, the compiler generates code with
few additional dynamic tests, improving performance.

Thesis Supervisor: Barbara Liskov
Title: Ford Professor of Engineering
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Chapter 1

| ntroduction

Computer security is becoming increasingly important, as the result of several ongoing trends. Computers
everywhere are becoming inextricably connected to the Internet. Increasingly, computation and even
data storage are distributed to geographically remote and untrusted sites, and both programs and data are
becoming highly mobile. Sensitive personal, corporate, and government data is being placed online and
is routinely accessed over networks. The number of users and other interacting entities also continues to
increase rapidly, and trust relationships among these entities are growing increasingly complex. In short,
thereis more to protect and it is more difficult to protect it.

It is difficult even to characterize what protection is needed. Abstractly, the goal of computer security
is to ensure that all computations obey some set of policies, but there are two central goals of computer
security: private or secret data should not be leaked to parties that might misuseit, and valuable data should
not be damaged or destroyed by other parties. These complementary goalswill bereferred to hereas privacy
and integrity. This thesis focuses on the protection of privacy, though integrity is also considered briefly.
Protecting privacy and secrecy of data has long been known to be a very difficult problem, and existing
security techniques do not provide satisfactory solutions to this problem.

Systemsthat support the downloading of distrusted code are particularly in need of better protection for
privacy. For example, Java[ GJS96] supportsdownloading of code from remote sites, creating the possibility
that the downloaded code will transfer private data to those sites. Suppose a user computes his taxes using
a downloaded applet. The user cannot ensure that the applet will not transfer his tax information back to
the applet provider. Java attempts to prevent improper transfers by using a compartmental security model
called the sandbox model [FM 96, MF96], but this approach largely prevents applications from sharing data,
while still permitting privacy violations like the one just described. A key problem is that information must
be shared with downloaded code, while preventing that code from leaking the information.

Thereis no generally accepted definition of what it means to protect privacy. A distinction sometimes
has been drawn between privacy and other security goals such as secrecy or confidentiality. Sometimes
privacy is identified with the weaker goal of anonymity: protecting the identity of various parties, asin a
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medical protocal, rather than their data, asin [Swe96]. However, in this work the terms privacy and secrecy
are considered to be synonymous; they both refer to the ability to control information leakage of any kind.
The use of the term privacy emphasizes that in a decentralized environment, no generally accepted notion
of the sensitivity of data exists. Users generally consider their own datato be private, and are naturally less
concerned with the privacy of the data of other users. However, the privacy requirements of all users are
treated as equally important.

In general, security enforcement mechanisms may be internal or external to the computing system. In-
ternal mechanisms attempt to prevent security violations by making them impossible; external mechanisms,
such as the threat of legal action, attempt to convince users not to initiate computation that would violate
security. Current security mechanisms, both internal and external, are becoming lessviable asthe computing
system becomes large, decentralized, anonymous, and international .

With the widespread downloading of code, dealing with untrusted programs becomes a greater issue
for security than in the past. Conventionally, the focus is placed on protecting the operating system from
buggy or malicious programs, and on protecting users from each other. On most computer systems, the
programs that might be used to violate user privacy are programs already installed on the system, and
purchased from some vendor. Since the source of the program is known, some form of external redressis
available if the program is found to violate privacy. When programs such as Java applets are dynamically
downloaded and executed, the ability to identify and exact redress from the supplier of privacy-violating
code is reduced. Therefore, the goal of this work is to develop better internal mechanisms, preventing
programs from violating security policies rather than convincing users not to.

In another sense, the goal of thiswork isto reduce the cost of ensuring security—acost that is passed on
to users. If auser downloads a free application, the user accepts either the risk that a program will violate
security, or the considerable cost of ensuring that a program does not violate security. This observation
applies to commercial software as well; a company providing an application must ensure that it does not
violate user security, or else be liable in cases where it violates security, at least in the sense that the
reputation of the company may suffer. With both kinds of software, the cost is passed on to the users of that
application. Better internal mechanisms that can be applied either by end-users or by software devel opers
should reduce this cost.

1.1 Example

Figure 1-1 depicts an example with security requirements that cannot be satisfied using existing techniques.
This scenario contains mutually distrusting principals that must cooperate to perform useful work. In the
example, the user Bob is preparing his tax form using both a spreadsheet program and a piece of software
called “WebTax”. Bob would like to be able to prepare his final tax form using WebTax, but he does not
trust WebTax to protect his privacy. The computation isbeing performed using two programs. a spreadsheet
that he trusts and grants his full authority to, and the WebTax program, which he does not trust. Bob would
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Figure 1-1: A simple example

like to transmit his tax data from the spreadsheet to WebTax and receive a final tax form as a result, while
being protected against WebTax leaking his tax information.

In this example, there is another principal named Preparer that has privacy interests. The principal
Preparer represents afirm that distributes the WebTax software. The WebTax application computesthefinal
tax form using a proprietary database, shown at the bottom, that is owned by Preparer. This database might,
for example, contain algorithms for minimizing tax payments. Since this principal is the source of the
WebTax software, it trusts the program not to distribute the proprietary database through malicious action,
though the program might leak information because it contains bugs.

In principle, it may be difficult to prevent some information about the database contents from leaking
back to Bob, particularly if Bob is able to make a large number of requests and then carefully analyze the
resulting tax forms. Thisinformation leak is not a practical problem if Preparer can charge Bob a per-form
fee that exceedsthe value of the information Bob obtains through each form.

To make this scenario work, the Preparer principal needs two pieces of functionality. First, it needs
protection against accidental or malicious release of information from the database by paths other than
through the final tax form. Second, it needs the ability to sign off on the final tax form, confirming that the
information leaked in the final tax form is sufficiently small or scrambled by computation that the tax form
may be released to Bob.

It is worth noting that Bob and Preparer do need to trust that the execution platform has not been
subverted. For example, if WebTax is running on a computer that Bob completely controls, then Bob will
be able to steal the proprietary database. Clearly, Preparer cannot have any real expectation of privacy or
secrecy if its private datais manipulated in unencrypted form by an execution platform that it does not trust!
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In thisthesis, it is assumed that the execution platform is trusted, even though the programs running on
that platform may not be. The issue of trust in the execution platform is discussed further in Section 1.4.
Even with this assumption, this scenario cannot be implemented satisfactorily or even modeled using
existing security technigues. With current techniques, Bob must carefully inspect the Webtax code and
verify that it does not leak his data; in general, thistask is difficult. The techniques described in this thesis
allow the security goals of both Bob and Preparer to be met without this inspection; Bob and Preparer
then can cooperate in performing useful computation. In another sense, this work shows how both Bob
and Preparer can inspect the Webtax program efficiently and simply to determine whether it violates their
security requirements.

1.2 Existing security techniques

Let us now briefly consider the application of existing security techniques to this problem; for a more
in-depth discussion, see Chapter 6. When most people think of computer security, they think of well-
established security techniques such as access control. Typical access control mechanisms (which support
discretionary access control) do not protect privacy well when programs are not trusted: access control
preventsunauthorized information rel ease but does not control information propagation oncetheinformation
has been accessed. For example, if aprogram A is allowed to read user B's data, B cannot control how A
distributes the information it has read.

A less well-known approach to protecting privacy is information flow control. In information flow
techniques (such as mandatory access control), every piece of data has an attached sensitivity label. The
labels are typically from asmall ordered set such as {unclassified, classified, secret, top secret}. Thelabels
remain attached to data as it propagates through the system, preventing it from being released improperly
even if it is released to an untrusted program. Data may be relabeled to further restrict its use (such as
a relabeling from secret to top secret). However, relabeling data from top secret to secret (or alowing
top secret data to affect secret data) would be declassification or downgrading, which could lead to an
information leak.

Intuitively, information flow control protects privacy much more directly than access control does, but
practical problems with information flow control have prevented its widespread adoption. Sensitivity labels
are usually maintained dynamically, causing substantial loss of performance. Dynamic labels impose even
greater run-time and storage overheads than access control mechanisms do, because for every primitive
operation, the label of the result must be computed. Another limitation is that sensitivity labels are
implicitly centralized: they express the privacy concerns of a single principal (typically, the government).
If one considers providing privacy in a more decentralized setting, such as the community of Web users, it
is clear that no universal notion of secret sensitivity can be established.

All practical information flow contral systems provide the ability to declassify or downgrade data
because strict information flow control is too restrictive for writing real applications. Declassification in
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these systems lies outside the model: it performed by a trusted subject, which is code possessing the
authority of a highly trusted principal. However, the notion of a highly trusted principal does not extend to
adecentralized system. Traditional information flow models do not support workable declassification for a
decentralized environment.

Another important issue for information flow systems is the precision of the detection of information
flow. Information is assumed to flow from one program value to another if thereis any dependency between
the values. Any unidentified dependency would create a potential information leak. However, it is also
important to avoid false dependencies, since a false dependency results in data being overly restrictively
labeled, and thus not usable in situations where it ought to be. To provide a precise determination of data
dependencies, particularly dependencies arising from implicit flows, static analysis is required [DD77].
Dynamic enforcement of information flow control, as in mandatory access control systems [DOD85], can
determine data dependencies conservatively—even dependencies arising from implicit flows—but results
in false dependencies and overly restrictive |abels.

1.3 Decentralized information flow control

The central goa of this work is to make information flow control a viable technique for providing privacy
in a complex, decentralized world with mutually distrusting principals. This work has involved two major
components, each of which isindependently useful.

1.3.1 Decentralized label mode

The first component is the development of a new model for labeling data that supports situations involving
mutual distrust. This model allows usersto control the flow of their information without imposing therigid
constraints of atraditional multilevel security system. It provides security guaranteesto users and to groups
rather than to a monolithic organization—in essence, it provides every principa with its own multilevel
security.

The decentralized information flow model differs from previous work on information flow control: it
introduces a notion of ownership of data, and allows usersto explicitly declassify datathat they own. When
datais derived from several sources, all the sources own the data and must agree to release it. Previous
work on information flow allowed declassification only by atrusted agent or trusted subject with essentially
arbitrary powers of declassification; the notion of a universally trusted agent is clearly inapplicable to a
decentralized environment. Declassification in this model provides a safe escape hatch from the rigid
restrictions of strict information flow checking. Deciding when declassification is appropriate is outside the
scope of this model; work in inference controls and statistical databases has developed some applicable
methods [Den82].

The decentralized label model has a number of important properties that are discussed further in
Chapter 2:
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e It allows individual principals to attach flow policies to pieces of data. The flow policies of all
principals are reflected in the label of the data, and the system guarantees that all the policies are
obeyed simultaneously. Therefore, the model works even when the principals do not trust each other.

e The model allows a principal to declassify data by modifying the flow policies in the attached label.
Arbitrary declassificationis not possible because flow policies of other principals are still maintained.
Declassification permits the programmer to remove restrictions when appropriate; for example, the
programmer might determine that the amount of his information being leaked is acceptable using
techniques from information theory [Mil87].

e Themode is compatible with static checking of information flow.

e It allows aricher set of safe relabelings than in previous label models [Den76, MMN9Q] by fully
exploiting information about relationships between different principals.

e It hasaformal semanticsthat allows a precise characterization of what relabelings are legal.

e The rule for static checking is shown to be both sound and complete with respect to the formal
semantics. the rule allows only safe relabelings, and it allows all safe relabelings.

¢ Inthismodel, labelsform alattice-like structure that helps make static checking of programs effective.

e Themodel can be applied in dual form to yield decentralized integrity policies.

1.3.2 Staticinformation flow analysis

The second component of thiswork is a collection of new techniquesfor static analysis of information flow
in programs. These techniques have been incorporated in the new language JFlow, an extension of the
Java language [GJS96] that allows information in the program to be annotated with decentralized labels.
These annotations can then be checked statically, allowing more precise, fine-grained determination of
information flows within programs than in previous languages allowing static checking of information flow.
Like other recent approaches [PO95, V SI96, ML97, SV98, HR98, Mye99], JFlow treats static checking of
flow annotations (label checking) as an extended form of type checking. Programs written in JFlow can
be checked statically by the JFlow compiler, which detects any information leaks through covert storage
channels. JFlow is intended to support the writing of secure servers and applets that manipulate sensitive
data.

An important philosophical difference between JFlow and other work on statically checking information
flow isthe focus on ausable programming model, avoiding the unnecessary restrictiveness of earlier systems
for static flow analysis. JFHlow provides a more practical programming model than earlier work does. The
goal of thiswork isto add enough power to the static checking framework to allow reasonable programs to
be written in a natural manner.
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Figure 1-2: JFlow compiler

Adding this power has required several new contributions. Because JFlow extends a complex program-
ming language, it supports many language features that have not been integrated previously with static flow
checking, including mutable objects (which are more complex than function values), subclassing, dynamic
type tests, access control, and exceptions.

JFlow also provides powerful new features that make information flow checking less restrictive and
more convenient than in previous models:

e Label polymorphismallows the writing of code that is generic with respect to the security class of the
data it manipulates.

e Run-time label checking and first-class label values create a dynamic escape in cases where static
checking is too redtrictive. Run-time checks are statically checked to ensure that information is not
leaked by the success or failure of the run-time check itself.

e Automatic label inference makes it unnecessary to write many of the annotations that would be
required otherwise.

e A dtatically-checked declassification operator allows safe declassification as described by the decen-
tralized label model.

The JFlow compiler is structured as a source-to-source translator; its output is a standard Java program
that can be compiled by any Java compiler. The operation of the compiler is depicted in Figure 1-2. The
input to the compiler is the text of a JFlow program and the compiled bytecode for any external program
modules used by the program. This model of compilation isexactly that of Java. Using thisinformation, the
compiler checks JFlow programs and translates them into an equivalent Java program, which is converted
to executable form by a standard Java compiler. In addition, the JFlow compiler generates an auxiliary
file containing information about label annotations found within the program. Thisauxiliary fileis used in
conjunction with the compiled bytecode file whenever this program is used as an external module for the
purpose of compiling other code that depends on it, as shown by the dashed arrow.
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Figure 1-3: Trusted execution platform

For the most part, trandlation involves removal of the static annotations in the JFlow program (after
checking them, of course). For this reason, there is little code space, data space, or run time overhead,
because most checking is performed statically.

1.4 Trusted computing base

An important aspect of any security mechanism is the identification of the trusted computing base (TCB):
the set of hardware and software that must function correctly in order for security to be maintained. In this
work, the trusted computing base includes many of the usual trusted components: hardware that has not
been subverted, a trustworthy underlying operating system, and a reliable authentication mechanism.

With conventional security mechanisms, all programsare part of the trusted computing base with respect
to the protection of privacy, since there is no internal mechanism ensuring that programs respect privacy.
For privacy to be protected, it is necessary that programs not transfer information in ways that violate it.
In this work, the model is that a static checker rejects programs containing information flows that violate
privacy. The static checker may be acompiler that statically checks the information flowsin a program and
then digitally signs the program, or else averifier that checks the work of such a compiler.

Together, these trusted components make a trusted execution platform. Figure 1-3 depicts a trusted
execution platform, into which code may enter only if it has been checked statically to ensure that it may be
trusted to obey the label model. Datain the system is labeled, as are inputs to and outputs from the system.

When thistrusted computational environment is constructed from trusted nodes connected by anetwork,
the communication links between the nodes also must be trusted, which can be accomplished through
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physical security or by encrypting and digitally signing communication between nodes. Unrelated third
parties are assumed to be unable to violate privacy and integrity by snooping on or subverting channels
directly; the question addressed here is how to prevent the intended receiver of an information transfer from
violating privacy.

1.5 Applications

Thegoal of thisnew information flow control systemisto support secure distributed computation, including
the following useful applications:

e A node could shareinformation with adownloaded program, yet prevent the mobile code from leaking
the information; additionally, the program could be protected from leaking its private information to
other programs running on the same node. Thiskind of security for mobile code would be useful both
for clients, which download applet code from servers, and for servers, which upload servlet code and
data from clients for remote evaluation.

e Secure serversand other heavily-used applications can bewritten in programming languages extended
with information flow annotations, adding confidence that sensitive information is not revealed to
clients of the service through programming errors.

e Trusted parties can provide secure computation serversthat allow mutually distrusting partiesto carry
out computations securely and privately, even though neither trusts that the programs of the other will
respect its security. Thisarchitecture is a solution to the problem that arises when neither party trusts
the execution platform of the other, and might be used in the tax preparation example. A trustworthy
platform for computation becomesaservice with economic value for which the provider might charge.

The annotations used in the JFlow programming language could be used to extend many conventional
programming languages, intermediate code (such as Java Virtua Machine bytecode [LY 96]), or machine
code, where the labeling system defined here makes a good basis for easily checkable security proofs as
in proof-carrying code [Nec97]. A good approach to producing proof annotations is for the compiler to
generate them as a by-product of static checking; this approach has been shown to work for checkable
type-safe machine code [MWCG98], and ought to be applicable to information flow labels aswell.

1.6 Limitations

Thestatic analysistechniquesdevel opedin Chapters 3 through 5 areintended to control covert and legitimate
storage channels. These techniques do does not deal with timing channels, which are harder to control.
Because the static analysisis applied to the program being executed, it cannot identify covert channelsthat
do not exist at the level of abstraction presented by the programming language. These covert channels are
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mostly timing channelsthat are ruled out in a single-threaded system. However, in amulti-threaded system,
information may be communicated by covert channels such as cache miss timing. Covert channels of this
sort cannot be identified by analysis of a program in source code form, because the source code is at too
high alevel of abstraction.

1.7 Outline

The remainder of thisthesisis structured as follows. Chapter 2 describesthe decentralized label model and
demonstrates its formal properties. Chapter 3 presents the JFlow programming language, which extends
the Java language with support for information flow control. Chapter 4 shows how information flow in the
JFlow language can be checked statically through a process similar to type checking, though certain aspects
of static checking and source-to-source tranglation are deferred until Chapter 5. Other security techniques
and related work on privacy protection are discussed in Chapter 6. Chapter 7 concludes and offers some
thoughts on extensions to this work.

20



Chapter 2

The Labd Modd

This chapter describes the decentralized label model. It has been presented earlier [ML97, ML98] but is
developed further in this thesis. The key new feature of the decentralized label model is that it supports
computation in an environment with mutual distrust. The ability to handle mutual distrust is achieved by
attaching a notion of ownership to information flow policies. These policies then can be modified safely
by their owners—a form of safe declassification. Arbitrary declassification is not possible because flow
policies of other principals remain in force.

The decentralized label model also supports a richer set of safe relabelings than earlier models. For
example, it enables every user to define a personal set of sensitivity levels, so that a data value can be
relabeled upward in sensitivity independently for each user. It also alows information flow policiesto be
defined conveniently in terms of groupsand roles. Therulefor relabeling datais al so shownto be both sound
and compl ete with respect to asimple formal semanticsfor labels: therule allows only safe relabelings, and
it alows all safe relabelings.

The decentralized label model also has the important property that it supports static checking of in-
formation flow, including the ability to infer many information flow labels automatically. Discussion of
static checking and how the model is integrated into a programming language is deferred until Chapters 3
and 4. However, this chapter does demonstrate that the model has the necessary properties to support this
integration.

This chapter has the following structure: in Section 2.1, the essentials of the label model are presented.
Section 2.2 provides some exampl es showing how the label model is applied to applications. The following
sections develop the model more carefully. Section 2.3 givesaformal semantics of labelsin the system, and
Section 2.4 usesthis semanticsto develop more powerful rulesfor manipulating labels. Output channelsare
discussed in Section 2.5. Section 2.6.1 shows how decentralized |abels can be constructed for protection of
integrity. Section 2.6 discusses waysthat labels and principals can be generalized to allow more convenient
modeling of security requirements.
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Figure 2-1: Principal hierarchy examples

2.1 Basic mod€

This section presents the essentials of the decentralized label model: principals, which are the entities
whose privacy is protected by the model, and labels, which are the way that principals expresstheir privacy
concerns. The rules that must be followed as computation proceedsin order to avoid information leaks are
then described, including the mechanism for safe declassification within this model.

211 Principals

In the decentralized label model, information is owned by, updated by, and released to principals. users
and other authority entities such as groups or roles. For example, both users and groups in Unix would be
modeled as principals.

In this model, some principals are authorized to act for other principals The actsfor relation isreflexive
and transitive, defining a hierarchy or partial order of principals. This relation is similar to the speaks for
relation [LABW91]; the principal hierarchy is also similar to arole hierarchy [San96].

Theacts-for relation can be used to model groupsand roles conveniently, asshownin Figure2-1. Arrows
in the figure indicate acts-for relations. A group, such as students, is modeled by authorizing al of the
principals representing members of the group (Amy and Bob) to act for the group principal. A role, which
is arestrictive form of a user’s authority, is modeled by authorizing the user’s principal to act for the role
principal. In the figure, the roles Carl-chair and Carl-advisor are roles that the principal Carl canfill.

Information about the structure of the principal hierarchy is maintained in a secure database. Although
the principal hierarchy changes over time, revocations are assumed to occur infrequently. The handling of
revocation is discussed later, in Section 3.2.5.

This simple model of principals is easily generalized to provide more complete modeling of groups,
roles, and other entities; these extensions are explored later, in Section 2.6.3.

212 Labds

Every value used or computed in aprogram execution has an associated label. Aswewill seelater, thelabel
of avaluefunctionsasakind of type, so program expressions can also be saidto havealabel. A label isaset
of policiesthat express privacy requirements. A privacy policy hastwo parts: an owner, and a set of readers,
and is written in the form owner: readers. The owner of a policy is aprincipal whose data was observed in
order to construct the value labeled by this policy. The readers of a policy are a set of principals who are
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permitted by the owner to read the data. It isalso implicitly understood that the owner of the policy permits
itself to read the data, evenif it is not explicitly areader. Other principals are not permitted to read the data.
The intuitive meaning of alabel is that every policy in the label must be obeyed as data flows through the
system, so labeled information is released only by the consensus of all of the owners. A principal may read
the data only if it is a reader or owner for every policy in the label. Because the intersection of all of the
policiesis enforced, adding more policiesto alabel only restricts the propagation of the labeled data.

An example of an expression that denotes a label L is the following: L = {o1 : r1,72; 02 : r2,73},
where o1, 02, 71, T2 denote principals. Semicolons separate two policies within the label. The owners of
these policies are o1 and o, the reader setsfor the policiesare {r1,r} and {r,, r3}, respectively. A policy
with no readers means that only the owner of the policy is to be able to read the data. An example of alabel
containing such apolicy is{o; : }, whichis equivalent to the label {01 : 01}.

If alabel doesnot contain any policy owned by a principal p, the effect is that p does not care how the
data propagates. It is asif there were a policy for p that listed all possible principals as readers. The least
restrictive label possibleis alabel containing no policies, because no principal has expressed an interest in
restraining the datawith this label. Thislabel iswritten asan empty set, {}. If alabel contains two or more
policieswith the same owner p, the policies are enforced independently just as other policiesare: aprincipal
may read the labeled data only if all the policies permit that principal as areader.

If apolicy K is part of the label L (K € L), then the notation o(K') denotes the owner of that
policy, and the notation r(K) denotes the set of readers specified by that policy. The functions o and r
completely characterize alabel, with types policy — principal and policy — set[principal], respectively. For
compactness, single-argument functions like o and r will often be expressed without parenthesizing the
arguments; for example, asoK rather than o(K). In the equationsin this chapter, theletters I, J, K aways
denotelabel policies.

2.1.3 Relabeling by restriction

Asaprogram computes, the information it manipulateswill not leak aslong asthe labels of that information
obey certain rules. We can now begin to consider these rules, beginning with arguably the simplest
computation that can be performed by a program: assignment of avalueinto avariable.

In this model, every variable has a label that applies to the data within the variable. When avalueis
read from a variable, it has the same label as the variable. When avalue is stored into a variable, the |abel
of the value is forgotten; effectively, it acquires the label of that variable into which it is stored. Thus,
assignment of avalue to a variable causes arelabeling of the copy of the value that is assigned. To avoid
leaking information, the label of the copied value (which is the label of the variable) must be at least as
restrictive asthe original label of the value. Thiskind of relabeling is therefore termed arestriction.

The expression L1 C L, means that the label L1 is either less restrictive than or equal to the label L,
(aternatively, L, is at least as restrictive as 1), and that values can be relabeled from L to L. Using this
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definition, an assignment from avalue z into avariablewv islegal if L, C L,, where L, and L,, arethe labels
of z and v, respectively.

A relabdling is arestriction if all of the policies in the old label are guaranteed to be enforced in the
new label. A policy J in L is guaranteed to be enforced by a policy in K if the two policies have the
same owner, and the reader set of K is asubset of the reader set of J. This observation leads to the subset
relabeling rule:

Relabeling by restriction: subset rule

V(Je€Li)3(K € L) (0K =0J AN rK CrlJ)
LT Ly

The following relabelings are restrictions under this rule, assuming the letters A—E denote principals:

{A:B,C}C{A: B}

{A:B}C{A:; D:E}
{A:B,C}C{A:B}C{A:B; A:C}
{}E{A: B}

The subset relabeling rule is sound and captures relabelings that are safe regardless of the principal
hierarchy. However, if some knowledge of the principal hierarchy is available, additional relabelings can be
determined to be safe. However, presentation of a more permissive relabeling rule must wait until aformal
semantics for labels has been developed in Section 2.3, defining what it means for arelabeling to be safe.

In this model, variables are statically bound to their labels, and a value loses its label upon assign-
ment. This approach to supporting variables differs from the dynamic binding approach used in some
systems [MMN90, MR92], where the label of a variable is automatically made more restrictive when a
restricted value is written into it. Dynamic binding requires run-time overhead and prevents static analysis.
It also can lead to label creep, in which a variable becomes gradually more restrictive until it is unusable.
In JFlow, the type Protected, described in Chapter 3, can provide the behavior of a dynamically labeled
variableif it is needed.

2.1.4 Computation and labdl join

During computation, valuesare derived from other values. Because aderived value may contain information
about its sources, its label must reflect the policies of each of its sources. For example, if we multiply two
integers, the product’s label must be at |east as restrictive as the labels of both operands.

To avoid unnecessarily restricting the result of a computation, the result should have theleast restrictive
label that is at least as restrictive as the labels of the operand; that is, theleast upper bound or join of the
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operand labels with respect to the relation C. The join of the operands, which is constructed simply by
taking the union of the sets of policiesin the operand labels, ensuring that all of the policies of the operands
are enforced in the result. For example, thejoin of thelabels{A : B} and {C : A} is{A: B; C : A}. For
any two labels L, and L, their join iswritten as L1 L L, and is defined as follows:

Join rule

LiULy,=L1UL>

This rule ensuresthat the policiesin the label of avalue propagate to the labels of all other valuesthat it
affects, protecting the privacy of data even when it is used for computation. However, sometimes this rule
istoo restrictive, and away to relax these policiesis needed.

2.1.5 Relabeling by declassification

Because labelsin this model contain information about the owners of labeled data, these owners can retain
control over the dissemination of their data, and relax overly restrictive policieswhen appropriate. Thisisa
safe form of declassification that provides a second way of relabeling data.

The ability of a process to declassify data depends on the authority possessed by the process. At any
moment while executing aprogram, a processis authorized to act on behalf of some (possibly empty) set of
principals. This set of principalsisreferred to as the authority of the process. If a process has the authority
to act for aprincipal, actions performed by the process are assumed to be authorized by that principal. Code
running with the authority of a principal can declassify data by creating a copy in whose label a policy
owned by that principal isrelaxed. In the label of the copy, readers may be added to the reader set, or the
policy may be removed entirely, effectively allowing all readers.

Because declassification applies on a per-owner basis, no centralized declassification processis needed,
as it is in systems that lack ownership labeling. Declassification is limited because it cannot affect the
policies of owners the process does not act for; declassification is safe for these other owners because
reading occurs only by the consensus of al owners.

The declassification mechanism makesit clear why the labels maintain independent reader setsfor each
owning principal. For example, if alabel consisted of just an owner set and a reader set, information about
the individual flow policies would be lost, reducing the power of declassification.

Because the ability to declassify depends on the run-time authority of the process, it requires arun-time
check for the proper authority. As shown in Chapter 4, the overhead of this run-time check can be reduced
in the proper static framework.

Declassification can be described more formally. A process may weaken or remove any policies owned
by principals that are part of its authority. Therefore, the label L; may be relabeled to L, as long as
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L1 C LU Ly, where L 4 isalabel containing exactly the policies of the form {p :} for every principa p in
the current authority. The rule for declassification may be expressed as an inference rule:

Relabeling by declassification

La = U in current authority) {7 * }
LiELoULy

L1 may be declassified to Lo

This inference rule builds on the rule for relabeling by restriction. The subset rule for relabeling L1 to
L, states that for al policies J in L1, there must be a policy K in L, that is at least as restrictive. The
declassification rule has the intended effect because for policies J in L, that are owned by a principal p in
the current authority, a more restrictive policy K isfound in L 4. For other policies J, the corresponding
policy K must befoundin L,, since the current authority does not have the power to weaken them. Thisrule
also showsthat alabel L1 always may be declassified to a label that it could be relabeled to by restriction,
because the restriction condition Ly C L, impliesthe antecedent L1 C Ly LI L 4.

2.1.6 Channds

In thismodel, users are assumed to be external to the system on which programsrun. Information is leaked
only when it leaves the system. Giving private datato an untrusted program does not create an information
leak—eveniif that program runswith the authority of another principal—as|ong asthat program obeysall of
the label rules described here. Information can be leaked only when it leaves the system through an output
channel, so output channels are labeled to prevent leaks. Information can enter the system through an input
channel, which also is labeled to prevent leaks. It is safe for a process to manipulate data even though no
principal in its authority has the right to read it, because all the process can do with the datais write it to a
variable or achannel with alabel that is at least as restrictive.

Input and output channelsare half-variables; like variables, they have an associated |abel and can be used
as an information conduit. However, they only provide half of the functionality that a variable provides:
either input or output. Aswith avariable, when avalue is read from an input channel, the value acquires
label of the input channel. Similarly, a value may be written to an output channel only if the label of the
output channel is at least as restrictive as the label on the value; otherwise, an information leak is presumed
to occur.

Obviously, the assignment of |abels to channelsis a security-critical operation. It isimportant that the
channel’slabel reflect reality. For example, if the output of aprinter can be read by anumber of people, itis
important that the output channel to that printer identify all of them, because otherwise an information leak
is possible. If two computers communicate over channels, it is important that the labels of the matching
output and input channels agree; otherwise, labels can be laundered by a round trip.
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Figure 2-2: Annotated Tax Preparation Example

Typically, an output or input channel has a label containing a single policy, though multiple-policy
channelswork too. For an output channel, the owner of the policy can be thought of as a guarantor that the
data will be released to at most the principals listed in the reader set of that policy. Aswill become clear,
the data of a principal p can be written to an output channel only if p trusts the owner of the output channel,
and the readers of the output channel are a subset of the readersthat p allows. Conversely, the owner of an
input channel is a principal who demands that data arriving from the channel may be released only to the
listed readers. Thispolicy may be overridden only by the owner or by aprincipal who can act for the owner.
For multiple-policy channels, each policy acts as an additional requirement for the release of the data.

2.2 Examples

Let us now consider two examplesin which the decentralized label model is helpful in protecting privacy.
These examples illustrate the intuitions behind the model and demonstrate that it can capture the security
needs of interesting, useful computations.

221 Tax preparer example

Thetax preparer example, illustrated in Figure 2-2, is identical to the example from Chapter 1, except that
al datain the example has been annotated with labels to protect the privacy of Bob and Preparer. It can be
seen that these labels obey the rules given and meet the security goals set out in Chapter 1 for this scenario.

In the figure, ovalsindicate programs executing in the system. A boldface label beside an oval indicates
the authority with which a program acts. In this example, the principals involved are Bob and Preparer, as
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we have already seen, and they give their authority to the spreadsheet and WebTax programs, respectively.
Arrowsin the diagrams represent information flows between principals; square boxes represent information
that is flowing, or databases of some sort.

First, Bob applies the label {Bob: Bob} to his tax data. This label allows no one to read the data
except Bob himself. With this label applied to it, tax data cannot be sent to an untrusted network location,
represented as an output channel with label {}, becauseit is not the case that {Bob: Bob} C {}. Bob can
give this datato the WebTax program with reasonable confidence that it cannot be |eaked, because WebTax
will be unableto remove the {Bob: Bob} policy from the tax data or any data derived from it.

The WebTax program uses Bob's tax data and its private database to compute the tax form. Any
intermediate results computed from these data sourceswill havethe label {Bob: Bob; Preparer: Preparer}.
Because the reader sets of this label disagree, the label prevents both Bob and Preparer (and everyone else)
from reading the intermediate results. Thisjoint label is generated by the rule for join:

{Bob : Bob} LI {Preparer : Preparer } = {Bob : Bob ; Preparer : Preparer }

Preparer is protected by thislabel against accidental disclosure of its private database through programming
errors in the WebTax application.

Before being released to Bob, the final tax form hasthe samelabel astheintermediate results, and is not
readable by Bob, appropriately. In order to make the tax form readable, the WebTax application declassifies
the label by removing the {Preparer: Preparer} policy. The application can do this because the Preparer
principal has granted the application its authority. This grant of authority is reasonable because Preparer
supplied the application and presumably trusts that it will not use the power maliciously.

The authority to act as Preparer need not be possessed by the entire WebTax application, but only by
the part that performs the final release of the tax form. By limiting this authority to a small portion of the
application, the risk of accidental release of the database is reduced. However, it isimportant that this part
of the application not be exposed as a generally accessible external interface, because this exposure might
allow Bob and other parties to misuse the interface to declassify data owned by Preparer.

28



patient record

’ general information ‘

{ patient_A: patient_A, doctors }

—»’ patient confidential ‘
ﬁ { patient_A: patient_A}
’ HMO confidential ‘
{HMO_records: HMO }

authorization

authorized
declassification
procedure

HMO ; -
logs Audit program report

{HMO_records: HMO} H MO_Rec ords {patient_A: patient_A}
T HMO_Records

i

patient_A

doctor's report edited copy of patient record

to HMO
{ patient_A: patient_A, doctors; ’ general information ‘
patient_A: patient_A, doctor_B; . ;
HMO_records: HMO, doctor_B } patient_A: patient_A, doctors

’ patient confidential ‘

patient_A: patient_A, doctor_B
doctor_B display device
’ HMO confidential ‘

{HMO_records: doctor_B} HMO_records: HMO, doctor_B

Figure 2-4: The hospital example

2.2.2 Hospital example

In this example, there are three parties with privacy concerns. a patient obtaining medical services, a
doctor providing the services, and a health maintenance organization (HMO) that serves as an intermediary.
There are principals in the system for patients, e.g., patient_A, and doctors, e.g., doctor_B; additionally,
al doctors can act for a principal doctors that represents the group of doctors within the HMO. Two
HMO principals also exist: HMO, representing maximum authority within the HMO, and HMO _records,
representing authority over the record-keeping functions of the HMO; HMO can act for HMO _records,
and HMO _records can act for patients: each patient must trust the HMO to keep track of its records. The
resulting principal hierarchy is shownin Figure 2-3.

Figure 2-4 shows the hospital example, which shows how information flows as the patient receives
medical services. The HMO maintains the patient’s medical history, which has three parts. genera
information, which is controlled by the patient but is readable by any doctor, private information (such as
the medical history of the patient), which is normally not readable by doctors, and confidential information
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that the HM O does not release to patients.

The first step in a patient/doctor interaction is for the doctor to obtain a copy of the patient’s record.
The record is declassified so that the doctor can read it; this can happen only with the authorization of the
patient. The patient, represented in the diagram by the dark oval labeled patient_A, makes an authenticated
reguest to an existing program running with the authority of HMO _records; this program uses the patient’s
authority to provide the doctor with an edited version of the patient’s private information and of the HMO's
confidential information.

Thedoctor isrepresented by the dark oval labeled doctor_B. To read the information, the doctor requires
an output channel to a display device with the single reader, doctor_B. This display device is certified by
HMO_records as a secure device that only doctor_B is reading from. In principle, all of the information
in the patient records should be safe to write to this display device, though the subset relabeling rule will
not permit it. Thus, this example motivates the development of a better relabeling rule, which is developed
in the following sections. Writing the information to the display device is safe because HMO _records can
act for all of the owners of the datain the patient records (patient_A and HMO _records), o its certification
should be good enough. In addition, various parts of the patient record are released to doctors or doctor B,
and the actual reader, doctor_B, can act for both these principals. Note that the patient information cannot
be written to a channel that has any readers other than doctor_B, and that there is no way the doctor can
declassify the patient information.

Eventually, the doctor sends a report to the HMO of services rendered. In addition to the comments of
the doctor, the report contain information from all three components of the patient’s record, so it acquiresa
joint label reflecting all these sources. Note that the general patient information does not explicitly permit
doctor_B as areader. Using the subset relabeling rule, the first policy owned by patient_A in the resulting
joint label prevents the doctor from reading his own report. This example of unnecessary restrictiveness
also arises from the subset relabeling rule and is fixed by the more flexible relabeling rule developed later.

Theaudit program runs with the authority of the HMO _records principal and thus can store the informa-
tion with the appropriate |abels both in the log and in the patient record database. It can also send areport to
the patient; asin the tax preparer example, the designer of the audit program must use mechanisms outside
the scope of information flow control to determine either that no HMO-confidential information is leaked
or that the leak is acceptably small.

2.3 Extending and interpreting labels

The hospital example presented in the previous section shows that the basic model is not powerful enough,
and amore permissive relabeling rule is needed that takes the principal hierarchy into account. This section
formalizes the notions of labels and principal hierarchies and then defines a condition for judging whether
arelabeling ruleis correct.
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2.3.1 Limitationsof the subset relabeling rule

One way to think about whether arelabeling rule is safe is by considering incremental relabelings that can
make alabel morerestrictive, or leaveit equally restrictive. The relabeling rules discussed in thisthesis can
be understood in terms of the incremental relabelings they allow. For example, the subset relabeling rule
allows the following two kinds of incremental relabelings, which make alabel more restrictive (or possibly
have no effect).

e Removing a reader. Removing a reader from a policy will restrict the propagation of the labeled
datafurther, if it has any effect at all.

e Addingapoalicy. Similarly, adding anew policy only can restrict the data further, because all policies
in alabel are enforced.

Any sequence of such relabelings will also result in alabel that is at least as restrictive as the original. To
compare two labels and see whether a sequence of such incremental relabelings can be found istrivial.

The subset relabeling rule defined earlier is clearly sound, in that it only permits avalue to be relabeled
to amorerestrictive label. However, it preventsvalid relabelings. There are three kinds of such relabelings,
which are based on the existence of an acts-for relationship between principals:

e Adding readers. It should be possible to add a reader ' to a policy if the policy aready allows a
reader r that r' acts for. Thisrule is safe because if 7' acts for r, it has al of the privileges of r.
Allowing r to read the data also allows all principalsthat act for = to read.

e Replacing owners. It should be possible to replace an owner o with some principal o’ that acts for o.
Thisrule is safe because the new label allows only processesthat act for o’ to declassify it, while the
original label also allows processes with the weaker authority of o to declassify it.

e Self-authorization. If aprincipal o isthe owner of apolicy, it is safe to add as areader any principal
r that actsfor o. We already consider the owner of apolicy to be areader, so it is reasonableto alow
the owner to be added explicitly to the list of readers. Similarly, the addition of readers that act for
the owner should be allowed.

If readers may be added, the doctor in the example is able to view his own report. The confidential
patient information has the label {patient_A: patient_A,doctors}, which allows any doctor to view the data
item, and therefore it should be possible to relabel theitem explicitly to allow aparticular doctor to view it,
e.g., {patient_A: patient_A,doctor_B}. The doctor doctor_B then can view the report, because doctor_B is
areader in every policy in thejoint label.

If ownersmay bereplaced, the output channel in the hospital example (Figure 2-4) will work asintended.
The output channel is labeled as {HMO_records: doctor_B}, which means that the HMO records division
has certified that doctor_B isthe only reader on this channel. With thislabel, the display device can be used
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to display all the information in the patient’s record, since the principal HMO _records acts for patient_A.
Thereis no global notion of the principals that can read from the output channel; data owned by an owner o
can bewritten to this channel only if o truststhe HMO records division (that is, HMO _records can act for o).

The self-authorization rule does not add any significant power to the label model, sincethe policy owner
always can be added explicitly as a reader of the policy. However, it does make the expression of many
common labels more concise.

If the subset relabeling rule is used, then relabelings that add readers or replace owners can be done
only by a process with sufficient authority, using the declassification mechanism. However, because these
relabelings are restrictions, it would be safe for any process to perform them regardless of its authority.
Direct support for the relabelings is therefore consistent with the principle of least privilege [Sal74], since
it avoids unnecessarily vesting excessive privilege in processes.

Extending the label model with support for these relabelings also facilitates the modeling of some
desirable security policies. For example, suppose that a user wants to define security classes in a multi-
level fashion: their own personal unclassified, classified, and secret classes for protecting their data. With
these extensions, these three security classes can be represented as principals in the system, where the
secret principal can act for classified, and classified for unclassified. The user then can assign security
classesto other principals in the system by allowing them to act for one of these three principals; the user
correspondingly marks each dataitem as readable by the appropriate security class principal .

It is not trivial to extend the relabeling rule to permit these relabelings, because we want to preservethe
ability to analyzeinformation flow statically. As pointed out by Denning and Denning [DD77], information
flow should be checked statically (e.g., at compile time) to avoid leaks through implicit flows, which are
discussed later in Section 3.1. The new relabelings above depend on the principal hierarchy as it exists
at run time. The principal hierarchy that exists at run time is likely to differ from the principal hierarchy
at compile time, so the rule for relabeling must work when the principal hierarchy changes. The trick is
to check relabelings statically using a rule that ensures that the relabelings are safe for all hierarchies that
might be encountered at run time at that point in the program.

Thisproblem isaddressed in two steps. The remainder of this section presentsaformal model for labels
that allows a precise definition of legal relabelings. Section 2.4 then defines the rules for static checking
and shows that they are both sound and compl ete.

2.3.2 Interpreting labels

A relabeling is allowed if it does not create new ways for the relabeled information to flow. However, to
characterizethisrule precisely, we need away to interpret alabel: that is, to decide what information flows
are described by a label. It is useful to think of a label as describing a set of flows, where a flow is an
(owner, reader) pair. The set of denoted flows is the label’s interpretation. A flow (o, r) represents a flow
of information from the owner o to the reader r; if the interpretation of a label contains a flow (o, ), it
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means that according to the principal o, the labeled data may be read by the principal r. In general, the
interpretation of alabel includes flows not explicitly stated in the label.

The subset relabeling rule corresponds to a very litera interpretation of alabel as a set of flows: if a
label L hasapolicy K, then thisinterpretation of L containsflows (oK, r) for every reader  inthesetr K.
However, if aprincipal o' isnot an owner in the label, the interpretation of L containsflows (o', r) for every
principal r. In other words, o’ permits flowsto every principal becauseit has not expressed aflow policy for
the labeled data and does not care how it flows. For example, in a system containing three principals A, B,
and C, thelabel {A : B; C : } isinterpreted as the set of flows {(A, B), (B, A),(B, B),(B,C)}. There
areflowsfrom B to every other principal becauseit is not an owner, but no flowsfrom C, sinceit alowsno
readers. If aprincipal o is an owner of multiple policies K;, then the label only describes flows (o, ) for
readersr in theintersection of al the setsrK;. Thisinterpretation is afunction that mapslabelsinto sets of
flows, andis called X. For any label L, the expression Xo(L) isasimple, literal interpretation of L asa set
of flows.

We have seen already that the subset relabeling rule is too restrictive to support certain safe relabelings,
because it does not take the principal hierarchy into account. A more flexible relabeling rule requires an
interpretation function that, unlike X, doestake the principal hierarchy into account.

Despite the limitations of the X interpretation, it has a use here as a shorthand for expressing sets of
flows, precisely becauseitis so literal. Writing down sets of flows is inconvenient because the sets of flows
are usually large and contain uninteresting flows, such asthe many flowsfrom principal sthat are not owners.
However, a set of flows can be expressed unambiguously in a manner that is independent of the principal
hierarchy by writing a label whose interpretation by X is that set of flows. For every set of flows that is
of interest, alabel can be constructed easily whose interpretation by Xg is that set of flows; in this chapter,
these labels are given in place of much longer sets of flows that have the same meaning.

2.3.3 Formalizing the principal hierarchy

To express a richer interpretation precisely, it is necessary to clarify the idea of the principal hierarchy.
If z can act for y, it is denoted formally by the expression z = y. The binary relation > is reflexive and
transitive, but not anti-symmetric: two distinct principals may act for each other, in which casethe principals
are said to be equivalent. A relation of this sort is called a pre-order. The notation P F z > y indicates that
the principal z can act for the principal y in the principal hierarchy P. A principal hierarchy is a pre-order
on principals, and can therefore be treated as a set of ordered pairs of principals that specifies all relations
that exist. With thisinterpretation, P + = > y isequivalentto (z,y) € P. When one principal hierarchy P’
contains more acts-for relations than another, P, we say that P’ extends P, which iswrittenas P’ D P.
The space of principals is assumed to be infinite, immutable, and pre-existing. Of course, a real
implementation must be finite and will allow the creation of new principals. In this model, the creation of a
new principal is treated as the assignment of hew meaning to some already existing (but unused) principal.
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The advantage of this treatment is that a principal hierarchy P isjust a set of acts-for relations; it does not
specify the set of its principals as well.

2.34 Labd interpretation function

The idea behind a richer interpretation is that actual flows denoted by the label depend on the principal
hierarchy. The label interpretation function has the form X(L, P), where X is afunction yet to be defined,
L isthelabel being interpreted, and P isthe principal hierarchy in which it is being interpreted. Taking the
current principal hierarchy as an implicit argument for now, the set of flows X L is the interpretation of the
label L.

Informally, the function X is defined as follows: aflow (o, ') is denoted by alabel L if every policy I
whose owner can act for o permitsthe flow—either explicitly, becauser’ is either amember of the reader set
of I or the owner of I; or implicitly, because some principal r isa member of the reader set (or the owner),
and r' = r. Also, if thereisno policy I whose owner can act for o, the flow is permitted because o does not
care how the data propagates.

There are two intuitions behind this new interpretation. First, if a policy lists a reader r as a reader,
that policy implicitly authorizes as readers all principals v’ such that #' = . This implicit authorization
makes sense because such an ' should possess every power than » does. Second, suppose there is a policy
I in the label owned by a principal o'. In this case, it is as if the label contains policies owned by every
principal o that o' acts for, and these policies have reader sets identical to that of the policy I. In other
words, the policies dictated by o' apply to every principal o that it acts for. In the following sections, the
basis for interpretation function X is developed more carefully, formally specifying X and showing how it
is constructed. This more complex interpretation is then used to develop a less restrictive relabeling rule.

2.3.5 Flow set constraints

If we consider the label as a set of flows, we can see that there are two constraints that a set of flows ought
to satisfy in aparticular principal hierarchy—one constraint on readers, and one on owners. A set of flows
makes sense only if it satisfies both of these constraints. Aswe will see, these constraints underlie the label
interpretation function just described.

The reader constraint corresponds to the first intuition just described: if a set of flows contains a flow
(o,7), and r' isaprincipal that can act for r, then the set must also contain the flow (o, 7). For example,
thelabel {patient_A: doctors} isequivalent to thelabel {patient_A: doctors, doctor_B}, sincethe principal
doctor_B can act for the principal doctors. The reader constraint can be stated more formally as follows,
using the symbol — for implication:

r=r A (o,7) € XL — (o,7') € XL
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However, the reader constraint is not sufficient, because we also want to allow relabelings that change
the label’s owners. Consider the relabeling from {patient_A: doctor_B} to {HMO_records: doctor_B}.
This relabeling effectively transfers the responsibility of controlling the flow of the data from the principal
patient_A to the principal HMO _records. Thistransfer restricts the data's flow, since HMO _records can act
for patient_A. The key insight to allowing this kind of relabeling is expressed as the owner constraint:

o'=0 A (d,r) € XL — (o,7) & XL

The interpretation of this constraint is that when a superior owner states that a flow must not occur, this
flow is removed from the reader sets of al inferior owners (principals that the superior owner acts for).
Restrictions applied by superior owners apply to inferior ownersaswell. However, if a superior owner does
not try to prevent a flow, inferior owners may still prevent it. Thus, the inferior owner’s policy must be at
least as restrictive as the superior owner’s policy.

Using this constraint, the label {HMO_records: doctor_B} is seen to be equivalent to the label
{HMO_records: doctor_B; patient_A: doctor_B}, in the principal hierarchy of Figure 2-3. While the
first label would seemto allow flows from patient_A to all readers, the only flow it allows from patient_A is
(patient_A, doctor_B), because HMO _records > patient_A and the HMO _records policy only allows aflow
to doctor_B.

2.3.6 Labed functions

To help construct the label interpretation function X, two functions are defined that establish the reader
and owner constraints. First, the function R expands the set of readersin apolicy I to include the readers
implicitly allowed by the reader constraint, as well the owner of the policy I and any principals that can
act for it. Given apolicy I, the function produces an expanded policy RI. Using the notation (oI : r) to
denote the policy with owner ol and readers ], the function is defined as follows:

RI=(ol:{r'|r'=0ol vV I(rerl)r =r})

Thisfunction is expressed concisely using afunctionr* that yields the reader set of apolicy, plusits owner:

r'I = (ol :rIU{ol})
RI = (ol :{r|3(r'€r™)r=+"})

For convenience, the application of the function R to an entire label is defined as the label produced
by applying R to each of its individual policiess RL = {RI | I € L}. Suppose R is applied to the
two-policy label Ly = {doctors : patient_A; doctor_B : patient_A, patient_B}, in a principal hierarchy
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doctor_B

doctors

Figure 2-5: A small principal hierarchy

containing only the single relation doctor_B > doctors, as shown in Figure 2-5. In this case, we have
RL; = {doctors : patient_A, doctors, doctor_B; doctor_B : patient_A, patient_B, doctor_B}. Note that
doctors self-authorizesitself as areader in thefirst policy, and that doctor_B istherefore areader becauseit
actsfor doctors.

To establish the owner constraint, the function O converts alabel into a set of flows by restricting it. It
generatesaflow (o, r) only if all operative policiesin the label (those policies I for which oI - o) alow the
flow. Theintuitive effect of O isto remove flows that would violate the owner constraint.

OL={(o,r)|Y(I€L)ol>=0—rerl}

The function also generates a flow (o, r) if there are no policiesin the label for which oI > o, sincein that
case the implication is vacuously true for al policies I in L. These flows capture the intuition that if a
principal does not own apolicy, it allows flowsto all possible readers.

For example, consider applying O to R L1, from the previous example. The set of flows that results is
the interpretation of the label {doctors : patient_A, doctor_B; doctor_B : patient_A, patient_B, doctor_B}
by Xo. Notice that this set of flows includes the flow (doctor, doctor_B) but not (doctors, doctors), even
though thefirst policy in R L, seemsto specify the latter flow. The flow (doctors, doctors) is eliminated by
O because the owner of the second policy, doctor_B, does not allow a flow to doctors, and doctor_B acts
for the owner of thefirst policy, doctors.

As we would expect, R. is monotonic with respect to reader sets that it is applied to, in the following
sense; if rI; D rl, and ol; = ol , thenrRI; D rRI>. O isaso monotonic in reader sets; if L1 and L»
are two labels that differ only in the reader sets of their respective policies I; and I, with o/; = ol and
rly D ril, thenOL, DO OL,.

However, the functions differ in their behavior as the principal hierarchy changes. To show this, the
principal hierarchy P must appear as an explicit argument to the functions. If the principal hierarchy P’ is
an extension of P (that is, P’ D P), then the following relations hold:

rR(I,P') 2 rR(I,P)
O(L,P') C O(L,P)

Unlike R, the function O is anti-monotonic in its argument P.
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By composing the R. and O functions, we obtain the label interpretation function X, which maps alabel
to a set of flows, given a particular principal hierarchy.

Definition of theinterpretation function X

XL

ORL=O{RI|I€L}=
= {(o,r)|Y(I € L)ol =0 — r € rRI}
= {(o,r) |V(I €eL)ol=0o— [r=ol vV I(r' erl)r=1"]}

The result of XL satisfies both the reader and owner constraints, since O preserves the reader constraint
established in each policy by R. The result is that this formula has the same meaning as the informal
definition for X presented earlier in Section 2.3.4. We have already seen an example of the application of X
to the label {doctors : patient_A; doctor_B : patient_A, patient_B}, because the earlier examples applied
R and O sequentially toit, just asin the definition of X.

The function X can now be used to express the correctness condition for relabeling in the presence of
an arbitrary principal hierarchy. The relabeling from L4 to L, in principal hierarchy P isvalid aslong asno
new flows are added. Making the principal hierarchy an explicit argument to X, the correctness conditionis
the following:

Correctness condition

X(L1, P) D X(L>, P)
Relabeling from L, to L, issafein P

We can apply this rule to show the validity of the relabeling from L; = {patient_A: doctors} to Ly =
{HMO_records: doctor_B}, using the principal hierarchy of Figure 2-3. Applying X to L, gives us a set
containing the flow (HMO _records, doctor_B) and the flows (p, doctor_B) for every patient p (since HMO
actsfor al patients), as well as other flows (o, r) for unrelated owners o and all readers». Applying X to
L, givesus aset containing all these pairs and more: (HMO _records, r) for every r, for example. Because
XLy D XLy, therelabeling from L; to L, is safe.

Because the function X is a composition of R and O, it is monotonic with respect to reader setsin L,
but neither monotonic nor anti-monotonic with respect to P. It also has some other interesting properties.
We can interpret the set produced by applying X to alabel asalabel itself (although one that istoo large to
write down!); thisis the label in which every flow is mentioned explicitly, even the flows from owners that
allow all readers. With this interpretation, we can see that like O and R, the function X is idempotent; that
is, XL = XXL.
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2.4 Checkingrelabeling statically

Static checking of programs containing label annotationsis desirable becauseit allows precise, fine-grained
analysisof information flowsand can captureimplicit flows properly [DD77], whereasdynamic label checks
create information channels that must be controlled through additional static checking [ML97]. However,
the correctnesscondition (XL, D X Ly) derivedin Section 2.3 cannot be used directly in static checking since
it dependson the principal hierarchy at the time that the relabeling takes place, while static checking is done
earlier, perhapsas part of compilation. The principal hierarchy may have changed between compilation and
execution, so the full run-time principal hierarchy is not available when relabeling is checked. Therefore,
relabeling must be checked using only partial information about the principal hierarchy.

In this section, ageneral rule is developed for checking relabelings statically, using partial information
about the principal hierarchy. Section 2.4.1 begins by giving a sketch of how programs are annotated.
Section 2.4.2 demonstrates that defining a sound relabeling rule for static environment is non-trivial. Then,
Section 2.4.3 defines a relabeling rule for static checking and shows that it is both sound and complete.
Finally, Section 2.4.4 showsthat the label model has the lattice properties needed to support label checking
and automatic label inference in a static environment.

2.4.1 Annotations

Programs are statically annotated with information about the labels of data that they manipulate. A static
label checker uses these annotations to analyze information flows within these programs and determine
whether the program follows the information flow rules that have been described.

In Chapters 3 and 4, a set of language annotations is described that permits static information-flow
checking. The following summarizes the features that are important for understanding how static analysis
affects the model:

e All variables, arguments, and procedure return values have labeled types. For example, a labeled
integer variable might be declared as int{patient_A: doctors} x;. The label may be omitted from
aloca variable, causing it to be inferred automatically. If the label is omitted from a procedure
argument, it is an implicit parameter, and the procedure is generic with respect to it.

e Thestatement actsFor(p1, p2) S alowsarun-time test of the structure of the principal hierarchy. The
statement S is executed only if the principal p; can act for principal p». The label checker then uses
the knowledge that p1 > p> when checking relabelings that occur within S. The statement also has an
optional else clausethat is executed if the specified relationship does not exist.

e The expression declassify(e, L) relabels the value e with the label L. The label L may add readers
to the label of e for some owners o;, or remove some owners o;; the statement is legal only if it is
statically known that the process can act for each of the o;.
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int{patient: doctors} x;
int{patient: doctor_B} y;
actsFor (doctor_B, doctors) { y = x; }

Figure 2-6: Assignment using the static principal hierarchy

e Procedures are assigned a principal when they are compiled; this principal derives from the user who
is running the compilation. When aprocedureis called it always runs under this authority. Code that
calls a procedure also can grant the called procedure the authority to act for one or more principals
the caller actsfor, but this grant must be made explicitly.

For example, the assignment from x to y in Figure 2-6 is legal because within the body of the actsFor
statement, the checker knows that doctor_B can act for doctors.

For each program statement that the label checker verifies, some acts-for relations can be determined
to exist, based on the lexical nesting of the actsFor statements. These relations form a subset of the true
principal hierarchy that exists at run time; all that is known statically is that the true principal hierarchy
contains the explicitly stated acts-for relations.

Using thisfairly general model for programming with static information flow annotations, the challenge
isto define a sound (conservative) rule for checking relabelings.

2.4.2 Static correctness condition

When a program assigns a value to a variable, it relabels the data being assigned, because the value's
label is changed to be the same as the label on the variable. This relabeling is sound as long as it does
not create new ways for the assigned data to flow. One example of a sound relabeling rule is the original
subset relabeling rule of Section 2.1.3. For this rule, the monotonicity of X guarantees that the correctness
condition holds, regardless of the run-time principal hierarchy. However, the subset relabeling rule, aswe've
seen, is excessively restrictive. We would like arule that usesthe information about the principal hierarchy
that is available statically.

Let P be aprincipal hierarchy that contains only the acts-for relations that are statically known based
on the containing actsFor statements. This principal hierarchy is called the static principal hierarchy. The
actual principal hierarchy at run time is an extension of P; it must contain all of the acts-for relations in
P, but may contain additional relations. If P’ is the actual principal hierarchy, we have P’ O P. Using
this notation, and introducing the principal hierarchy as an explicit argument to the function X, the static
correctnesscondition saysthat it is safe to relabel from L, to Lo in P if the following condition holds at the
time of static checking:
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Static correctness condition

V(P' D P) X(L1,P') D X(La, P')
Relabeling from L1 to L, is statically safein P

It is interesting to note that a more restrictive static correctness condition, V(P) X(L1, P) 2 X(Ly, P), is
almost the same as checking the subset relabeling rule (the difference is that is allows self-authorization).
The subset relabeling rule expressesthe requirement that arelabeling be safein al principal hierarchies, but
what we want is arelabeling rule that takes advantage of information about the run-time principal hierarchy,
as expressed by the condition P’ O P in the static correctness condition.

One might expect that to check whether arelabeling is valid, we could check aweaker condition, which
simply applies the correctness condition directly to the static hierarchy P:

X(L1, P) 2 X(Lo, P)

By construction, thisrule allows all valid relabelingsto take place; if arelabeling is not allowed by thisrule,
then it creates new flows in the principal hierarchy P. Therefore, this rule is necessary but not sufficient.
The following example will show that this rule is not sound.

Consider the following (bad) relabeling from L4 to Ly, where L1 is the same label that was used in the
examples of Section 2.3.6:

L, = { doctors: patient_A; doctor_B: patient_A, patient_B }
L, = { doctors: staff, patient_A ; doctor_B: patient_A, patient_B }

Now, consider what happens when we apply X to each of these labels while assuming that the principal
hierarchy P contains a single relation doctor_B > doctors that is known to hold at compile time; in other
words, the principal hierarchy shown in Figure 2-7(a). The result of X when applied to each label is a set
of flows, which iswritten asalabel for brevity, using the X, interpretation:

doctor_B doctor_B patient_B
doctors doctors staff
@ (b)

Figure 2-7: Two small principal hierarchies
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X L1 = { doctors: patient_A, doctor_B; doctor_B: patient_A, patient_B, doctor_B }
XLy = { doctors: patient_A, doctor_B; doctor_B: patient_A, patient_B, doctor_B }

Note that XL, does not contain the flow (doctors, staff) because the superior owner doctor B rules it
out. It would seem that the relabeling is safe because these two label interpretations are equal. However,
suppose that the run-time principal hierarchy isthe one shown in Figure 2-7(b); that is, patient_B isalso a
staff member (patient_B > staff). Applying X to each label using this hierarchy leads to a quite different
conclusion:

X L1 = { doctors: patient_A, doctor_B; doctor_B: patient_A, patient_B, doctor B }
XLy = { doctors: patient_B, patient_A, doctor_B; doctor_B: patient_A, patient_B, doctor_B }

The relabeling is invalid under the principal hierarchy P’, because it adds the flow (doctors, patient_B).
This example shows that the correctness condition cannot be applied directly as a static relabeling rule.
24.3 A sound and completerelabeling rule

Now let us examine arelabeling rule that doeswork. If L1 can berelabeled to L, under principal hierarchy
P, itwill bewrittenas P L1 C Ly, an expression that is defined formally as follows:

Definition of the completerelabelingrule (C)

(P L1C Ly)
(PFICJ) = PFoJ>ol AN rJ CrR(I,P)

VIel)3(Jel)P-ICJ

ProJ=ol ANV(rjerJ)[Ptrj=ol V A(r;erl) PFrjrr]

PFoJ>ol A r"JCrR(I,P)
= ProJ=ol AY(rjertJ)3(rier™I)Prrj>=r

The rule for checking a relabeling from label L, to label L, is straightforward: for every policy I in Ly,
there must be a corresponding policy J in L, that is at least asrestrictive as I. If the policy J is at least as
restrictiveas I in the principal hierarchy P, it will beexpressedas P - I C J, which alsoisdefined formally
in the figure. This condition will also be described informally as“J covers I”; informally, the relabeling
rule saysthat any policy may be replaced by a policy that coversit.

The policy covering rule is stated four different ways. The second and fourth statements of the policy
coveringrule are simply expansionsof thefirst and third, respectively, but it may not be obviouswhy thefirst
and third definitions are equivalent. Thefirst definition containsthe conditionrJ C rR(I, P), and thethird
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replaces this condition with r*J C rR(Z, P). Thefirst definition implies the third because P - oJ = ol
implies o € rR(I, P), which impliesr™J C rR(I, P) in conjunction with rJ C rR(I, P). The third
definition impliesthe first because the statementrJ C r*J transitively impliesrJ C rR(I, P). Therefore,
the two definitions are equivalent. When the complete relabeling rule is used in the following sections, the
most convenient definition for each use will be selected.

The difference between this relabeling rule and the unsafe relabeling rule of Section 2.4.2 can be
explained simply. Therule here saysthat for every policy I in L1, asinglepolicy J in L, must cover it. The
earlier, unsafe rule effectively allows multiple policies in L, to cover a policy in L;. When the principal
hierarchy is extended, these policies can interact in unexpected ways and fail to cover 1.

Thebinary relation C is defined on labelsfor any principal hierarchy P. Therelationisapre-order: it
is transitive and reflexive, but not anti-symmetric, since two labels may be equivalent without being equal.
If A and B are equivalent, wewrite A ~ Btomean AC B A BLC A. For example, with the hierarchy
of Figure 2-3, the labels {HMO: doctors} and {HMO: doctors, doctor_A} are equivalent. Every principa
hierarchy generates a pre-order on labels, defining the legal relabelings.

The nature of the relabeling rule can be understood by considering the incremental relabelings that it
permits. We have already seen in Section 2.3.1 that the subset relabeling rule can be characterized by two
incremental relabeling rules. The new relabeling rule also allows the three additional relabelings described
in Section 2.3.1 that the subset relabeling rule does not permit. The result is that this new rule allows an
arbitrary sequence of any of the following five kinds of relabelings, each of which is sound individually:

e A reader may be dropped from some owner’s reader set.

A new owner may be added to the label, with an arbitrary reader set.

A reader may be added if it acts for a member of the reader set.

An owner may be replaced by an owner that actsfor it.

e A reader may be added if it acts for the owner.

Interestingly, these incremental relabelings also capture all of the sound relabelings. In other words,
the rule for C on page 41 is both sound and complete, and therefore is called the complete relabeling
rule. The rule is complete in the sense that it exactly captures the set of valid relabelings, with respect
to the static correctness condition defined in Section 2.4.2, and using our assumptions about the static
checking environment. Now let us consider the proofs of these statements, which are given in Figures 2-8
though 2-10. (The relabeling rule has also been checked for soundness using Nitpick, a counter-example
generator [JD96].)

Soundness. If the rule is sound, then if the relabeling rule holds for some principal hierarchy P, the
correctness condition holds for all possible extensions P':

(Pt L1E Ly) — [V(P' 2 P) X(L1, P') 2 X(L2, P")]
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P+-LiCLy (Assumption) (D)
POP (Assumption/arbitrary P')  (2)
(o,7) € X(La, P') (Assumption/arbitrary o,7)  (3)
(o,r) & X(L1, P") (Assumption) (4)
VIeL)3I(JeL)PrICJ (1, Defn. of C) (5)
V(I € Ly) PP'-ol>=0—r€rR(I,P) (3, Defn. of X) (6)
I e L) P Fol=o A r¢rR(I,P (4, Defn. of X) (7)
LELL A P'Foli=0 A r&rR(Iy, P') (7,1 = 1) (8)
V(r'erth) —~(P' Fr>=r') (8, Defn. of R) 9)
IJeLy)PFLTJ (5, 8) (10)
PrFoJy=ol; A I’+J1 - rR(Il,P) (11, Defn. of E) (12)
P+ 0J1 >~ olp (2, 12) (13)
P'+FoJi>=o (8, 13) (19
P'FoJi=0—r €rR(Jy, P) 6, 1= Jp) (15)

r € rR(Jy, P') (14, 15) (16)
Ar' ertJ) P Er=r (16, Defn. of R) a7

ro €rtJL A P br>=rs a7,7" = rp) (18)

V(rjert)I(rierth)Plrj=r (12, Defn. of R) (29)
E(Ti € I’+Il) Prro=r; (18, 19, i = 7‘2) (20)

ri €rthi A PEro>rq (20, T = 7”1) (21)
P'Frorm 2, 21) (22)
Prrsm (18, 22) (23)
(P e ) (9, 21) (24)
contradiction (23, 24) (25)
(o,7) € X(Lq, P") (4, 25) (26)
V(o,7) (0,7) € X(L2, P') — (0,7) € X(Ly, P") (3, 26) (27)
X(Ly, P") 2 X(Lz, P') (27) (28)
V(P' 2 P) X(L1,P") D X(Ly, P') (2, 28) (29)
PFLiELy, — V(P D P)X(L1, P D X(Ly, P') (l, 29) (30)

Figure 2-8: Proof of soundness

A formal proof of this statement is given in Figure 2-8, using the definition of C for policies given on
page4l. Somecommentsabout the proof notation arein order. Inthisproof, theintroduction of ahypothesis
isindicated by an increasein the level of indentation. The notation z = y is used in the right-hand columns
when y is substituted for = in some statement. This step happens when a formula3z P(z) is replaced by
P(y), wherey isafresh variable, as at step 8; it also happenswhen aformulaVz P(z) isinstantiated on an
existing expression y, producing P(y), asat step 20.

The proof can be argued informally asfollows. Soundnessis proved by contradiction. Supposethat L
can berelabeled to L, in P, P! O P, and X (L1, P") does not contain some flow (o, 7). We will show that
(o,7) cannot bein X(Ly, P') either, and that therefore the relabeling is safe. If (o,7) isnotin X (L, P'),
there must be some policy I; in L; that suppressesit (i.e,, r ¢ rR(I1, P') and P’ - oIy > 0). Because
P L1 C Ly, thereis apolicy Ji in Ly that covers I;: rtJ; C rR(I1, P) and P - oJ1>=0l;. Since
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-(PF LiC Ly) (Assumption) (D)

AI € L) V(J € Ly) ~(P+HICJ) (1, Defn. of C) (2
I e L1 A V(JELz) ﬁ(Pl—Ing) (2,I:>11) (3)
V(J € Ly) PFoJ >0l — 3(r; erd) r; € rR(I1, P) (3, Defn. of ) (4)

Now, let F' be a Skolem function that mapsfrom any J such that
J € Ly and P - oJ > ol to acorresponding r;, as described

in step 4: (Define F) (5)
\V/(J S L2) ProJ>=o0l,— FJ g I'R(I]_,P)

Ly={J|J€L, A ProJ>ol} (Define L) (6)
Let r beafresh principal with no relation in principal hierarchy .

P to any ownersor readersin Li or L. (Define r) )
Ran = (Urer, "D Y (Ujer, ') (Define Ray) )
V(r' € Ray) "(PFr=7") A ~(PFr'=r) (7, 8) 9
P =PU{(r,r")|3(J € L) PFFJ>=r'} (Define P') (20)
V(r' € Roy) (P'Frx=r"—-3(Je L)) P-FJ=r) (9, 10) (11)

Figure 2-9: Proof of Completeness, part 1

Pt oJi>=o0l,wehave P’ oJ1 > oIy, and transitively P’ - 0J1 = o.

Now, assumetheflow (o, r) isamember of X(Ly, P'). Wewill show that this generates a contradiction.
Because P' F o.J1 > o, there must be some reader r, in rt.J; such that P’ + r>r5. Sincert.J; C
rR(I3, P), r must also be a member of rR(I3, P). There must be another reader r; in r*I; such that
P+ ry = r1, whichmeansthat P’ + r, = r1, and transitively, P’ - r = r1. But this contradicts the statement
that » ¢ rR(I1, P’).

By contradiction, we conclude (o, r) & X (L, P'). Becauseflowsnot in X(L1, P') arenotin X(Ly, P')
either, every flow in X(L,, P') isalsoin X(L1, P'). Therefore, the relabeling rule is sound.

Completeness. We must show the converse:
[V(P' 2 P) X(L1,P') D X(L2, P')] = (P F L1 C L)

We prove this statement by contradiction: if arelabeling isrejected by therule (L, £ L), wecanfind a P’
suchthat P’ O P but X(L1, P") 2 X(Ly, P"). In other words, if arelabeling is rejected, it might result in a
leak. This proof isgiven formally in Figures 2-9 and 2-10. Part 1 shows how to construct the new principal
hierarchy P’, and Part 2 showsthat the relabeling is unsound in that principal hierarchy. The argument goes
asfollows:

If =(P F LiC Ly), there must be some policy I; in L; such that for every policy J in L, where
oJ = ol1,rJ € rRI;. Consider an arbitrary such policy J in L,. If thereisno such J, the relabeling leaks
evenin P. For each such policy J, it must have areader r; wherer; € rJ butr; & rRI;. Wewill now use
the readers r; of every such J to construct a principal hierarchy P’ that extends P and resultsin aleak.

Consider aprincipal hierarchy P’ that isexactly like P, except that thereis an additional principal r that
in P isunrelated to any of the ownersor readersin Ly and L. It isassumed that new principal s aways can
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(oI, r) € X(L1, P") (Assumption) (12
V(I € Ly) P' F ol =ol; - r € rR(I, P') (12, Defn. of X)  (13)
P' ol =0l —»r € rR(I1, P') (3,13, I = 1) (14
r € rR(Iy, P') (13, Reflexivity)  (15)
A erth) P Er=r (15, Defn. of R)  (16)
ro€rthL AP Frer 16, r' = ry) a7
JJ €LY PFFJx=r (11, 17) (18)
Jiel, N Pr-oJi=olh AN P-FJy =15 (6, 18, J = J]_) (19)
FJy g rR(I]_, P) (5, 19) (20)
V(r'ertl) =(P+ FJy=1") (20, Defn. of R)  (21)
ﬁ(P F FJ]_ i 7“2) (17, 21) (22)
contradiction (19, 22) (23

(oly,r) & X(L, P") (12, 23) (24)

(olh,r) & X(La, P") (Assumption) (25
AI e L)ol+olb = A r &rRI} (25, Defn. of X)  (26)
Ja€ Ly N PPFods=0l1 A r &rR(Jy, P) (26, I = Jy) (27)
—(P I 0oJs = ol) (Assumption) (28)

(0Js,061) € (P' — P) (27, 28) (29)

oJy=r (10, 29) (30)

contradiction (7, 30) (31)
P+ oJy>=ol (28,31) (32
ra=FJ4 (5, 31, definery)  (33)
ra €rtJdy A rg € TR(I1, P) (4,5, 33) (34
Pkr=ry (10, 34) (35
V(r' e rtdy) ~(P' Fr=r') (27, Defn. of R)  (36)
=(P'Fri=ry) (34, 36) 37
contradiction (35, 37) (38)

(oly,r) € X(La, P") (25, 38) (39

X (L1, P') 2 X(La, P') (24, 39) (40)

A(P' 2 P) X(Ly, P') 2 X(Lo, P') (10, 40) (41)

~(PF LiC Ly) » 3(P' D P) X(L1, P') 2 X(Lo, ') (L, 41) (42)
M(P' D P) X (L1, P') D X(L3, P')] = (P+ LiCLy)  (42) (43)

Figure 2-10: Proof of Completeness, part 2

be added to the principal hierarchy after static checking, so such a principal always potentially exists. We
form P’ by adding arelation (r, r;) for each r; and taking the transitive closure:

P'=PU{(r,r")|3rj: (rj,r") € P}

Notethat since P isapre-order, therelation (r, r) isalready amember of P. Because P’ isatransitive closure
of areflexiverelation, it is a pre-order too. Using this definition for P’, wefind that (oI1,r) € X(Lz, P')
but (ol1,7) & X(L1, P'): therelabeling causesaleak in P'. Therefore, the relabeling rule is complete.
This completeness result can be strengthened further. This rule is complete even in the presence of
negative information about relationshipsin the principal hierarchy. In fact, negativeinformation is available
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in the else clause in the actsFor statement. Because actsFor tests whether one principal can act for another,
in the body of the else clause it is known statically that the specified principal relationship does not exist.
This static information could be used to establish an upper bound on the dynamic principal hierarchy, just as
the static principal hierarchy establishes alower bound. However, an upper bound is not useful in checking
relabelings: the proof for completeness still holds in the presence of an upper bound on P’, because we can
choose an arbitrary r that is not mentioned in the upper bound.

24.4 Static checking

The label model must have certain lattice properties in order to support static checking. Checking of
assignments has already been explained by the complete relabeling rule. But the label s being compared may
betheresults of joins (to account for computations), and meets (which occur during the process of automatic
label inference). Therefore, join and meet also must be defined. Join was defined earlier in Section 2.1.4,
but it is revisited here in the context of the new definition of therelation C .

Labelsform a pre-order rather than alattice or even apartial order, because two labels can be equivalent
without being equal. However, labels do preserve the important properties of a lattice that make static
reasoning about information flow feasible: any pair of elements possesses least upper bounds and greatest
lower bounds. Because labels form a pre-order, these bounds are equivalence classes of labels rather than
single labels. The set of labels also has a bottom element (L), which is the label {}. For mathematical
completeness, the set of labels is considered to have a top element, T, which is more restrictive than any
other label. In addition, the join and meet operations distribute over each other.

The definitions of join and meet have the desirable properties that join and meet are easy to evaluate and
that the resulting labels are easy to deal with when applying the complete relabeling rule.

Join. Using the new definition for the relation T, we can now revisit the definition for the join, or least
upper bound, of two labels. Thejoinisuseful in assigning alabel to the result of an operation that combines
several values, such as adding two numbers. The result of adding two numbers ought in general to be
restricted at least as much as the numbers being added. However, we would also like not to restrict the sum
unnecessarily; therefore, it is assigned the least restrictive label that is at least as restrictive as both input
labels. In alattice, thereisauniqueleast label; however, uniquenessis not important for our purposes. Any
label within an equivalence classis acceptable aslong asit can be relabeled to every label that is at |east as
restrictive as the input labels.

Thejoin of two label expressions can be defined quite simply; the definition of Section 2.1.4 still holds
with the complete relabeling rule:

Definition of join

LiULy;=L1UL>
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The following are examples of join expressions, where A, B, and C are principals unrelated by the
acts-for relation:

{A:B}u{B:C} = {A:B;B:(C} (2.1)
{A:B}u{A:B,C} = {A:B} (2.2
{A:B}u{A:C} = {A:B;A:C} (2.3

After doing ajoin, a compiler often can simplify the label expression by removing redundant policies,
so that future checking steps run more efficiently. This simplification has been performed in the second
example, whereas neither policy is redundant in the third example. A policy is redundant if the relabeling
rules behaveidentically for the label regardless of whether the policy is present. Onepolicy (oI : rI) makes
another policy (oJ : rJ) redundant if o/ = oJ andrI C rR.J. In all possible relabelings involving such a
label, the presence of policy J will not affect the validity of arelabeling.

We can now see why it is important that owners be repeatable in labels: it completes the lattice of
equivalence classes. If repeated owners were not allowed, there would be no least upper bound for many
pairs of labels. Consider the third example again, but disallowing repeated owners. If A’ isanother principal
with A’ > A, and it is the only such principal, then the least restrictive labels that both { A: B} and {A: C'}
could be relabeled to would include {A: }, {A: B; A": C}, and {A": B; A: C'}, none of which can be
relabeled to any other. There would be three upper bounds in different equivalence classes, but no least
upper bound for these two labels.

The join operation just described produces the least upper bound of two labels. This can be seen by
interpreting ajoin result as a set of flows, in an extended principal hierarchy P’. It follows directly from the
definition of X that for all such hierarchies P/,

X(AUB,P') = X(A4,P') N X(B, P

This result follows because X I takes the intersection of the sets of flows generates by each of the policies
in the label L. This equation means that there is no label less restrictive than A L B that both A and B can
be relabeled to. The result of the join operator can be relabeled to every label that both A and B can be
relabeled to, and every label that has this property is in the same equivalence class as the result of the join
operator, since it hasthe same interpretation as a set of flows. This equivalence class defines the least upper
bound of the two labels.

Declassification. In Section 2.1.5, the rule for declassification was presented as follows: the label L1 may
berelabeledto L, aslongas .1 C L, LI L 4, where L 4 isalabel containing exactly the policies of the form
{p :} for every principa p that the process can act for. This definition continues to have the intended effect
with the complete relabeling rule, and can be performed statically if there is a static notion of the process
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authority, which is called the static authority here.

Because .1 must be capable of relabeling to L, LI L 4, every policy in L1 must be covered by some
policy in L, L. However, the policies in L, that are owned by a principal in the static authority are
automatically covered by policies in L 4. Only policies in L; not owned by any principal in the static
authority need be covered by L,, so the effect is that policiesin L, that are owned by the static authority
may be weakened arbitrarily by declassification.

Reasoning about joins. Palicies in ajoin independently can be relabeled or declassified. This property
is important because it alows checking of code that is generic with respect to some of the labels that
appear init. In the case of declassification, there are no surprises for the declassifying principal: the set of
flows that are added by declassifying ajoin is always a subset of the set of flows that would be added by
declassifying the individual policies. There are no interactions between the two parts of the join that create
new, unexpected flows.

For example, if label L1 can berelabeled to L,, then L1 LI L3 can berelabeled to L, LI L3, regardless of
what L3 is. Lz may be an unknown label, or even alabel that is determined at run time, without invalidating
therelabeling. Similarly, if L1 can be declassifiedto Lo, then L1 LI L3 can be declassifiedto L, LI L3. These
relabelings and declassifications work because the join guaranteesthat all policiesin Lz will be respected.

Meet. The meet or greatest lower bound of two labels is the most restrictive label that can be relabeled

to both of them. The meet of two labels is not produced by computations during the program’s execution,

but it is useful in defining algorithms for automatic label inference [DD77, ML97]. The meet is useful for

inferring the labels of inputs automatically, just asthe join is useful for producing the labels of outputs. For

example, in the following code, the most restrictive label x could have can be expressed by using a meet:
Int Xx;

int{A}y;
int{B} z;

y=x
Z =X
In this example, the variablesy and z have labels of A and B respectively. The variable x can be assigned
any label C so long as it can be relabeled to both A and B. Therefore, AN B is an upper bound on the
label for x. The algorithm for inferring variable labels that is described in Chapter 5 uses a succession of
meet operations in this fashion, refining unknown variable labels downward until either all variables have
consistent assignments or a contradiction is reached.

To construct the meet of two labels, let usfirst consider the meet of two policies J and K. If thereis
no statically known relation between the owners of these policies, the meet is {} because no other label can
be relabeled to both J and K. This result is obtained when either J or K is uninterpreted (e.g., is alabel
parameter), or when both have known ownersbut no rel ationship isknown statically to exist betweenthem (by
some containing actsFor statement). Otherwise, supposethat J = {o:r1...7p} and K = {o' : 7} ... 7}, }.
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Definition of meet

A=Ll;a;

Figure 2-11: The meet of two labels

If o' canact for o or they areequal, the meet of thetwo policiesis{o : r1...7,, 7] ... 7, }. If o' isequivalent

/

but not equal to o, the meet of the two policiesis{o : r1...rp, 7 ...70; o' @ r1...rp, 7. .70}, This

label is equivalent to other, simpler labelssuchas{o : r1...7,, 7} ... 7, }, but it is chosen because it is
symmetrical with respect to the two policies.

Now, consider the meet of two arbitrary labels. Because alabel containing several policiesisthe join of
these poalicies, the meet can be computed by distributing the meet over both joins. The result of the meet,
shown in Figure 2-11, is the join of all pairwise meets of policies, using one policy from each label. In
the figure, labels A and B are composed of policies a; and b;, respectively. Some of these pairwise meets
a; Mb; may produce the label {}, which of course can be dropped from the join.

Aswith join, the validity of this formulafor meet can be seen by using the interpretation function X. If

P' is some extension of the principal hierarchy used to compute the meet of labels A and B, then
X(ANB,P") D X(A,P)UX(B,P")

Unlike the formula for join, the definition of meet does not always produce the most restrictive label
for all possible extensions P’, though it produces the most restrictive label existing in the static principal
hierarchy. This result occurs because the rule for joining two policies returns {} when the owners are not
known statically to have a relationship, though in the run-time hierarchy, a relationship may exist. The
practical effect is that label inference must be conservative in some cases. These cases do not seemto bea
significant problem since even explicit label declarations do not work in those cases: any explicitly declared
label more restrictive than {} would cause static checking to fail.

Distribution properties. It can also be shown straightforwardly that join and meet distribute over each
other in the expected way for distributive lattices, producing equivalent labels:



This means that a static checker doing label inference as described elsewhere [ML97] can rely on the
properties of meet and join to ssimplify label expressions.
Thefirst equation follows trivially from the definition of meet:

AN(BUC) = (|_|Z.ai)|_|((|_|jbj)|—1(|_|k0k))
= (uz,]al 1 b]) L (I—li,kai Il Ck)

= (ANB)U(ANCQO)

Proving the second equation is only slightly harder:

(L;ea b (Lo (L o0 0 (L er))

L, jainad) |_| jainb) U (L] i ne) U(L], b Mex)

Lianu (U, ainadu (L, jainbpu (L] aine) (L, bine)
| ].a:) |_| b; Mek)

= AU(BNC)

(AUB)N(ALC) =

((
(
(
(

The only tricky step is the fourth one, which relies on an absorption property for policies a and b:
all(aMb) =~ a. Because of this property, the term (|l; a;) makes redundant other terms containing
meets with a;.

The absorption property follows directly from the definition of meet for policies, because in any label
containing both the policies a and a M b, the latter term will be redundant. To see why, consider the three
possible cases for the result of the expression aMb, wherea = {o i rq,...,rpyandb = {o' : ry,...,r, }.
In the first case, the meet may be {}, in which case the absorption property holds sincea LU {} = a. The
second caseiso = o' or o' = o (but 0 and o’ are not equivalent); in that case,

u(aﬂb):{o:rl,---,rn; 0:7"1,...,7"77,,7"1,...,7’;}%(1'

because the second policy is weaker than or equal to the first. The absorption property also holds in the
third case, where o and o’ are equivalent:

. . . / /. / . ! !
U(ambd) = {o0:ry,..oyTn; OIT1y ooy Ty Ty ey Ty O ST1 ey Ty Py e ey T b

Q

a

Again, the second and third policies are redundant.
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2.5 Output channels

It isassumed the privateinformation is not leaked by computation, even computation performed by untrusted
programs, aslong asthelabel disciplineisobserved. Informationisleaked only through transmission outside
the region where labels are enforced. Note that the region of enforcement may include many computers
and networks, but that there is no control over humans, who may chooseto violate the rules. The reader-set
component of an output channel policy is the characterization of the part of the outside world that the
output channel leads to. It is essential that the output channel be labeled properly, because information
is transmitted through an output channel based on whether its label can be relabeled to that of the output
channel.

Because the output channel has a decentralized label, there does not need to be any universally accepted
notion of the readers on an output channel. The effect of the relabeling rulesis that a principal p effectively
accepts the reader set of apolicy only if the owner of the policy acts for p. In fact, the process of creating
labeled output channels can be described rather neatly with almost no additional mechanism. The only
additional mechanism needed is the ability to create araw output channel: an output channel with the label
{}. Data can be written to such a channel only if it has no privacy restrictions, so the creation of such a
channel is a safe operation: the channel cannot leak any private data.

Labeled output channels can be constructed on top of raw channels in a straightforward manner. A
labeled output channel is simply a function that accepts data with label . and performs the following three

steps:
1. an optional transformation of the data, such as encryption with a public key,
2. declassification of the transformed data to the label { },

3. and transmission over the raw output channel.

Step 2 can be performed only if a function runs with the authority of all the owners of the label L. In
other words, the labeling system ensures that the owners of all the policies that the output channel claims
to enforce must have granted their authority to the process that creates the output channel; these owners
explicitly trust the output channel. How these owners decide to grant their authority to the output channel is
outside the scope of this thesis, but the granting of authority should be based on the belief that the channel
delivers datato at most the listed readers. Two possible reasons for this belief are the following:

e The physical connection that the raw channel models is known to be a secure connection to at most
the listed readers.

e Data being sent on the channel is encrypted in such a way that only the intended recipients will be
able to decrypt it.
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2.6 Generalizing labelsand principals

There are several interesting ways to extend the basic label model described so far. In this section, afew of
them will be considered.

2.6.1 Integrity policies

We have seen that the decentralized |abel model supportslabels containing privacy policies. All of the struc-
ture that has been devel oped to this point can now be applied to integrity policies. Integrity policies[Bib77]
are the dual of privacy policies. Just as privacy policies protect against data being read improperly, even
if it passes through or is used by untrusted programs, integrity policies protect data from being improperly
written. An integrity label keeps track of al the sources that have affected a value, even if those sources
only affect the valueindirectly. It prevents untrustworthy data from having an effect on trusted storage.

The structure of a decentralized integrity policy is identical to that of a decentralized privacy policy.
It has an owner, the principal for whom the policy is enforced, and a set of writers: principals who are
permitted to affect the data. A label may contain a number of integrity policies on behalf of various owners.
The intuitive meaning of an integrity policy is that it is a guarantee of quality. A policy {o : w1, w3} is
a guarantee by the principal o that only w1 and w, will be able to affect the value of the data. The most
restrictive integrity label isthe label containing no policies, { }. Thisisthelabel that provides no guarantees
as to the contents of the labeled value, and can be used as the data input only when the receiver imposes no
integrity requirements.

Using an integrity label, a variable can be protected against improper modification. For example,
suppose that a variable has a single policy {o : w1, w,}. A value labeled {o : w1} may be written to this
variable, because that value has been affected only by w4, and the label of the variable permit w; to affect
it. If the value were labeled {o : w1, w3}, the write would not in general be permitted, because the value
was affected by w3, aprincipal not mentioned as an allowed writer in the label of the variable. (It would be
permitted if w3 = w,.) Finally, consider avaluelabeled {o : w1; o' : w3}. Inthiscase, thewriteis permitted,
becausethe first policy saysthat o believesonly w; has affected the value. That the second policy exists on
behalf of o' does not affect the legality of the write to the variable; it is a superfluous guarantee of quality.

Just as with privacy policies earlier, assignment relabels the value being copied into the variable, and to
avoid violations of integrity, the label of the variable must be more restrictive than the label of the value. In
the preceding sections, arelabeling rule has been developed for privacy. We will now seethat thiswork also
can be applied to integrity labels. In Section 2.4.3, it was said that any legal relabeling for privacy policies
can be characterized by a set of five incremental relabelings. This characterization was attractive because
it is easier to judge the correctness of an incremental relabeling. For an integrity label, there are also five
incremental relabelings:

e A writer may be added to a policy. This addition is safe because an additional writer in integrity
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policies is an additional contamination that can make the value only more restricted in subsequent
use.

e A policy may be removed. An integrity policy may be thought of as an assurance that at most the
principalsin a given set (the writers) have affected the data. Removing such an assuranceis safe and
restricts subsequent use of the value.

e Inapolicy, awriter w' may bereplaced by awriter w that it actsfor. Becausew’ hasthe ability to act
for w, apolicy permitting w asawriter permits both w and w’ aswriters, whereas a policy permitting
w' does not, in general, permit w. Therefore, replacing w'’ by w really adds writers, a changethat is
safe.

e Apolicy J may be added that isidentical to an existing policy | except that of > oJ. The new policy
offers a weaker integrity guarantee than the existing one, so the value is not made less restrictive by
the addition of this policy.

e Any principal that acts for the owner of a policy may be removed as a writer. The most restrictive
integrity policy that any principal o would want to expressis that only o (or principals that can act for
o) could write to the labeled variable. Therefore, the owner of a policy (and any principal that actsfor
the owner) isimplicitly considered to be awriter, and need not be expressed explicitly as such. This
ruleis the equivalent of self-authorization for privacy policies.

These five kinds of relabelings turn out to capture exactly the inverse of the relabelingsthat are allowed
by the incremental rules for privacy labels, described in Section 2.4.3. To see why, consider each of the
incremental rules above in turn. The effect of each of these rules can be reversed by applying the privacy
rules:

e Adding awriter. The privacy rules permit removing a reader.
e Removing a policy. The privacy rules permit adding an arbitrary policy.

e Replacing a writer w' with w, where w’ = w. The privacy rules allow areader r’ to be added is r if
also areader, with v’ = r. The reader r then can be removed.

e Adding a policy J identical to an existing policy I, with an inferior owner (oI*-0J). The privacy
rules allow the owner of J to be replaced with o, making the two policiesidentical.

e Removing the owner of a policy fromthe writer set. The owner of apolicy may be added to the reader
set of apoalicy.

Similarly, the effect of each of the privacy rules may be reversed by applying the integrity rules.
If L, and L, are privacy labels, and L, can be relabeled to Ly, then there is a sequence of incremental
privacy relabelings that converts L1 into Lp. Suppose that L) and L, are integrity labels with the same
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form as Ly and Ly. There must be a sequence of incremental integrity relabelings leading from L5 to L.
Therefore, if L1 C Ly, then L, C L. Theordering relationsfor privacy and integrity labelsare perfect duals.

This property meansthat all of the rules for integrity can be derived directly from the rules for privacy.
We have just seen that for privacy labels L1 and L, and corresponding integrity labels L and L5,

P+IL1CLy+— PHILLCL,

Thislogical egquivalence definesthe complete relabeling rule for integrity in terms of the corresponding rule
for privacy that was given in Section 2.4.3.

The rules for the meet and join of two integrity labels are similarly expressed in terms of their privacy
label counterparts. These rulesfollow directly from the dual relationship of the ordering relation T for the
two kinds of |abels.

L3~ LiULy, +— Lé%Lg_ﬂLIZ

L3~ LMLy, +— Lé%Lg_l_lle

Operationally, the meet of two integrity labelsis performed by simply concatenating their policies, asif
thejoin of the corresponding privacy labelswere being evaluated, and the join of integrity labels corresponds
to the meet of the corresponding privacy labels. In other words, the meet of two labelsisthe most restrictive
label that isless restrictive than (contains all the policies of) the labels, so it is performed by taking aunion
of the policies. Similarly, the join of two integrity labels can contain only policies enforced by both labels.

Declassification. An analogue to declassification also exists for integrity labels. For privacy labels, the
declassification mechanism alows privacy policies to be removed in cases where reasoning outside the
scope of strict dependency analysis (asin the tax-preparer example) suggests that the policy is overly strict.
The dual action for integrity policiesisto add new integrity policiesin situations where the data has higher
integrity than strict dependency analysis might suggest. If aprincipal adds a new integrity policy to alabel,
or removeswriters from an existing palicy, it represents avote of confidencein the integrity of the data, and
alowsthat data to be used more freely subsequently. Just as with declassification for privacy, however, the
reasons why a principal might choose to do so lie outside the scope of this model.

Adding new policies is safe because the new policy may be added only if the current process of the
authority to act for the owner of the policy. Other principalswill not be affected unless they trust the policy
owner (and by extension, the process performing the declassification) to act for them.

Declassification can be described more formally: declassification of integrity label I, to alabel L, is
permitted when L, M LY, C L, where LY, is an integrity label in which there is a policy for every principal
in the authority of the process. Each such policy listsall principalsin the system aswriters. Notethe duality



of thisrule to the rule for declassification of privacy labels.

Code labels. Integrity labels do introduce one new issue: code can damage integrity without access to
any extralabeled resource. For example, the routine aleged to add two numbers might perform a different
computation, destroying integrity. To keep track of this effect, an integrity label must be assigned to each
function in a program, and joined with any value computed by the function. In a program expression like
f(z,y), dl three sub-expressions (f, =, and y) have an associated integrity label.

Code labels could be applied to privacy aswell, and would have some utility in the case where the code
itself were asecret. For both privacy and integrity the natural default codelabel is{ }. However, this default
label has quite different effects for the two kinds of labels. Thelabel { } istheleast restrictive privacy label
and has no effect when joined with another label. Asan integrity label, it is the most restrictive label, since
it offers no guarantee about the integrity of the data computed by the function.

Because an integrity label offers a quality guarantee, some authority is needed to label code with it—
specifically, the authority to act for the owners of any integrity policiesin the label. One would expect that
the owner of the integrity label typically would not be the author of the code. Instead, the author would
appear as awriter in the integrity label.

2.6.2 Combining integrity and privacy

The set of al privacy labels, which will be called Sp, and the set of all integrity labels (Sy), each form
a pre-order with ordering relations C p and C j, respectively. These two kinds of labels can be used to
generate a system of combined labels that enforce privacy and integrity constraints simultaneously.

A combined label is written as a sequence of privacy and integrity policies. To disambiguate the two
kinds of policies, privacy policiesarewritten in theform {o — r1, 7, ...}, andintegrity policies are written
in the form {o < w1, wp, ...}, where the arrows suggest the direction of information flow. A combined
label can be considered asapair (Lp, L), which isamember of the set Sp x S;. The ordering relation on
combined labels and the join and meet operations are easily defined in the usual way for product spaces of
ordered sets:

(Lp,Lr)E(Lp,L}) = LpCpLpANLiCrLj
(Lp,Lr)U(Lp,L}) = (LpUpLp,LrUrLy)
(Lp,Lr)N (L, L}y = (LpNpLp,LiN;Ly)

Similarly, a combined label (Lp, L) can be declassified to another combined label (L', L) if both
components can be declassified. Here, sz is used to refer to the label called L 4 earlier.

Lp Cp (L ULE)
(LN LY) Cr Ly
(Lp, L) canbe declassified to (L', L)
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Insummary, for al of theserulesfor combined |abels, theintegrity and privacy policiesareindependently
enforced and do not interact.

2.6.3 Generalizing principals and the acts-for relation

Principals and the principal hierarchy are more powerful conceptsthat might be apparent. Principals can be
used to represent a broader range of entities than users, groups, and roles. When used as readers or writers
in palicies, principals may also represent input and output devices, user-defined privacy or integrity levels,
and compartments. Also, it is not necessary that owners and readers (and writers) are the same kinds of
entities.

Using the notation of Section 2.6.2, an external connection to a user A through a cable might be
represented as an output channel with the single-policy privacy label {root — A, cable}, where root is a
trusted principal. Information that is not marked as readable by the cable principal will be prevented from
transmission on the cable. Having the cable principal as one of the readers of the output channel is a way
of reflecting the danger that the cable may leak information in some way. Similarly, if the cable is used as
an input channel it might be assigned the integrity policy {root <— A, cable} to indicate that data from this
input channel passed through the cable on its way into the system and was conceivably damaged in transit.

The principal hierarchy can be used to establish categories of such devices. If the principal cable
acts for another principal secure-channel, it effectively becomes one of the secure-channel devices, and
will interoperate with labels that are expressed in terms of secure-channel rather than in terms of specific
devices. Also, a user can express trust in secure channels by allowing the secure-channel principal to act
for the user's principal; this trust will allow any datathat lists the user as a reader to be sent to the channel,
assuming the policy owners have the required degree of trust. We will seein a moment that less trust in the
secure-channel principal is needed than one might expect.

Users can establish their own abstract privacy levels by introducing new role principal sto represent these
privacy levels. The acts-for relation among these principals expressesthe information flows allowed among
the levels, in the absence of the use of declassification. For example, a user might have two jobs whose
information should by default be kept compartmentalized. Suppose Amy isboth amanager and acommittee
chair. Her compartmentalization concerns are addressed by introducing two new principals. Amy_manager
and Amy_chair, as shown in Figure 2-12. As long as Amy does not assume the full power of the Amy
principal, data will not be allowed to move between the compartments. However, the declassification

Amy

N\

Amy_manager Amy_chair

Figure 2-12: Compartments through hierarchy
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Figure 2-13: Modeling a group

mechanism is always available for explicit use in cases where she deems it appropriate. Roles can be
introduced to represent user-specific integrity levelsin asimilar fashion.

One unsatisfactory but repairable aspect of the model described so far isthat the acts-for relation appears
to give too much power. For example, the approach that has been described for modeling a group principal
isfor each of the members of the group to act for the group principal. This structure allows group members
to read anything that can be read by the group principal. However, it also givesthem the additional power to
declassify and redistribute publicly anything owned by the group. This added power violates the principle
of least privilege.

What we would like isto introduce different kinds of acts-for relations, so that group members havethe
power to read group data but not to declassify it. Supposethat Amy and Bob are group members; Amy isa
group administrator with the power to declassify data owned by the group, whereas Bab is a group member
who is able merely to read data that can be read by the group. This scenario can be modeled as shown in
Figure 2-13. Asthe diagram shows, Baob hastheright to read for the group, whereas Amy hasthe full power
to act for the group, which implies the ability to read for and also to declassify for the group. Both of these
new, weaker relations are transitive: if x reads for y and y reads for z, then z reads for z; declassifies-for
behaves similarly.

To understand the implications of the extended acts-for relations, it is not necessary to develop a new
theory of labels, because a system containing extended acts-for relations can be translated into the original
model. A principal hierarchy Pg supporting these extended relations can be translated into as another
principal hierarchy P that contains only the simple acts-for relation; alabel that namesprincipalsin Py also
may be trandated into a corresponding label that names principalsin P. The semantics for the extended
system Pg, are determined simply by applying theexisting rulesfor relabeling, join, and meet tothetranslated
forms of thelabelsin P.

The trandlation from Pg to P is performed as follows. Each principal p in Pg corresponds to three

P, P
pO
Figure 2-14: Splitting principals
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Figure 2-15: Modeling a group with split principals

principals in P named p,, p,, and p,,, with the acts-for relations shown in Figure 2-14: both p,. and py,
act for p,. As the names suggest, each of the principals p,, p,, and p,, is used in only one of the three
possible positions it might occupy in alabel: as an owner, reader, or writer, respectively. A privacy label
{Bob: group }, which mentions principalsin P, is translated to the label {Bob,: group,}, because Bob is
being used as an owner, and group as areader. Because p, dways acts for p,, a principal is automatically
authorized to read data that it owns. Process authority also must be translated from Pg to P. A process
running with authority of p actually runswith the authority of the principal p,; the authority of the principals
p, and py, IS Never given to a process.

Figure 2-15 shows how the principal hierarchy of Figure 2-13 is translated into the simpler model. In
the figure, Bob has power only over the principal group,., giving him the right to read. The ability of Amy
to act for both the group,, and group,. principals meansthat she both can declassify data owned by the group
and can read data readable by the group.

Thereis athird relationship that Amy can have to the group: the self-reads relationship, which means
that Amy can read any data owned by the group. By itsdlf, this relationship does not mean that Amy can
read data readabl e by the group, or that she can declassify group data. The self-reads relationship is weaker
than the other two relationships, because the abilities of Amy to read for and to declassify for group each
imply by transitivity that Amy self-reads group.

These three different kinds of acts-for relations in the Pg hierarchy between two principals p’ and p are
translated as follows to the P hierarchy:

The principal p’ readsfor the principal p. Pl = pr
The principal p’ declassifies for the principal p. L= po
The principal p' is self-authorized to read for (self-reads) p. Pl = po

These three relations also correspond to three of the incremental relabeling rules defined in Section 2.3.1:
reads-for corresponds to the rule for adding readers, declassifies-for corresponds to the rule for replacing
owners, and self-reads corresponds to the rule for self-authorization.

We can see from this that the extended principal hierarchy Pgr supports five new relations that are
indicated by writing appropriate subscripts after the = sign.
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Figure 2-16: Partial order on the extended acts-for relations

o declassifiesfor  p'=,p = p,>=p,
e reads-for: p'=p = pLxpr
e writes-for: Prwp = Py
o self-reads: P'=P = PrZPo
o self-writes: P'mwod = Py Do

The three relations that affect privacy (declassifies-for, reads-for, and self-reads) correspond exactly
to the three ways that the = relation is used in the second definition of the relation T on page 41. In
that definition, the expression oJ = oI compares two owners, and is therefore a test of the declassifies-for
relation. The expression r; >~ ol compares a reader to an owner, so it is a test of the self-reads relation.
Finally, »; = r; compares two readers, and is a test of the reads-for relation. The complete relabeling rule
therefore can be expressed in the Pg system in such away that enforcing this new rule directly hasthe same
effect as enforcing the original complete relabeling rule on the translated labels. The new version of the

complete relabeling rule is as follows:
PrRICJ=(PFroJ=,0l) AV(rjerJ) [PFrj=,,0l V I(ricrl) Ptrjr.7]

By using thisrule, the model with extended acts-for relations can be enforced directly, without transforming
labels and the principal hierarchy into the original model.

Thesefive acts-for relations (>, =1, =w, = ro, ~wo) CaN be viewed as access control lists[Lam71]. For
each principal p and distinct kind of acts-for relation, there is a list of principals that p allows to act for
it in that manner. The relations are similar to access control lists in that there is an appropriate notion of
ownership: a principa (typically) has the power to change which other principals are in its lists. These
acts-for relations are not complete: for example, one privilege that a principal might usefully grant another
is the ability to modify these lists, changing the principal hierarchy. Such privileges and their management,
though important, are outside the scope of this work.

The relations differ from the usual concept of access control lists in that certain axioms connect the
relations. One axiom is that authorization is transitive: if p reads for ¢ and ¢ reads for r, then p reads for
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r. In addition, some of these relations imply others; there is a partial order on the relations, as shown in
Figure 2-16. The original relation acts-for, which gives one principal the full privileges of another, implies
al five of the new relations.

2.7 Summary

The decentralized label model is a promising approach to specifying information flow policies for privacy
and integrity. It provides considerable flexibility by allowing individual principalsto attach flow policiesto
individual values manipulated by a program. These flexible labels then permit values to be declassified by
an owner of the value. Thisdeclassification is safe becauseit does not affect the secrecy guaranteesto other
principals who have an interest in the secrecy of the data. This support for multiple principals makes the
label model ideal for mutually distrusting principals.

One important feature of the decentralized |abel model is the complete relabeling rule, which precisely
capturesall the legal relabelings that are allowed when knowledge about the principal hierarchy isavailable
statically. The rule is both sound and complete, and easy to apply. The rule is formalized as a pre-
order relation with distributive lattice properties: join and meet operators are defined on these labels, so
a compiler or static checker can use them to check information flow. When information flow is checked
statically, run-time overhead is avoided. The compile-time overhead of checking these rules also is small.

Thenew rulesfor relabeling, join, and meet make the decentralized label model more practical and more
usable. They also make it easier to model common security paradigms. For example, information flow can
be described concisely in a system with group or role principals. Individual principals can model their own
multilevel security classes in a decentralized fashion, and the rules also can be used in their dual form to
protect integrity, or to protect both privacy and integrity simultaneously.
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Chapter 3

The JFlow Language

The preceding chapter discusses the decentralized label model with only alittle consideration about how
to apply it to a programming language. This chapter presents JFlow, a new programming language that
extends the Java language [GJS96] and permits static checking of flow annotations. A shorter description
of the JFlow language al so has been published el sewhere [Mye99]. JFlow isintended to support the writing
of secure servers and applets that manipulate sensitive data.

Like other recent approaches to static information-flow checking [V SI96, SV 98, HR98], JFlow treats
static checking of flow annotations as an extended form of type checking. Programs written in JFlow can
be checked statically by the JFlow compiler, which detects any information leaks through covert storage
channels. If aprogram is type-safe and flow-safe, it is translated by the JFlow compiler into an equivalent
Java program that can be converted into executable code by a standard Java compiler. The static checker
does not, however, detect leaks through covert timing channels.

JFlow isthe most practical programming language developed to date that allows static information flow
checking. An important philosophical difference between JFlow and other work on statically checking
information flow is the focus on a usable programming model. Despite a long history, static information
flow analysis has not been accepted widely as a security technigue. One major reason is that previous
models of static flow analysisweretoo limited or too restrictive to be used in practice. Thegoal of thiswork
has been to add enough power to the static checking framework to allow reasonable programs to be written
in anatural manner.

This work has involved several new contributions. Because JFlow extends a complex, object-oriented
programming language, it supports many language features that have not been integrated with static flow
checking previously, including mutabl e objects, subclassing, dynamic type tests, access control, and excep-
tions. JFlow also provides powerful new features that make information flow checking less restrictive and
more convenient than in previous models:

e The decentralized label model presented in Chapter 2 is supported, alowing multiple principals
to protect their privacy even in the presence of mutual distrust. JFlow also supports safe, statically-
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checked declassification, which permitsaprincipal to relax itsown privacy policieswithout weakening
policies of other principals.

e Label polymorphismallows the expression of code that is generic with respect to the security class of
the data it manipulates.

e Run-time label checking and first-class label values provide a dynamic escape when static checking
istoo restrictive. Run-time checks are statically checked to ensure that information is not leaked by
the success or failure of the run-time check itself.

e Automatic label inference makes it unnecessary to write many of the annotations that would be
required otherwise.

The goal of type checking isto ensure that the apparent, static type of each expression is a supertype of
the actual, run-time type of every value it might produce; similarly, the goal of label checking isto ensure
that the apparent label of every expressionis at least asrestrictive as the actual 1abel of every valueit might
produce. In addition, label checking guarantees that, except when declassification is used, the apparent
label of avalueis at least as restrictive as the actual label of every value that might affect it. In principle,
the actual label could be computed precisely at run time. Static checking ensures that the apparent, static
label is always a conservative approximation of the actual label. For thisreason, it istypically unnecessary
to represent the actual label at run time.

However, the two kinds of static checking differ in at least one important way. With type checking,
it is not as important to achieve a language that can be checked entirely statically. Limitations in static
type checking can be worked around by resorting to dynamic type checking, as in Java, or by simply
trusting that programmers understand the types in their programs better than the static checker does, as
in C++. These falback positions are not available when checking information flow, because dynamic
information flow checking itself creates a new information channel. It is for this reason that the language
mechanisms in JFlow that support static checking of information flow are more elaborate than the usual
language mechanismsfor static type checking.

The JFlow compiler is structured as a source-to-sourcetranglator, so its output isastandard Java program
that can be compiled by any Java compiler. For the most part, translation involves removal of the static
annotations in the JFlow program after checking them; there is little code space, data space, or run time
overhead, because most checking is performed statically.

JFlow isnot completely a superset of Java. Certain features have been omitted to make information flow
control tractable. Also, JFlow does not eliminate all possible information leaks. Certain covert channels
(particularly, various kinds of timing channels) are difficult to eliminate. These limitations of JFlow are
enumerated later, in Section 3.4.3.
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int{public} x;
boolean{secret} b;

int x = 0;

if (b) {
x =1;
}

Figure 3-1: Implicit flow example

3.1 Static vs. dynamic checking

Information flow checks can be viewed as an extension to type checking. For both kinds of static analysis,
the compiler determinesthat certain operations are not permitted on certain datavalues. Type checksmay be
performed at compiletime or at run time, though compile-time checks usually are preferred when applicable
because they impose no run-time overhead.

By contrast, fine-grained information flow control is practical only with some static analysis. Thisclaim
may sound odd; after all, any check that can be performed by the compiler can be performed at run time
as well. The difficulty with run-time checks is exactly the fact that they can fail. In failing, they may
communicate information about the data that the program isrunning on. Unlessthe information flow model
is properly constructed, the fact of failure (or its absence) can serve as a covert channel. By contrast, the
failure of a compile-time check reveals no information about the actual data passing through a program.
A compile-time check only provides information about the program that is being compiled. Similarly,
link-time and load-time checks provide information only about the program, and may be considered to be
static checksfor the purposes of this work.

For example, consider the code segment of Figure 3-1. By examining the value of the variable x after
this segment has executed, we can determine the value of the secret boolean b, even though x has been
assigned only constant values. This flow of information from b into x is called an implicit flow, because
information is transferred through the program control structure rather than through a direct assignment.
The problem is the assignment x = 1, which should not be allowed.

Static analysis is required in order to make this program work safely. A run-time check easily can
detect that the assignment x = 1 communicatesinformation improperly, and abort the program at this point.
Consider, however, the case where b isfalse: no assignment to x occurswithin the context in which b affects
the flow of control. The fact that the program aborts or continues implicitly communicates information
about the value of b. Thisinformation can be used in at |east the case where b is false.

Most multilevel-secure systems handle such programs safely by restricting all writes that follow the if
statement, on the grounds that once the process has observed b, it isirrevocably tainted. Every value the
process computes is tainted by the label of b, even if it does not depend on the conditional in any way. A
label isassociated with the process, and becomes more restrictive with every value that the process observes.
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The problem with this approach is that it is too coarse-grained: the process label easily can become so
restrictive that every value the process computesis unusable.

We couldimagineinspecting the body of theif statement at run timeto seewhether it contains disallowed
operations, but in general this requires the evaluation of all possible execution paths of the program, which
is clearly infeasible at run time. The advantage of compile-time checking is that in effect, static analysis
efficiently constructs proofs that no possible execution path contains disallowed operations. We will see
shortly how static analysis can be used to check this small program properly.

3.2 Language support for information flow checking

The next two sections present an overview of the JFlow language. This section concentrates on the new
features added to the JFlow language and the rationale for their addition. The following section examines
interactions between information flow control and complex programming language features such as objects,
methods, and inheritance. In both sections, ordinary Java semantics are not discussed, because Java is
widely known and well-documented [ GJS96].

3.21 Labededtypes

InaJFlow program, alabel isdenoted by alabel expression, whichisaset of component expressions. These
expressionsmay taketheform seenin Section 2.1.2: alabel expression may beaseriesof policy expressions,
separated by semicolons, such as { o1: 71, 72; 021 72, r3}. In this case, the two component expressions are
both policy expressions. JFlow supports only privacy policies, although it would be straightforward to add
combined privacy and integrity policies of the sort described in Section 2.6.2.

Asin Chapter 2, the component expression owner: reader, reader, . .. denotes a paolicy. In a program,
a component expression may take a few additional forms. One added component form is a variable name,
which denotes the set of policiesin the label of the variable named. For example, the label expression {a}
contains a single component expression; this label means that value it labels should be as restricted as the
contents of a are. The label expression {a; o: r} contains two component expressions, indicating that the
labeled value should be asrestricted as a is, and also that the principal o restricts the value to be read by at
most r. Other kinds of label componentswill be introduced later.

In JFow, every value has a labeled type that consists of two parts. an ordinary Java type such asint,
and alabel that describesthe ways that the value can propagate. Any type expressiont may be labeled with
any label expression |. Thislabeled type expressioniswritten ast{l}; for example, the labeled type int{p:}
represents an integer that principal p ownsand, because no readersare listed, that only p canread. A labeled
type may occur in aJFlow program in most placeswhere atype may occur in a Javaprogram. For example,
variables may be declared with labeled type:



int{p:} x;

int{x} y;

Int z;
The label usually may be omitted from a labeled type, as in the declaration here of the variable z. When
alabel is omitted, a default label is automatically provided in a manner that depends on the context. For
example, when the label of alocal variable is omitted, the label is inferred automatically from the uses of
the variable. When the label of an instance variable (also known as a field or member variable) is omitted,
the default label is the label {}. Asin Chapter 2, thislabel is the least restrictive possible label because it
contains no components to restrict the data it labels. There are several other cases in which default labels
are assigned; however, these cases are discussed later.

The type and label parts of a labeled type act largely independently. The notation S < T is used
here to mean that the type S is a subtype of the type 7. The intuitive behavior of subtyping is that
it operates independently on the type and label: for any two types S and T and labels L1 and Lo,
S <TALCLy «— S{L1} < T{Ly} (asin [VSI96]). However, this rule is realy true only in an
environment in which there is no mutation, such as a functional programming language. In this thesis,
subtyping is arelation only on types, not on labeled types.

3.22 Implicit flows

In JFlow, the label of an expression’s value varies depending on the evaluation context. This somewhat
unusual property is needed to prevent leaks through implicit flows: channels created by the control flow
structure itself. To prevent information leaks through implicit flows, the compiler associates a program-
counter label (pc) with every statement and expression, representing the information that might be learned
from the knowledge that the statement or expression was evaluated. This notation (pc), and the idea of
the program-counter label, comes from Fenton [Fen74]. For example, consider the program of Figure 3-1
again. In this program, the value of pc during the consequent of the if statement is {b}. After the if
statement, pc = {}, because no information about b can be deduced from the fact that the statement after the
if statement is executed. (It isnot true in general that pc = {} for if statements, but is true here because this
if statement always terminates normally.) The label of aliteral expression (e.g., 1) isthe same asits pc, or
{b} inthis case. The unsafe assignment in the exampleis prevented because the label of the variable being
assigned ({public}) is not at least as restrictive as the |abel of the value being assigned ({b}, or {secret}).
The label of avariable is the same as its declared label, joined with the pc at the point of its declaration.
The label of avariable expression (such as b) is the join of the variable label and the pc at the point where
the expression occurs. Suppose that pc, is the pc at the beginning of the code segment. The label of the
expression 1 is {b}, so the assignment is not permitted: the condition {b} C {x} trandates to the formula
pco U {secret} C pcy LI {public}, which is not true in general.

One way of thinking of the program-counter label is that there is a distinct pc for every basic block in
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Figure 3-2: Basic blocks for an if statement
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the program. In general, the flow of control within a program depends on the values of certain expressions.
At any given point during execution, various valueswv; have been observed in order to decideto arrive at the
current basic block; therefore, the labels of these values affect the current pc:

pc = I_L{UZ} = {vl} L {vz} L...

Any mutation (that is, assignment) potentially can leak information about the observed values v;, so
the variable that is being mutated must be at least as restricted as the labels on all these variables; in other
words, its label must be at |east as restrictive as the label pc.

Thislabel | |;{v;} can bedetermined through straightforward static analysis of the program’s basic block
diagram. The decision about which exit point to follow from a basic block B; depends on the observation
of some value v;. Thelabel B for a particular basic block B is the join of some of the labels {v;}. A label
{v;} isincluded inthejoin if it is possible to reach B from B;, and it is also possible to reach the final node
from B; without passing through B. If al paths from B; to the final hode pass through B, then arriving at
B conveys no information about v;.

This rule for propagating labels through basic blocks is equivalent to the rule of Denning and Den-
ning [DD77]. JFlow doesnot apply thisruledirectly. Instead, the rulesfor determining the pc of a statement
or expression are expressed as static inference rules. In most cases, the static inference rules generate the
same pc label asthe rule based on basic block analysis, though there are casesin which the inference rules
generate a more restrictive label, resulting in aloss of precision. Thisloss of precision occursin code that
throws and catches exceptions in a complex manner; it does not appear to be a problem in practice.

3.2.3 Termination channels

Information can be transmitted by the termination or non-termination of a program. Consider the execution
of a “while” statement, which creates a loop in the basic block diagram. This situation is illustrated in
Figure 3-3. Using the basic block rule just given or the static inference rules that will be presented later, it is
the casethat after the statement terminates, pc = {}, using the samereasoning asfor the“if” statement. This
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Figure 3-3: Basic blocks for awhile statement

labeling might seem strange, because we know the value of b when we arrive at the final block. However,
arriving at the final block gives no information about the value of b before the code started.

There is no way to use code of this sort to transmit information improperly as long as al programs
terminate, or at least if there is no way to derive information from non-termination of a program [DD77,
AR80]. The way one decides that a program has not terminated is to time its execution, either explicitly
or through asynchronous communication with another thread. As is discussed later, JFlow does not
attempt to control information transfers through timing channels, termination channels, or asynchronous
communication between threads.

3.24 Run-timelabels

In JFlow, labels are not purely static entities; they may also be used as values. First-class values of the
new primitive type label represent labels. This functionality is needed when the label of a value cannot
be determined statically. For example, if a bank stores a number of customer accounts as elements of a
large array, each account might have a different label expressing the privacy requirements of the individual
customer. To implement this example in JFlow, each account can be labeled by an attached dynamic label
value.

A variable of type label may be used both as a first-class value and as a label for other values. For
example, methods can accept arguments with run-time labels, as in the following method declaration:

static float{*Ib} compute(int x{*Ib}, label Ib)

In this example, the component expression *Ib denotesthe label contained in the variableIb, rather than the
label of the variable Ib. To preserve safety, variables of type label (such as Ib) may be used to construct
labels only if they are immutable after initialization; in Javaterminology, if they arefinal.

Theimportant power that run-time labels add is the ability to be examined at run time, using the switch
label statement, an example of which is shown in Figure 3-4. The codein this figure attempts to transfer an
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label{L} Ib;
int{xIb} x;

int{p:} vy;
switch label(x) {

case (int{y} z) y = z;
else throw new UnsafeTransfer();

}

Figure 3-4: Switch label

integer from the variable x to the variable y. This transfer is not necessarily safe, because x's label, Ib, is
not known statically. The statement examines the run-time label of the expression x, and executes one of
several case statements, or an optional else statement. The statement executed is the first whose associated
label is at least as restrictive as the expression label; that is, the first statement for which the assignment of
the expression value to the declared variable (in this case, z) islegal. If itisthe casethat {«Ib} C {p :}, the
first arm of the switch will be executed, and the transfer will occur safely viaz. Otherwise, the else clause
will be executed and an exception thrown.

The statement appears superficially like atypecase statement asin Modula-3 [Nel91]; however, it does
not permit any discrimination on the type of the expression. The types of the variables declared in each of
the arms of the statement must all be supertypes of the apparent type of the expression. In this example, the
apparent type of x isint, so the declared type of z must also beint.

Because Ib is a run-time value, information may be transferred through it; in the example, one might
observe which of the two arms of the switch are executed and infer the value of Ib accordingly. However,
this information channel is not covert. To prevent this information channel from becoming an information
leak, the pc in the first arm is augmented to include Ib’s label, L. The assignment from z to y is permitted
only if L C {y}. Thus, the ordinary |abel-checking rules are used to control this information channel.

As we have seen, this run-time test of the labels {*Ib} and {y} gives information about the contents
of the variable Ib. If the principal p is a final local variable of type principal, the run-time test may give
information about the contents of p aswell. Thus, the assignment is permitted only if {p} C {y}, because
information about both Ib and p affects the possibility of executing that first arm. Note that if p is not a
run-time principal, then {p} = {}, and the condition {p} C {y} istrivialy true.

A switch label statement may contain several case arms. In each arm, the fact that it is executed gives
information about the labels of all previous case clauses, because the earlier clauses are known not to have
been executed. Therefore, the pc in each arm, including the final, optional else clause, is as restrictive as
the labels of all of the labels that the previous case arms tested against. In this example, the pc of the else
clauseis asrestrictive as both {L} and {p}.

Run-time labels can be manipulated statically, though conservatively; they are treated as an unknown
but fixed label. The presence of such opaquelabelsisnot aproblem for static analysis, because of thelattice
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properties of these labels. For example, given any two labels L; and L, where L1 C Ly, it is the case for
any third label L3 that L1 L L3 C Lo U Ls. Thisimplication makes it possible for an opaque label L3 to
appear in a label without preventing static analysis. Thus, unknown labels, including run-time labels, can
be propagated statically.

3.25 Reasoning about principals

JFlow contains amechanism for determining the authority of arunning processthat is both dynamically and
statically checked. This authority mechanism is similar to components of other systems supporting more
complex accesscontrol mechanisms. In JFlow, amethod executeswith some authority that has been granted
to it. The authority is essentially the capability to act for some set of principals, and controls the ability
to declassify data. This simple authority mechanism can be used to build more complex access control
mechanisms, though the focus of thiswork is on using authority only to control declassification.

At any given point within a program, the static checker understands the code to be running with the
ability to act for some set of principals, which is the static authority of the code at that point. The actual
authority may be greater, becausethose principalsmay be ableto act for other principals. The static authority
can never exceed the actual authority unless revocation occurs while the program is running.

Static principal hierarchy. The static checker maintains anotion of the static principal hierarchy at every
point in the program. The static principal hierarchy isaset of acts-for relationsthat are knownto exist. The
static principal hierarchy is a subset of the acts-for relations that exist in the true principal hierarchy.

The static authority of a procedure may be augmented by testing the principal hierarchy dynamically.
The principal hierarchy istested using the new actsFor statement. The statement actsFor(p1, p2) Sexecutes
the statement Sif the principal p; can act for the principal p, in the current principal hierarchy. Otherwise,
the statement Sis skipped. The statement Sis checked statically using the knowledge that the tested acts-for
relation exists: for example, if the static authority includes p;, then during Sit is augmented to include p».

The actsFor statement may also have an else clause, just asif it were an if statement. The else clauseis
executed when the tested relationship does not exist. However, theelse clauseis statically checked without
any additional knowledge. As Section 2.4.3 showed, negative information about acts-for relations cannot
be used to augment static checking.

Theauthority of aprocesscan beviewed simply as part of the principal hierarchy. The processrepresents
atransient principal within the hierarchy. When authority is granted to the process, either by a principal in
the system or by calling code that explicitly grants the authority, it can be thought of as a transient acts-for
relation.

Revocation. It is possible that while an actsFor statement is being executed, the principal hierarchy may
changein away that would cause the test in the statement to fail. In this case, it may be desirable to revoke
the code's permission to run with that authority, and it is assumed that the underlying system can do this,
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int b;
inty =0;
if (b) {
declassify ({y}) y=1;

}

Figure 3-5: A declassify statement

by halting the process that is executing the code at some point after the hierarchy changes. If a running
program is halted because of a revocation, information may be leaked about what part of the program was
being executed. This leak is a covert channel, but probably one that can be made slow enough that it is
impractical to use.

Another strategy for dealing with asynchronous revocation is to run the program as a series of transac-
tions. The principal hierarchy is checked at the time that the transaction commits to ensure that no actsFor
statements were executed using principal hierarchy information that was invalidated by the time that the
transaction committed. If invalid acts-for relationswere used, the transaction is aborted and all of its changes
are rolled back, preventing improper information flows. In this framework, handling revocation properly
becomes a by-product of the isolation from asynchronous modification that transaction systems normally
provide.

The current JFlow implementation does not attempt to invalidate execution because of revocation.
However, there is one form of revocation that requires no extra support: the revocation that occurs when a
method that has been granted authority terminates. As described in the preceding section, such a method
can be considered a transient principal within the system. Revocation of the privileges of this principal
is safe because the principal itself no longer exists after revocation; there is no way to name the principal
corresponding to an executing method.

3.2.6 Declassification

A program can useits authority to declassify avalue according to the model of Section 2.4.4. Theexpression
declassify(e, L) relabelstheresult of an expression e with the label L. Declassificationis checked statically,
using the static authority at the point of declassification. The declassify expression may relax only policies
owned by principalsin the static authority.

A program aso can use its authority to declassify the program-counter label. This functionality is
provided by the new statement declassify(L) S, which executes the statement S using the program-counter
label L. Thisform of declassificationisalso checked statically. For example, Figure 3-5 containsan example
of adeclassify statement. Assumingthat thelabel of y isnot more restrictive than thelabel of b, this program
declassifiesthe implicit flow from b intoy. For the duration of the assignment into y, the program-counter
label isrelaxed until it is no morerestrictive than y itself. The legitimacy of the declassification is statically
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class Account {
final principal customer;
String{customer:} name;
float{customer:} balance;

}

Figure 3-6: Bank account using run-time principals

checked using the label of y and the static authority of the program at this point. Note that the labels of b
and y are both automatically inferred in this example; these automatically inferred labels are not a problem
for checking declassification statically.

3.2.7 Run-timeprincipals

Like labels, principals may also be used as first-class values at run time. The type principal represents a
principal that is avalue. A final variable of type principal may be used as if it were areal principal. For
example, an explicit policy may use a final variable of type principal to name an owner or reader. These
variables may also be used in actsFor statements, allowing static reasoning about parts of the principal
hierarchy that may vary at run time. When labels are constructed using run-time principals, declassification
may also be performed on these labels.

Run-time principals are needed in order to model systems that are heterogeneous with respect to the
principals in the system, without resorting to declassification. For example, a bank might store bank
accounts with the structure shown in Figure 3-6, using run-time principals rather than run-time labels. With
this structure, each account may be owned by a different principal (the customer whose account it is). The
security policy for each account has similar structure but is owned by the principal in the member variable
customer. Code can manipulate the account in a manner that is generic with respect to the contained
principal, but can also determine at run time which principal is being used. The principal customer may be
manipulated by an actsFor statement, and the label {customer:} may be used by aswitch label statement.

3.3 Interactionswith featuresof Java

One novel aspect of JFlow is its integration of information flow analysis into a practical, object-oriented
programming language. Java has complex features such as mutable objects, inheritance, subtyping and
exceptions, and these features interact with label checking. This section describes how some of these Java
language constructs have been extended or modified to support information flow control.

JFlow is an object-oriented language and supports inheritance and subtyping. Classes in JFlow are
largely an extension of classesin Java. They may contain methods, static methods, and instance variables.
Instance variables are declared with labeled types, just like local variables within methods.

Some class-related features of Javaare not supported in JFlow: neither inner classes nor static instance
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MethodHeader:
Modifiersy: LabeledType Identifier
BeginL abelop ( Formal ParameterListoyy ) EndL abélopt
Throwsy,y WhereConstraintsy

Formal Parameter:
L abeledType Identifier OptDims

Figure 3-7: Grammar of a method header

variables are supported. Inner classes are not supported because they are a complication that is unnecessary
for the goals of this work. Static instance variables are not supported because they would create covert
channels, as discussed later in Section 3.4.3. However, non-static instance variables usually can substitute
for static instance variables.

3.3.1 Method declarations

The syntax of a JFlow method declaration has some extensions when compared to Java syntax; there are a
few optional annotations to manage information flow and authority delegation. A method header has the
syntax shown in Figure 3-7, in the form of the Java Language Specification [ GJS96].

As this grammar shows, the return value, the arguments, and the exceptions each may be labeled
individually. There are two optional labelsin a method declaration called the begin-label and the end-label.
The begin-label is used to specify any restriction on pc at the point of invocation of the method. The begin-
label allows information about the pc of the caller to be used for statically checking the implementation,
preventing assignments within the method from creating implicit flows of information.

Figure 3-8 contains an example of a JFlow class declaration: a JFlow version of the standard Java class
Vector. It provides several examples of JFlow method declarations. The setElementAt method in this
declaration is prevented from leaking information by its begin-label, {L}. It can be called only if the pc
of the caller is no more restrictive than {L}. The labels of the arguments o and i are written as {}, but as
discussed in the following section, argument | abel s automatically include the begin-label, so both arguments
aso arelabeled by {L}.

The end-label of a method specifies the pc at the point of termination of the method, and captures the
restrictions on the information that can be learned by observing whether the method terminates normally.
Individual exceptionsand the return valueitself also may havetheir own distinct labels, allowing static |abel
checking to track information flow at fine granularity. For example, the end-label of the elementAt method
in Figure 3-8 meansthat the pc following normal termination is at |east as restrictive as both the label L and
thelabel of theargumenti. Thisend-label is necessary because the index-out-of-bounds exceptionis thrown
because of an observation of the instance variable elements and the argument i. Therefore, knowledge of
the termination path of the method may give information about the contents of these two variables.
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public class Vector[label L] extends AbstractList[L] {
private int{L} length;
private Object{L}[ |{L} elements;

public Vector() ...
public Object elementAt(int i):{L; i}
throws (IndexOutOfBoundsException) {
return elements|i];
}

public void setElementAt{L}(Object{} o, int{} i) ...
public int{L} size() { return length; }
public void clear{L}() ...

Figure 3-8: A JFlow version of the class Vector

Unlike in Java, method arguments in JFlow are always implicitly final. This change makes the use of
first-class principals and labels more convenient, since arguments of the types label and principal are nearly
always desired to be final. This simple change does not remove any significant power from the language,
since code that assignsto an argument variable always can be rewritten to use alocal variable instead.

3.3.2 Default labels

Figure 3-8 contains examples of JFlow method declarations that demonstrate some of the features of method
declarations. Sometypesin the example arelabeled, such asthetypes of the arguments o and i of the method
setElementAt. Other typesin this figure are unlabeled, such as the types of the argument and return value
of elementAt. Whenever |abels are omitted in a JFlow program, a default label is assigned, providing both
greater expressiveness and greater convenience. The effect of these defaults is that often methods require
no label annotations whatever. This section describes how default |abels are assigned.

Labels may be omitted from a method declaration, signifying the use of implicit label polymorphism.
For example, the argument of the method elementAt is unlabeled. When an argument label is omitted,
the method is generic with respect to the label of the argument. The argument label becomes an implicit
parameter of the procedure. The method elementAt can be called with any integer i regardless of its label.

Label polymorphism isimportant for building libraries of reusable code; without it, methodswould need
to bereimplemented for every argument label ever used. Consider implementing amethod cos that evaluates
the cosine of its argument. Without implicit label polymorphism, there are two strategies: reimplement it
for every argument label ever used, or implement it using run-time labels. The former approach is clearly
infeasible. Implicit labels have the advantage over run-time labels that when they provide adequate power,
they are easier and cheaper to use. Without implicit |abels, the signature of the cos method would be the
following:
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float{xIx} cos (float{«Ix} x, label{} Ix)

Implicit label polymorphism eliminates the run-time overhead and the gratuitous method argumentsin this
method signature, allowing the simpler signature that would be used in Java:

float cos (float x);

Other labels are assigned defaults as well. The end-label of a method always includes the begin-label
even if the end-label is not declared explicitly; if the end-label of the method is omitted, it is equal to the
begin-label. The default label for the return value of a method is the end-label, joined with the labels of all
the arguments. This default makes sense because it is the common case. For the method cos, the default
return value label is {x}, and therefore does not need to be written explicitly. Methods may also return
exceptionally, and exceptions may be labeled; the rule for default exception labels is the same as the rule
for the end-label.

If the begin-label is omitted, it becomesan implicit parameter to the method. A method with an implicit
begin-label parameter can be called regardless of the pc of the caller, because the code of the method is
guaranteed not to leak information that isgiventoit. In general, methods without side-effects can be written
in this fashion, which makes them convenient to use and to implement. The static checking rules described
in Section 4 place restrictions on the implementation of such a method that limit its ability to cause side
effects: local variables may of course be modified, and a method of this sort may mutate objects passed as
argumentsif appropriately declared, but other side effectswill be prevented. Every assignment requires that
the label of the variable be more restrictive than the pc at the point of assignment; however, the label of a
variableexternal to the method cannot be proved more restrictive than the begin-label, so such an assignment
will be rejected statically.

3.3.3 Method constraints

Unlike in Java, amethod may contain alist of constraints prefixed by the keyword where:

WhereConstraints:
where Constraints

Constraint:
authority ( Principals)
caller ( Principals)
actsFor ( Principal , Principal )

There are three different kinds of constraints;

e authority(p1,...,p,) This clause lists principals that the method is authorized to act for. The
static authority at the beginning of the method includes the set of principals listed in this clause.
The principals listed may be either names of global principals, or names of class parameters of type
principal. Every listed principal must be also listed in the authority clause of the method's class,
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void m1(principal p, ...):{p} throws(AccessDenied)
where caller(p) {
actsFor(p, manager) {

} else {
throw new AccessDenied();

}
}

void m2() where caller(manager) {
}

Figure 3-9: Using the caller constraint

as described later in Section 3.3.8. This authority mechanism obeys the principle of least privilege,
because not all the methods of a class need to possess the full authority of the class.

caller(ps,...,pn) Cdling code may also dynamically grant authority to a method that has a caller
constraint. Unlike with the authority clause, where the authority devolves from the object itself,
authority in this case devolves from the caller. A method with a caller clause may be called only if
the calling code possesses the requisite static authority.

The principals named in the caller clause need not be constants; they may also be the names of method
arguments whose type is principal. By passing a principal as the corresponding argument, the caller
grants that principal’s authority to the code. These dynamic principals may be used as first-class
principals; for example, they may be used in labels.

actsFor (p1,p2) An actsFor constraint may be used to prevent the method from being called unless
the specified acts-for relationship (p1 acts for p») holds at the call site. When the method body is
checked, the static principal hierarchy is assumed to contain any acts-for relationships declared in the
method header. This constraint allows information about the principal hierarchy to be transmitted to
the called method without any dynamic checking.

The caller mechanism provides a simple access control mechanism that can be checked either statically

or dynamically. To check authority dynamically, a method can use acaller constraint to accept a grant of

unknown authority, then use the actsFor statement to test that the granted authority is sufficiently powerful.

This access control mechanism can be used to build more elaborate access control mechanisms such as

access control lists.

For example, consider the method skeletons in Figure 3-9. The method m1 dynamically tests whether

the caller hasthe authority to act for the principal manager. Because of the caller constraint, the caller must

passaprincipal p for which it can act. The actsFor test then tests whether p, and therefore this method, has
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the authority to act for the principal manager. If not, the AccessDenied exception is thrown. Note that the
end-label of the method is p, because knowing whether the method terminated normally or exceptionally
gives information about the principal passed. Thus, authority tests do not leak information through their
success or failure.

The method m2 statically enforces the same test of authority that m1 tests dynamically. It can be called
only from code that is statically known to act for manager, such as the consequent of the actsFor test in
the method m1, or from within another method like m2 itself. The method m2 is not as flexible as m1, but
incurs no dynamic overhead.

3.34 Exceptions

Exceptionsin JFlow are amost identical to exceptionsin Java. There are two changes, one syntactic and
one semantic. The syntactic change is that the list of exceptionsin a method header must be delimited by
parentheses. Parentheses are needed in case the exception is labeled, asin the following declaration.
int f(Object a, Object b):{a;b}
throws (NullPointerException{a}, NotFound)
Without parentheses, it cannot be determined unambiguously whether the brace following NullPointerEx-
ception isthe beginning of alabel expression or the beginning of the method.

Themore substantive changeto Javaisthetreatment of unchecked exceptions. Javaallowsusersto define
exceptions that need not be declared in method headers (unchecked exceptions), although this practice is
described asatypical [GJS96]. In JFlow, only afew specific exceptionsare allowed to be unchecked, because
unchecked exceptions can serve as covert channels. All other exceptions (such as NullPointerException
and IndexOutOfBoundsException) must be declared explicitly in a method header if the method might
throw the exception. Only one unchecked exception is allowed: the new exception FatalError, which may
not be caught by a catch clause. This exception is used for error conditions such as stack overflow and
heap exhaustion. Because it is unchecked, it can serve as a covert information channel. However, since it
cannot be caught, the exception FatalError can be used to transmit only one bit of information per program
execution.

In JFlow as well as in Java, the catch clause of a try...catch statement is a type discrimination
mechanism as well as an exception-handling mechanism. It is also one of the few placesin JFlow where a
type may not belabeled. Asin Java, acatch clausetakestheformcatch (C v) S, where C isan unlabeled
class that inherits from Throwable, v is a variable name, and S is a statement to be executed if the clause
catches the exception. The decision about which catch clause of atry. .. catch statement to execute, if any,
depends only on the dynamic type of the exception. Within each catch clause, the pc is determined by the
labels attached to the exceptions that might be thrown by the statement in the try clause of the statement.

Thebreak and continue statementsprovide ancther exception mechanismin Java, sincethey may specify
astatement label to jump to. These statements are structured goto statements. They are supported in JFlow
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public class Vector[label L] extends AbstractList[L] {
private int{L} length;
private Object{L}[ |{L} elements;

public Vector() ...
public Object elementAt(int i):{L; i}
throws (IndexOutOfBoundsException) {
return elements|i];
}

public void setElementAt{L}(Object{} o, int{} i) ...
public int{L} size() { return length; }
public void clear{L}() ...

Figure 3-10: Parameterization over |abels

and introduce the simple requirement that the pc at the destination statement is at least as restrictive as the
pc at the break or continue statement.

3.3.5 Parameterized classes

Even in the type domain, parameterizing classes is important for building reusable data structures. A
parameterized class is generic with respect to some set of type parameters. This genericity is particularly
useful for building collection classes such as generic sets and maps. It is even more important to have
polymorphism in the information flow domain; the usual way to handle the absence of statically-checked
type polymorphism is to perform dynamic type casts, but this approach works poorly when applied to
information flow, because dynamic tests create new information channels.

In JFlow, class and interface declarations are extended to allow parameterization; they may be generic
with respect to some number of labels or principals, by including a set of explicitly declared parameters.
Parameterized types are important for building reusable data structuresin JFow.

An example of areusable data structure is the Java Vector class, which may be trandlated to JFlow as
shown in Figure 3-10. This example also appeared earlier, in Figure 3-8. TheVector classis parameterized
on a label L that represents the label of the contained elements. Assuming that secret and public are
appropriately defined, the types Vector[{secret}] and Vector[{public}] would represent vectors of elements
of differing sensitivity. These types are referred to as instantiations of the parameterized type Vector.
Without the ability to instantiate classes on particular labels, it would be necessary to reimplement Vector
for every distinct element label.

A class may also be parameterized over principals, asin the example of Figure 3-11. This classmay be
instantiated with any two principals p and q. For example, paramCell[Bob,Amy] has afield contents with
the label {Bob: Amy}. This functionality provides power similar to that of run-time principals (as in the
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class paramCell[principal p, principal q] {
int{p: q} contents;

}

Figure 3-11: Parameterization over principas

bank account example of Figure 3-6), but without the run-time or storage overhead that run-time principals
can incur.

The semantics of class parameters are defined in such a way that class parameters do not need to be
represented at run time, becauseinformation then cannot be conveyed through class parameters. Asaresult,
class parameters may not be used in run-time tests; for example, label parameters may not be tested in a
switch label statement, nor may principal parameters appear in an actsFor test.

When a parameterized or unparameterized type inherits from a superclass, or implements an interface,
the supertype may be an instantiation. The instantiation that is inherited from or implemented must be
a legal type within the scope of the class that is inheriting from or implementing it. This is a specific
instance of a more general rule in JFlow: within a parameterized class or interface, the formal parameters
of the class may be used as actual parameters to instantiations of parameterized types within its scope.
This rule corresponds exactly to the approach taken in many languages that support parameterization over
types [LCD 94, LMM98, OW97].

JFlow does not provide parameterization with respect to types, because it seems unnecessary for
investigating static information flow control. It would be straightforward to add unconstrained parametric
polymor phism in which the implementation of a polymorphic abstraction is unable to use any knowledge
of the type parameter. This kind of parametric polymorphism is less expressive than that which appearsin
similar languages like PolyJ [MBL97, LMM98] or Pizza [ OW97]. Constrained parametric polymorphism,
asin those languages, creates complicationsfor information flow control, becausethe parameter can be used
as an information channel.

The addition of label and principal parameters to JFlow makes parameterized classes into simple
dependent types [Car91], because types contain values. To ensure that these dependent types have a well-
defined meaning, only final variables may be used as parameters; since they are immutable, their meaning
cannot change. An alternative approachwould beto allow all variablesto be used as parameters; however, in
that case two different typesthat mention the same variable would have different meaningsif an assignment
to the variable occurred between them.

Notethat evenif {public} T {secret}, itisnot the casethat Vector[{public}] < Vector[{secret}]. (The
subtyperelation is again denoted by <.) This subtype relation would be unsound because Vector is mutable,
an observation that applies to subtyping relations on type parameters as well [DGLM95].

When such a subtype relation is sound, the parameter may be declared as a covariant label rather
than as alabel. Covariant label parameters are made sound by placing additional restrictions on their use,
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class passwordFile authority(root) {
public boolean check (String user, String password)
where authority(root) {

Figure 3-12: An authority declaration

as follows. A covariant label parameter may not be used to construct the label for a non-final instance
variable. It also may not be used as an actual parameter to a class whose formal parameter is a label.
However, immutable (final) instance variables and method arguments and return values may be labeled
using a covariant parameter.

Within non-static methods and on an instance variable, the variable this may be used to construct |abels,
where it denotes the label of the object that the method was invoked on, or the object that the instance
variable is part of. If an instance variable is labeled by this, it would not be safe to alow an assignment
to that variable, since there might be another reference to the object whose label is less restrictive than the
label of the reference being used for the assignment. This other reference could then be used to observe the
assigned value. For this reason, the variable this is treated as an implicit covariant label parameter when
used in alabel. The use of the label {this} is restricted in the same way that the use of other covariant
parametersis restricted: it may not be used to label non-final instance variables.

3.3.6 Arrays

Although JFlow does not support user-defined type parameters, it does support one type with a type
parameter: the built-in Java array type, which is used as the type of the instance variable elements in
Figure 3-10. In JFlow, arrays are parameterized with respect to both the type of the contained elements
and the label of those elements. In the example for Vector, the type of the instance variable elements is
Object{L}[ ] which represents an array of Object where each element in the array is labeled with L. The
array type behavesasthoughit were atypearray[T', L] with two parameters: an element type and an element
label; in this case T = Object. The label parameter may be omitted, in which case it defaultsto {}. For
example, thetypesint[ ] and int{}[ ] are equal.

One might wonder why the label on the array itself is not sufficient to protect the array elements. The
reasonisthat arrays are mutable datacontainers. Supposethat arraysdid not have aseparatelabel parameter.
In that case, a variable of typeint[ [{} could be assigned to a variable with the labeled type int[ [{L} for
some more restrictive label L. A value of labeled type {L} then could be assigned to an array element
in apparent safety; however, that same value could also be observed through the original array with the
unrestricted label {}, laundering its label away. This argument also applies to the type Vector|L] discussed
in the preceding section.
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The subtyping rule for arraysin JFlow isthe same asin Java: if the type S is a subtype of the type T,
then the type array[S, L] is a subtype of array[T",L]. However, the |abel parameter is not covariant, so if L
and L, arelabels, then L, C L, does not imply that array[T’, L] is asubtype of array[T’, L;].

JFlow arrays offer one additional operation: the pseudo-field length that returns the number of elements
in the array. The label of the length field is the same as the label of the array, not the element label. This
label is safe because the length of a JFlow array (and a Java array) isimmutable after array creation.

3.3.7 Run-timetype discrimination

Java supports two expressions for run-time type discrimination: run-time casts and the instanceof operator.
The expression (T') E attempts to cast an expression E to type 7', throwing an exception if this is not
possible; the expression E instanceof T returns a boolean indicating whether £ produced an expression
that can be assigned to a variable of type T'. Both of these operators are supported by JFlow aswell. The
result of both expressionsis as restricted as the result of the expression F is.

JFlow imposes one limitation on these operators: they may be invoked only with atype T that is not an
instantiation. The reason for this restriction is that information about the parameters of 7" is not available
at run time. If information about the parameters were available at run time, it would create an additional
information channel to be controlled. However, the use of parameterized types with these operators would
be safeif it could be determined statically that the parameters used in the cast match the parameters of the
dynamic type of the class. This approach is taken with type parameters in the language Pizza [OW97],
because Pizza does not represent type parameters at run time, but it is not currently supported in JFlow.

3.3.8 Authority declarations

Classesin JFlow also support authority declarations. A class may have some authority granted to its objects
by the addition of an authority clause to the class header. Figure 3-12 contains a partial example of aclass
passwordFile that declares the authority of the principal root; its method check then claims the authority of
root and can use it within the body of the method.

The authority clause of a class may name principals external to the program (as in this case), or class
parameters of type principal. In either case, if aclass C has a superclass Cs, any authority in C; must be
covered by the authority clause of C: if C, has some principa p in its authority clause, C must too. The
effect of thisruleisthat it is not possible to obtain authority by inheriting from a superclass.

The ability to give aclassthe authority of external principalsis useful but also potentially dangerousand
therefore must be controlled. If the authority clause of a class names external principals, these principals
must permit the creation of the class. This permission can betested by requiring that the processthat installs
the classinto the system (perhaps the compiler) has been granted the appropriate authority by the principals
named.

When the authority clause names a parameter of the class that is of type principal, the code of the
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class acts for an arbitrary principal that is specified by the instantiator. The static authority at the point
of invocation of the class constructor must include the authority of the actual principal parameters that are
used in the call to the constructor; this ensures that the authority of the class was received from a process
that actually possessed that authority. This rule differs from the rule that is used when external principals
are named in the authority clause, because the authority derives from the code that invokes the constructor,
rather than from the process that installs the class into the system. Note that static methods of the class
do not possess the authority of principal parameters because otherwise the construction-time test would be
bypassed.

This language feature is both powerful and dangerous, because an object created in this manner can be
used to capture and retain authority that is granted to a method by a caller; it is a general, free-standing
capability [DV66, WCC™T74] for that authority. In JFlow, there is no way to tell whether authority that is
granted to a subsystem has been captured by the subsystem in a capability of this sort; thus, this mechanism
can be misused to create luring attacks, in which a subsystem acquires authority without the knowledge
of its caller [WBF97]. For this reason, most principals should not be permitted even to define a class that
places a principal parameter in its authority clause; these classes may be defined only by a highly trusted
principal, such asroot.

3.3.9 Inheritance and constructors

Like Java classes, a JFlow class may declare that it has some supertypes: a superclassthat it inherits from
or interfaces that it implements. Inheritance and subtyping have some interactions with the new features of
JFlow.

Asin Java, methods may be overloaded and are distinguished by their argument types. The signature of
a class method must conform to the signatures of the same method in its supertypes, where method identity
is determined by the argument type. Signature conformancein JFlow includes the Javarequirement that the
return types of the two signatures must be identical, but also places restrictions on the labels of the subclass
method signature: the labels of method argumentsin the subclass must be at |east asrestrictive asthe labels
of method arguments in the superclass, and the label of the return value in the subclass may be at most as
restrictive as the label of the return value in the superclass.

JFlow classes support constructors, just like Javaclasses. A constructor for class C' behaveslike astatic
method that returns a new object of type C'. Constructors do not declare a return label; the label on the
returned object is the same as the end-label of the method. Consider this constructor declaration:

class C {
C{Bob:}(int x{}, inty{}) { ... }

}

The constructor declared here has a begin-label and end-label {Bob:}, and the object produced by acall to
the new operator that uses this constructor has this same label.
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class Complex {
public final float real, imaginary;

public Complex{r;i}(float r, float i) {
real =r;
imaginary = i

}

Figure 3-13: Implementation of complex numbers

Constructorsin Javaand JFlow must invoke asuperclass constructor if theclassinheritsfrom asuperclass.
JFlow differs from Javain requiring final instance variables of the subclass to be initialized before the call
to the superclass constructor, if any. Thisrequirement arises becauseit isimportant to prevent final instance
variables of type label or principal from being observed before they are initialized. Such an observation
might lead to information leaks. Suppose avariable L of type label is used to construct the label of another
variable, using the declaration int{L} x. If the variable x is used as an argument to aswitch label statement
before the variable L is initialized, the statement will not determine the case to execute properly, and may
invoke a case that creates an information leak.

The section of the constructor before the superclassinvocation is a sequence of arbitrary statements that
is referred to here as the constructor prologue. Every final instance variable of the class must be initialized
in the constructor prologue; it must include an assignment of the form v = E; for every final instance
variable v and some expression E. In the prologue and in the call to the superclass constructor, the object
(this) and itsinstance variables are not in scope (may not be used), except that they may of course be used on
theleft-hand side of their own initialization assignments. The purpose of thisruleisto prevent uninitialized
datafrom being read, possibly causing information leaks.

Aninitialization assignment is checked using a more relaxed rule than for other variable assignments.
For an ordinary assignment v = E, the safety conditionis Lg C {v}, where L isthelabel of the expression
E andtakesinto account thecurrent pc. For aninitialization assignment, theweaker condition Lg C {v; Lg}
isenforced, where L isthe end-label of the constructor, which isthe label of the object being constructed.
This weaker condition is safe because the instance variable cannot be accessed without using a reference
to the abject being constructed. Any access to an instance variable through an object reference causes the
result to acquire the label of the reference. Thus, the label on the object will protect the instance variable.

This weaker initialization rule is helpful when writing classes that represent immutable abstractions,
such as a class representing complex numbers. For example, consider the code in Figure 3-13, which
implements a simple complex number abstraction that is convenient to use. The class Complex hasasingle
constructor that takestwo argumentsr andi. The object returned by the constructor is automatically labeled
asrestrictively as both r and i, because the end-label of the constructor is {r; i}. Theimplementation of the
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class passwordFile authority(root) {
public boolean check (String user, String password)
where authority(root) {
// Return whether password is correct
boolean match = false;
try {
for (int i = 0; i < names.length; i++) {
if (names[i] == user &&
passwords[i] == password) {
match = true;
break;

}
}

catch (NullPointerException e) {}
catch (IndexOutOfBoundsException €) {}
return declassify(match, {user; password});
}
private String [ | names;
private String { root: } [ | passwords;

}

}

Figure 3-14: A JFlow password file

constructor is also particularly simple. This convenient abstraction and others like it are made possible by
the weaker initiaization rule. The initializations of the instance variables real and imaginary are permitted
because the end-label of the constructor, {r; i}, is at least as restrictive as the labels of the values being
assigned, r and i. Without the weaker initialization rule, the assignment would not be permitted, becausethe
label of both instance variables, {}, is not known to be more restrictive than the implicit label parameters
associated with the arguments r and i. However, the weaker initialization rule is safe because any access to
theinstance variablesreal and imaginary must be through the object, which islabeled at |east asrestrictively
asthe data that was stored into it using r and i.

34 Examples

Now that the essentials of the JFlow language have been covered, we are ready to consider some interesting
examples of JFlow code.

341 Example: passwordFile

Figure 3-14 contains a JFlow implementation of asimple passwordfile, in which the passwordsare protected
by information flow controls. Only the method for checking passwords is shown. This method, check,
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acceptsapassword and auser name, and returns abool ean indicating whether the string isthe right password
for that user. In this method, the label of the local variables match and i are not stated explicitly, and are
automatically inferred from their uses.

The if statement is conditional on the elements of passwords and on the variables user and password,
whose labels are implicit parameters. Therefore, the body of the if statement has pc = {user; pass-
word; root:}, and the variable match also must have this label in order to allow the assignment match =
true. Thislabel preventsmatch from being returned directly asaresult, becausethe label of the return value
isthe default label, {user; password}. Finally, the method declassifiesmatch to this desired label, using its
compiled-in authority to act for root.

More precise reasoning about the possibility of exceptionswould makewriting the code more convenient.
In this example, the exceptions NullPointerException and IndexOutOfBoundsException must be caught
explicitly, because the method does not explicitly declare them. However, it is possible to show in this case
that the exceptions cannot be thrown.

Otherwise there is very little difference between this code and the equivalent Java code. Only three
annotations have been added: an authority clause stating that the principal root trusts the code, a declassify
expression, and alabel on the elements of passwords. Thelabelsfor all local variables and return valuesare
either inferred automatically or assigned sensible defaults. The task of writing programs is made easier in
JFlow because [abel annotations tend to be required only where interesting security issues are present.

In this method, the implementor of the class has decided that declassification of match resultsin an
acceptably small leak of information. Like al login procedures, this method does leak information, because
exhaustively trying passwords eventually will extract the passwords from the password file. However,
assuming that the space of passwords is large and passwords are difficult to guess, the expected amount
of password information gained in each such trial is far less than one bit. Reasoning about when leaks of
information are acceptable lies outside the domain of classic information flow control.

3.4.2 Example: Protected

TheclassProtected providesa convenient way of managing run-timelabels, asin the bank account example
mentioned earlier. Itsimplementation is shown in Figure 3-15. As the implementation shows, an object of
type Protected isan immutable pair containing avalue content of type Object and alabel Ib that protectsthe
value. Itsvalue can be extracted with the get method, but the caller must provide alabel to usefor extraction.
If thelabel isinsufficient to protect the data, an exceptionisthrown. A value of type Protected behavesvery
much like a value in dynamically-checked information flow systems, because it carries arun-time label. A
Protected has an obvious analoguein the type domain: avalue dynamically associated with atype tag (for
example, the Dynamic type [ACPP91]).

One key to making Protected convenient is that becauselb isfinal, it can be labeled simply as {}. In
effect, its label is the same as the label of the containing object. The initialization of Ib is allowed by the
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class Protected {
Object{xIb} content;
final label{this} Ib;

public Protected{LL}(Object{«LL} x, label LL) {
Ib = LL; // must occur before call to super()

super(); //

content = x; // checked assuminglb == LL

}
public Object get(label L):{L} throws (lllegalAccessError) {

switch label(content) {
when (Object{xL} unwrapped) return unwrapped;
else throw new lllegalAccess();

}

}

public label get_label() {
return |b;

}

}

Figure 3-15: The Protected class

permissive initialization rule of Section 3.3.9. For the assignment Ib = LL, the initialization rule requires
that the formula {LL} C {} L/ {LL} be true, which it obviously is. Note that it is not necessary that the
instance variable content be final for this code to be correct.

3.4.3 Limitations

This section summarizes the ways that JFlow is not a superset of Java, and also covert channels that JFlow
cannot eliminate. Certain covert channels (particularly, various kinds of timing channels) are difficult to
eliminate. Prior work has addressed static control of timing channels, though the resulting languages are
restrictive [AR80, SV98]. Other covert channels arise from Java language features that consequently must
be removed.

Threads: JFlow does not prevent threads from communicating covertly via the timing of asynchronous
modifications to shared objects. This covert channel can be prevented by requiring only single-threaded
programs.

Timing channels. JFlow cannot prevent threads from covertly gaining information by timing code with
the system clock, except by removing accessto the clock.
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Hashcode: The built-inimplementation of the hashcode method, provided by the class Object, can be used
to communicate information improperly, because it gives information about the memory address at which
an object has been allocated. Thisinformation allows the memory allocator to be used as a covert channel.
Asaresult, in JFlow every class must implement its own hashcode.

Static variables: The order of static variable initialization could be used to communicate information
improperly. This covert channel isblocked by ruling out static variables. However, static methods are legal.

Finalizers. Finalizers are run in a separate thread from the main program, and therefore can be used to
communicate covertly. Finalizers are not part of JFlow.

Resource exhaustion: An OutOfMemoryError could be used to communicate information covertly, by
conditionally allocating objects until the heap is exhausted. JFlow treats this error by converting it to a
FatalError exception, preventing it from communicating more than a single bit of expected information per
program execution. Other resource exhaustion errors such as stack overflow are treated similarly.

Wall-clock timing channels: A JFlow program can change its run time because of private information it
has observed. As an extreme example, it can enter an infinite loop. JFlow does not attempt to control these
channels, which are a variety of timing channel because information only leaks if one is able to time the
program.

Unchecked exceptions: As described in Section 3.3.4, JFlow has no unchecked exceptions because they
could serve as covert channels.

Backward compatibility: JFlow isnot backward compatible with Java, since existing Javalibraries are not
flow-checked and do not provide flow annotations. However, in many cases, a Javalibrary can be wrapped
in aJFlow library that provides reasonable annotations.

3.5 Grammar extensions

JFlow contains several extensionsto the standard Java grammar, in order to allow information flow annota-
tionsto be added. Thefollowing productions must be added to or modified from the standard Java L anguage
Specification [GJS96]. As with the Java grammar, some modifications to this grammar are required if the
grammar is to be input to a parser generator. These grammar modifications (and, in fact, the code of the
JFlow compiler itself) were to a considerable extent derived from those of PolyJ, an extension to Java that
supports parametric polymorphism [MBL97, LMM93].
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3.5.1 Labe expressions

LabelExpr:
{ Componentsy }

Components:
Component
Components; Component

Component:
Principal : Principal S
this
Identifier
* Identifier
Principals:
Principal
Principals, Principal

Principal: Name

3.5.2 Labeed types

Types are extended to permit labels. The new primitive typeslabel and principal are also added.

L abeledType:
PrimitiveType L abel EXpropt
ArrayType L abel EXpropt
Name L abel EXprop
TypeOrindex L abel EXpropt

PrimitiveType:

NumericType

boolean

label

principal
The TypeOrindex production represents either an instantiation or an array index expression. Since both use
brackets, the ambiguity is resolved after parsing.

TypeOrindex:
Name[ ParamOrExprList]

Arraylndex:
TypeOrIndex
PrimaryNoNewArray | Expression|

ClassOrInterfaceType:
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Name
TypeOrindex

ParamQOrExprList:
ParamOrExpr
ParamOrExprList, ParamOrExpr

ParamOrExpr:
Expression
L abel Expr

ArrayType:
LabeledType| ]

ArrayCreationExpression:
new L abeledType DimExprs OptDims

3.5.3 Classdeclarations

ClassDeclaration:
Modifiersy class Identifier Paramsyp
Superoy Interfaces,y optAuthority ClassBody

InterfaceDeclaration:
Modifiersyy interface Identifier Paramsyy
Extendsl nterfacesyp
Interfacesyy InterfaceBody

Params:
[ ParameterList]

ParameterList:
Parameter
Parameterlist, Parameter

Parameter:
label Identifier
covariant label Identifier
principal Identifier

Aduthority:
authority ( Principals)

3.54 Method declarations

MethodHeader:
Modifiersyy LabeledType Identifier
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BeginL abeloy ( Formal ParameterListoy ) EndL abélopt
Throwsy: WhereConstraintsyp

Modifiers,y void Identifier
BeginL abeloy: ( FormalParameterListyy ) EndL abélopt
Throwsy: WhereConstraintsyp

ConstructorDeclaration:
Modifiersy Identifier BeginL abeloy ( FormalParameterList)
EndL abeloy: Throwsye WhereConstraintSyp

Formal Parameter:
L abeledType Identifier OptDims

BeginLabel:
L abel Expr

EndL abel:
: LabelExpr

WhereConstraints:
where Constraints

Constraints:
Constraint
Constraints, Constraint

Constraint:
Authority
caller ( Principals)
actsFor ( Principal , Principa )

To avoid ambiguity, the classesin athrows list must be placed in parentheses. Otherwise a label might
be confused with the method body.

Throws:
throws ( ThrowList)

3.55 New statements

Statement:
StatementWithoutTrailingSubstatement
... existing productions. . .
ForStatement
SwitchL abel Statement
ActsForStatement
DeclassifyStatement
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The switch label statement executes the first case in which the label of the new variable introduced is at
least as restrictive as the label of the expression on which the statement is invoked. This determination is
based upon the static comparison of label components that are not run-time representable, and the dynamic
comparison of label component that are run-time representable. The new variable (if any) isinitialized with
the value of the expression. If none of the cases are executed, the else clause, if any, is executed.

SwitchL abel Statement:
switch label ( Expression) { LabelCases }

L abel Cases:
L abelCase
L abel Cases L abel Case

L abel Case:
case ( Type LabelExpr Identifier ) OptBlockStatements
case LabelExpr OptBlockStatements
else OptBlockStatements

The actsFor statement executes a statement if the first principal can act for the second principa in
the current principal hierarchy. The knowledge of the existence of the acts-for relationship is used when
statically checking this statement. If the acts-for relationship does not exist, the statement in the else clause,
if any, is executed.

ActsForStatement:
actsFor ( Principal , Principa ) Statement OptElse

The declassify statement executes a statement, but with some restrictions removed from pc.

DeclassifyStatement:
declassify ( LabelExpr) Statement

3.5.6 New expressions

The new label expression produces a new run-time value of type label. The expression must describe a
label that is entirely run-time representable; it may not mention any principal or label parameters (implicit
or explicit).

Literal:

... existing productions. . .
new label LabelExpr

The declassify expression evaluates an expression and returnsits result, but with a possibly declassified
label. The static authority at the point of invocation must be sufficiently strong.

DeclassifyExpression:
declassify ( Expression, LabelExpr)
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Chapter 4

Statically Checking JFlow

This chapter shows that the language presented in Chapter 3 can be checked statically in a straightforward
manner. It also describes the JFlow language more completely than the previous chapter did, because it
shows precisely how static checking is performed, using formal inference rules and function definitions.
Theserules are also explained informally. The approach taken isto describe the aspects of JFlow that differ
from Java. For example, type checking islargely ignored becauseit is almost identical to that in Java. The
execution semantics of the language also are sufficiently close to Java that they are not described formally.

By focusing on information flow checking, the formal rules provide a concise description of many of
the interesting aspects of the JFlow compiler implementation. This chapter describes much of the static
checking that is done by the JFlow compiler; however, the description of the label inference algorithm and
source-to-source translation are found later, in Chapter 5.

4.1 Correctness

Because this chapter presents rules for statically checking the JFlow language, it is useful to consider the
criteriafor whether these rules are correct.

The notion of correctness in this language is essentially the same as in other recent work on statically
checking information flow asakind of type system [V SI96, SV98, HR98]. For simple JFlow programs that
do not use parameters, run-time labels, or subtyping, the rules needed for static checking are essentially
the same as the static checking rules presented in that work. However, extra static checking machinery is
present in JFlow to support all the language features that are presented in Chapter 3.

Therules are intended to enforce the following two properties:

e The apparent label of every expression is at least as restrictive as the actual label of every value it
might produce.

e Theactual label of avalueis at least as restrictive as the actual label of every value that might affect
it. (modulo declassification). One value v1 is considered to affect another, v, if achangeto v; might
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cause v, to change.

Thefirst property expressesthe usual ideathat static checking must be conservative; the second property
enforces the usual definition of correctness for information flow, non-interference [GM84]. Intuitively,
non-interference says that the low-security outputs of a program may not be affected by its high-security
inputs. In Java (and JFlow), objects may exist both before and after the program runs, so they are effectively
persistent, and must be considered to be inputs and outputs themselves.

The non-interference condition must be weakened because of the presence of declassification in the
language model. Declassification allows higher-security data to interfere with lower-security data, through
the explicit action of the principal whose security is affected. The relaxed version of non-interferenceisthat
inputs may affect lower-security outputs only with the explicit authorization of a principal able to override
the corresponding policies.

To properly define the notion of an actual label for each expression, an operational semantics for JFlow
could be defined. The argument for correctness would be twofold: the operational semantics enforce
the modified non-interference property, and the static checking rules are conservative with respect to the
operational semantics.

This approach has been taken for type checking Java [Sym97, Nv98], but is not taken in this the-
sis because important features in JFlow such as objects, inheritance, and dependent types make formal
proofs of correctness difficult at this point. The operational semantics of Java also are defined clearly
elsewhere [GJS96, DE97], and the notion of the actual label is clear simply from the static checking rules
themselves. Many of the static checking rules, particularly those for standard Java constructs, are seen
to be correct by inspection, and are similar to static checking rules seen in other work on information
flow [DD77, VS196, HR98] (except for the support for exceptions). In addition, an attempt is madeto argue
informally for the correctness of all the rules.

Section 3.4.3 described several Javafeatures such asthreads and the built-in hashCode method that have
been removed from JFlow, and information channels that have been ignored, such as stack overflow, which
can leak one hit of information. The reason for removing theseinformation channelsisthat they are difficult
to characterize with static typing rules without making the language impractically restrictive. Absent these
information channels, the information flows in a JFlow program are easily characterized in alocal manner
for each statement or expression in the language, as this chapter shows.

4.2 Static checking framework

For the sake of clarity, certain simplifications are made when describing the static checking of JFlow
programs. In JFlow, as in Java, a class may be named with a fully qualified name, or with only its base
name if either the class or its package has been imported. The rulesin this chapter ignore this complication
because it is orthogonal to information flow checking. For this reason, all classes are assumed to reside in
the same package and names are unqualified. Similarly, visibility modifiers such as public or private also
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areignored: all classesand class members are assumed to be public for the purpose of checking information
flow. The standard visibility checking and class name resolution performed by a Java compiler suffices for
JFlow aswell.

Before presenting the rulesfor checking the variouslanguage constructs, it will be necessary to establish
certain notational and semantic conventions to permit the concise expression of these rules. The purpose
of this section is to describe this basic framework upon which the static checking rules are built. The static
checking rules are then presented in Sections 4.4 through 4.7.

4.2.1 Type checking vs. label checking

The JFHow compiler performs two kinds of static checking as it compiles a program: type checking and
label checking. These two aspects of checking cannot be disentangled entirely, because labels are type
constructors and appear in the rules for subtyping. However, the checks needed to show that a statement
or expression is sound largely can be classified as either type or label checks. This chapter focuses on the
rules for checking labels, because type-checking JFlow is almost exactly the same as type-checking Java.
However, there are some interesting interactions between the two kinds of checking.

Static type checking is typically expressed as an attempt to prove atype judgement. In inference rules
for static type checking, the formula A + E : T typicaly has the meaning that in the environment A,
the expression F has the type T'. If the expression E is the entire program, this formula expresses the
idea that the program is well-typed. The environment A captures information about the context in which
the expression E occurs, or about the context in which the entire program is being checked; in a typical
compiler, A isthe symbol table. In thiswork, thisformulawill bewrittenas A p E : T', with the subscript
T indicating a judgement in the type domain.

Sincethisthesisisabout statically checking information flow, theformula A - E : X isusedto indicate
ajudgement in the domain of information flow. By analogy with type checking, one might expect that the
letter X in this formula represents a label. However, this is not the case, because of the need to describe
exceptions fully. Instead, the letter X is used to represent a set of path labels, which capture information
flow along all the possible ways in which the expression can terminate. We will return to the structure of
path labelsin Section 4.2.3.

4.2.2 Environments

Programsin JFlow are checked for correctnessin an environment, which is a binding from symbols (names
of various entities) to assaciated information. These symbols may be names of classes, principals, local
variables, and other pieces of the static checking context. The environment also contains the static principal
hierarchy and the static authority. Theletter A isusedinthestatic checking rulesto represent an environment.
The binding of the symbol id in the environment A is written as Afid]. New environments are created by
the expression form Afid := B], which creates a new environment identical to A except that the symbol id
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A an environment, which maps from an identifier such as avariable name

toits binding

A9 the global environment, containing all class definitions and environ-
mental information external to the program being checked

Alid] the binding of identifier id in A

Alid := B] anew environment with id re-bound to B

AFE: X The expression E generates path labels X when evaluated in environ-
ment A.

AFES: X Statement S generates path labels X in environment A.

AFpi=po The principal p; is known to act for the principal p, based on the
knowledge of the principal hierarchy containedin A.

At L1 C Ly Thelabel L, isat most asrestrictiveasthelabel L, giventheknowledge
of the principal hierarchy containedin A.

AR Ly~ Ly L, isequivalent to Lo, given the principal hierarchy containedin A.

AFr E: T The expression E hastypeT.

Abr Th <T5 Thetype T} isasubtype of the type T>.

Aty = predicate(zq, z2,...) The predicate named predicate istrue in environment A.

Figure 4-1: Environments and judgements

isre-bound to B.

The global environment, A9, contains definitions for all the classesin the system, and any constant part
of the principal hierarchy. As codeis checked, more complex environments are constructed that extend A9
to contain definitions for local variables, class parameters, and other bindings.

In addition to the judgements just described (A - E : X and A Fp E : T), afew more kinds of
judgements will be used to describe the static correctness of JFlow. For convenience, these judgements and
the syntax for environments just described are summarized in the table of Figure 4-1, but will be explained
in more detail asthey are used.

One convention worth explaining isthe syntax for proving auxiliary predicates (thefinal linein Figure 4-
1). The convention followed is that the variable or variables y represent outputs and variables x; represent
inputs. Although in aformal sense there is no difference between inputs and outputs in a predicate or an
inference rule, in the natural implementation of these rules some predicate arguments are outputs, and it is
useful to distinguish them on this basis.

4.2.3 Exceptions

An important limitation of earlier attempts to create languages for static flow checking has been the
absence of usable exceptions. For example, in the original work by Denning and Denning on static flow
checking [DD77], exceptions terminated the program, because any other treatment of exceptions could leak
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information. Subsequent work has avoided exceptions entirely.

It might seem unnecessary to treat exceptions directly, because in many languages, a function that
generates exceptions can be desugared into afunction that returns a discriminated union or oneof. However,
this approach leads to coarse-grained tracking of information flow. The obvious way to treat oneof types
is by analogy with record types. Each arm of the oneof has a distinct label associated with it. In addition,
there is an added integer field tag that indicates which of the arms of the oneof is active. The problem with
this model is that every assignment to the oneof will require that {tag} C pc, and every attempt to use the
oneof will read {tag} implicitly. Asaresult, every arm of the oneof effectively will carry the same label.
For modeling exceptions, this is an unacceptableloss of precision.

Another reason why it might seem unnecessary to treat exceptionsdirectly is that exceptionsare usually
ignored even in treatments of static type checking. However, it is not feasible to ignore exceptions when
checking information flow, because an exception ignored by static checking leads to a possible security
violation. One reason why static type checking rules often ignore exceptions may be the legacy of the
programming language ML [MTH90], which is strongly typed, and also statically typed except when an
expression terminates with an exception, which the static type checking rulesignore. Other programming
languages such as CLU [LAB™84] and Theta[LCD'94] do statically check exceptions, and languages such
as C++ [Sto87], Modula-3 [Nel91], and Java also treat at |east some exceptions statically.

In JFlow, all exceptions except FatalError are checked statically. For each expression or statement, the
static checker determines its path labels, which are the labels for the information transmitted by various
possible termination paths such as normal termination, termination through exceptions, termination through
areturn statement, and so on. This fine-grained analysis avoids the unnecessary restrictiveness that would
be produced by desugaring: each exception that can be thrown by evaluating a statement or expression
has a possibly distinct label that is transferred to the pc of catch clauses that might intercept it. Even
finer resolution is provided for normal termination and for return termination, where the value label of an
expression may differ from the path label. Without this differentiation between the value label and the path
label, the pc at a given point in the program would become as restrictive as every value computed prior to
that point, making JFlow impractically restrictive.

The path labels for a statement or expression are represented as a total map from paths to labels. Each
mapping represents a termination path that the statement or expression might take, and the label of the
mapping conservatively indicates what information would be learned if this path were known to be the
actual termination path. Paths, the domain of the map, may be one of the following:

e The symbol n, which represents normal termination.
e The symbol r, which represents termination through areturn statement.

e The symbolsnv and rv represent the labels of the normal value of an expression and the return value
of a statement, respectively. They do not represent paths themselves, but it is convenient to include
them as part of the map.
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e Names of classes that inherit from Throwable. Such a class represents an exception, and a mapping

aset of path labels: amap from symbols s to labels L.
The expression E generates path labels X when evaluated in environment A.

either a classthat extends Throwable, one of the special symbolsn, nv, r, or rv, or a pair
(goto label) for some statement label |abel, associated with termination through a break
or continue statement mentioning label

the label corresponding to path s.

the least restrictive label possible. Thislabel is expressed in programsas {}, i.e., alabel
containing no policies.

the most restrictive label possible. Thislabel cannot be and does not need to be expressed
directly in programs.

apseudo-label representing a path that cannot betaken. If X [s] = @ for somepath s, there
is no way for the expression or statement to terminate through the corresponding path.

a set of path labels identical to X, except that the label associated with the path s is
changedto L.

aset of path labels describing an expression that does not terminate : Vs Xg[s] = 0

the join of two sets of path labels, which is simply the join of all corresponding labels:
X=X10X, = Vs (X[s] =Xy[s]UX2[s])

Thisfunctionisuseful for creating path |abelsfor expressionsthat throw exceptions, andis

defined asfollows, where C represents an exception type (aclassthat extends Throwable):
exc-label (X, C) = Uercr<c v c<cry X[C]

Figure 4-2: Definitions for path labels

from the class represents the path of termination through that exception.

e A tupleof theform (goto £) representstermination by executing anamed break or continue statement
that jumpsto the target £. A break or continue statement that does not name a target is represented

by the tuple (goto €). .

Members of the domain of X (paths) are denoted by s. (Unfortunately, the letter p is already heavily

overloaded.) The same notation used for environments is also used for path labels: the expression X|s]

denotes the label that X maps s to, and the expression X |[s := L] denotes a new map that is exactly like
X except that the path s is bound to the label L. The range of path labelsis not precisely the set of labels;
it is the set of labels augmented with the pseudo-label (. If a path s is mapped to 0, it indicates that the
statement cannot terminate through the path s. When used in joins, the label (§ behaves as if it were lower
than any other label: L U@ = L for all labels, including the label {}. Figure 4-2 summarizes this notation

and defines some additional notation relating to path labels.
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L  alabel or the special value .

) alabel expression, which produces alabel when intepreted in an environment
T atype

t atype expression

7 alabeled type expression: an expression of the form ¢{i} or ¢t. The function labeled(r)
distinguishes between these two cases.

aprincipal or aprincipal expression (which must be a name)
a component (policy) of alabel (See Section 4.2.7)

aformal parameter of aclass

an actual parameter of a class, as a program expression

an actual parameter of a class, as part of atype

QU= 9w

the name of aclass

the name of avariable

a statement

amethod or field signature

RCI)CQ@

a complete method declaration, including its implementation

Figure 4-3: Additional conventions

424 Additional notation conventions

Certain other conventions that are used in this chapter are worth mentioning at this point. In the rules that
follow, the symbols used suggest the kind of type, value, or expression being denoted. These conventions
are summarized in Figure 4-3 for easy reference, and are described in more detail when used later.

Sequences of items of the same kind are represented by the notation ..z;.. . Theletters, 7, k, [, and
m are used only as indices into such sequences. Items in the sequence are assumed to be separated by the
appropriate delimiters (e.g., “,” and “;"), though these delimiters will be included in some casesfor clarity,
asin the expression ..; z;;.. . An equation in which an index variable such as ¢ appears holds for al i in
its range, which is 1 to max(z) unless explicitly quantified over i. A sequence of items ..z;.. is distinct
from a sequence..z;.. ; the subscript is used not only to index the items, but also to distinguish them. This
convention is chosen for its compactness, and is inspired by the convention of repeated indices used in
relativistic physics.

Optional items are indicated by large brackets, as in the expression [:1:] . In many rules, these optional
expressions denote an implicit variable generated by unification against some syntactic form or component
of the environment. For example, consider this rule:

extend(A4, [final} 7 v) = Afv 1= (var [final} type-part(r, A){var-label(r, A)} ])

The [final] on the right is present whenever the corresponding option is present in the argument to extend.
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(var T{L} uid) the name of a mutable (non-final) variable maps to this tuple, representing a
variable of type T and label L
var final T{L} uid)  afinal variable

param principal uid) aparameter of type principal
param label uid) a parameter of type label

(

(

(

(covariant label uid)  acovariant parameter of type label

(classC... {...}) aclass. Theentire class declaration is stored in the environment.
(constant principal)  areal principal external to the program

(

goto L) avariable representing the pc of the statement labeled by the break or continue
target £

Figure 4-4: Environment mappings

Optional items are also used as the condition of an if expression; in this case the condition is understood to
betrueif the optional item is present. The notation [ ] is used to represent an empty optional value. In some
cases the brackets are written in a subscript, asin [final] . In this case, the subscript is used to distinguish
different optional items.

4.25 Environment bindings

In the JFlow static checker, environments store a variety of different kinds of information. Certain in-
formation is stored in the environment under special symbols. These special symbols are auth, pc, and

ph:

Alauth] the set of principals that the program is known to be authorized to act for at a
particular point in the program: the static authority
Alpc] the program-counter |abel

Al

E R

the static principal hierarchy. Thisis a set of pairs of principals (p, p'), meaning
that p is known to act for p’ in the environment A.

The environment also contains mappings for various named entities, such as local variables. The
mappings shown in Figure 4-4 are found in the environment. In these bindings and elsewhere in the rules,
the notation uid represents a unique identifier that is generated during static analysis and that distinguishes
program identifiers that share the same name.

Asindicated, classesand interfaces are entered in the environment. In order to support mutual references
among classes, class and interface bindings are present in the global environment, A9, from which al other
environments are generated by extension. The global environment also contains some other information;
the entry A9[ph] contains a part of the static principal hierarchy that is assumed to be constant. Code
compiled against such aglobal environment will need to be invalidated if the relations described in A9[ph]
are revoked. Similarly, the entry A9[auth] contains principals willing to grant their authority to the code
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being compiled (or more precisely, being added to the system). Again, if any of these principals revoke
their grant of authority, the code must be invalidated.

4.2.6 Representing principals

For almost al JFlow entities, including principals, types, and labels, a sharp distinction is drawn between
the syntactic expression denoting an entity and the representation of the entity that is used during static
checking. For example, principals are named in JFlow programs using identifiers. These identifiers may
be the names of principals external to the program, or parameters denoting unknown principals, or names
of variables of type principal. However, during static checking, principals are represented by one of three
kinds of tuples:

(pr-external p) aprincipal external to the program: typicaly, a username
(pr-param uid) astatic principal parameter. Static parameters have no run-time represen-
tation.

(pr-dynamic uid L) arun-time principal variable. Thelabel L isthe label of this variable, and
keeps track of what information is conveyed by knowing which principal
this variable denotes.
Principals appearing in a policy expression may take any of these forms. These forms do not appear

in the range of the environment map; for example, a variable of type principal maps to a tuple of form
(var final principal{L} uid) rather than to one of form (pr-dynamic...). The mapping from principal
identifiersto their internal representation is performed by the function interp-P, whichis short for “interpret
principal”. Thisfunction assumesthat an appropriate environment entry has been installed for the identifier
in question. How thisis done will become clear later.

interp-P(id, A) = case A[id] of

(constant principal) : (pr-external id)

(param principal uid) : (pr-param uid)

(var final principal{L} uid) : (pr-dynamic uid L)
end

4.2.7 Representing labelsand components

Labels are also represented differently during static checking than in program expressions. A label is
expressed in a JFlow program as a set of component expressions {..; P;; ..} separated by semicolons.
The letter P denotes a component here (P stands for policy). These component expressions may be
policy expressions, components that name a variable or parameter, or dynamic components. During static
checking, the label is represented as a join of components produced by interpreting the corresponding
component expressions. A label L iswrittenas Py U ... UP,, or .. UP; .., orevenas..P;.. . Aswith
principals, components and component expressions are represented with different notation. There are four
possible forms for a component, corresponding to the allowed ways to write a component expression:
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(policy o : ..,7;,..) representsapolicy: alabel component with an explicit owner o and readers r;, al of
which are principals. Thiskind of component is generated by a policy expression of theformo: ..r;.. .

(label-param uid) afixed but unknown label, corresponding to an explicit classlabel parameter.

(covariant-label uid) a fixed but unknown label, corresponding to a class parameter of type label that has
been declared to be covariant, or to an implicit argument label parameter

(dynamic uid L) the dynamic label contained in a final variable of type label. This kind of component
is generated by an expression of the form *v, where v is the variable. The environment A is the
environment that exists after the declaration of the variable v.

(variable uid) An undeclared label, resulting from alabel that was omitted from the program. A label of
this sort is inferred by a constraint solver, as described in Chapter 5. In the definitions later, the
function fresh-variable() produces new labels containing a single variable component, with a fresh
identifier uid. ltsdefinitionisfresh-variable() = (variable fresh-uid()), wherethefunction fresh-uid()
generates a unique identifier never before used during static checking.

A label expression in aprogram is converted into ajoin of components by the function interp-L, which
interprets the individual component expressions and joins them together:

interp-L({Ps;...; Pu},A) =interp-L(P1, A)U ... Uinterp-L(P,, A)

A component expression is interpreted straightforwardly, producing one of the kinds of policies above.
Thisinterpretation processis shown formally in Figure 4-5. Some of the details of label interpretation hold
interest. Asthefirst definition shows, apolicy isinterpreted by recursively interpreting the principals named
in the policy. A component expression consisting of anidentifier isinterpreted differently depending on the
significance of the identifier. An identifier that is the name of a variable simply denotes the label of that
variable when used as a component expression. An identifier that is a label parameter denotes that label
parameter. Other identifiers such as the names of external principals are not associated with any information
flow, and denote the empty label, {}. Finally, the contents of a variable v of type label may be used to
construct a dynamic component using the notation xv.

4.2.8 Representing types

Some care must be taken to represent JFlow types unambiguously during static checking. Java has three
kinds of type constructors: class types, interface types, and arrays. JFlow adds labels and the ability to
instantiate a class on some parameters. The internal representation of a class or interface type is a symbol
(the name of the class) followed by a possibly empty sequence of parameters. Basic types such asint are
represented in thisway, with an empty sequenceof parameters: int[ ]. Arraysare represented by the symbol
array, followed by two parameters: the type of contained elements, and their common label. Thus, the type
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interp-L(o : ..r;.. , A) = (policy interp-P(o, A) : .., interp-P(r;, A), ..)

interp-L(v, A) =
case A[v] of
(var [final| T{L} uid) : L
covariant label uid) : (covariant-label uid)
param label uid) : (label-param uid)
constant principal) : {}
param principal uid) : {}

(
(
(
(
end

interp-L(xv, A) =
case Afv] of
(var final label{ L} uid) : (dynamic uid L)
end

Figure 4-5: Interpreting labels

int{L}[ ] isrepresented internally asarray[int,L]. Asin Java, arraysare the only typethat allow another type
as a parameter.

Thepredicateinterp-T translatesatype expressioninto thisinternal representation, asshownin Figure 4-
6. For convenience in expressing static-checking rules, this predicate is written as if it were a function.
When interpreting instantiations of parameterized classes, the predicate interp-param is used to interpret
the actual parameters used.

The first two rules for interp-T show how simple object types are interpreted. The first rule shows
interpretation of a non-parameterized class, which is treated exactly like a parameterized class having no
parameters. The second rule shows how aparameterized instantiation is interpreted, using the interp-param
predicate. The third and fourth rules define interpretation of a JFlow array type in accordance with
Section 3.3.6. The final three rules show how actual parameters to a parameterized class are interpreted.
The only subtleissue for parameter interpretation is that a non-covariant formal label parameter may not be
supplied with a covariant actual label parameter, as in the fifth rule. The predicate invariant is defined in
the next section.

In the static checking rulesin this chapter, the symbol 7 is used to represent a labeled type expression:
an expression of the form ¢{(} or ¢. For convenience, the functions labeled, type-part, and label-part are
used to manipulate labeled type expressions, as defined in Figure 4-7.
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AlC]=(classC ...{...})
C[] = interp-T(C, A)

A[C] = (class C[.P;..] ... {...})
Q; = interp-param(q;, P;, A)
Cl..Q;..] = interp-T(C|..¢;..], A)

T = interp-T(¢, A)
invariant(7")
array[T, L] = interp-T(¢] ], A)

L = interp-L(I, A) T = interp-T(¢, A)
invariant(L) invariant(7")
array[T, L] = interp-T(¢{l}[ ], A4)

L = interp-L(g, A)
invariant(L)
L = interp-param(q, label id, A)

L = interp-L(g, A)
L = interp-param(q, covariant label id, A)

p = interp-P(q, A)
p = interp-param(q, principal id, A)

Figure 4-6: Interpreting type expressions

4.29 Invariant vs. covariant types

Thepresenceof covariant |abel parameters makesit necessary to distinguish betweeninvariant and covariant
types. Invariant types are types that do not mention any covariant label parameters; the meaning of an
invariant type does not vary with the parameter. Covariant types are types that vary with one or more
covariant label parameters. A typeisinvariant aslong asall of its actual label parameters areinvariant. The
predicate invariant(7"), defined in Figure 4-8, uses this simple rule. For alabel L to be invariant, it must
not contain any components of the form (covariant-label uid). This condition can also be expressed by
requiring that the label L for any label parameter may be at most as restrictive as L;,,, alabel that contains
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labeled(t{l}, A) = true
type-part(t{l}, A) = interp-T(¢, A)
label-part(¢t{/}, A) = interp-L(l, A)

labeled(t, A) = false
type-part(¢, A) = interp-T(t, A)
label-part(¢, A) = L

Figure 4-7: Definitions for labeled types

case Q; of
..U PjU.. :Aj,uid P; = (covariant-label uid)
else true

end

invariant(C[..Q;..])

Figure 4-8: Determining type invariance

every label component except components of the form (covariant-label uid). It is an ordinary member of
the set of labels, but one that istoo large to write down.

4.3 Basicrules

Using the representations of principals, labels, and types that have just been defined, the basic rules for
reasoning about these entities can now be expressed, starting with principals.

4.3.1 Reasoning about principals

In an environment A, the static principal hierarchy is stored in the component A[ph], which is a set of
pairs of principals (p1, p2). The notation A + p; > po means that given the static knowledge contained in
the environment A, the principal p; is known to act for the principal p,. The necessary reflexivity and
transitivity of the static principal hierarchy (see Section 2.1.1) isachieved by inference rulesthat transitively
and reflexively extend the set of pairsin A[ph]. Theserulesare shownin Figure4-9. Thefirst rule expresses
the transitivity of the acts-for relation. The second rule captures the reflexive property of the acts-for
relation. The third rule describes how the static principal hierarchy is accessed to check acts-for relations.
The function get-uid extracts the uid component of a principal.
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AFpi=p>
AFpr=p3
AFpi1=p3

uid; = uidy
A+ (pr-param uid1) > (pr-param uidy)
A+ (pr-dynamic uidy L1) > (pr-dynamic uidy L)
A |- (pr-external uid;) = (pr-external uidy)

(p1,p5) € Alph]
get-uid(p}) = get-uid(p1)  get-uid(p)) = get-uid(p2)
AFpi=p2

Figure 4-9: Inferring the > relation

4.3.2 Reasoning about labels

The rules shown in Figure 4-10 are used for checking label constraints. The first two rules are simply
the complete relabeling rule from Section 2.4.3. The next two rules show that non-policy components are
treated as if they were opagque. The final rule reduces reasoning about label equivalence to reasoning about
relabeling.

These rules say nothing about label variables: components of the form (variable uid). The rulesin
Figure 4-10 cannot be applied fully until all label variables are given satisfying assignments, replacing them
with one of the other kinds of components defined in Section 4.2.7.

In the fourth rule, a dynamic component can be relabeled to another dynamic component only if they
havethe same uid; in other words, if they are the contents of the same variable of typelabel. Otherwise, they
correspond to the contents of different variables, and no static relationship can beinferred. The relationship
between two such components depends on their contained labels 1., and L,. One would expect that these
contained labels would be the same, because they are the labels of the same variable. However, such
components can acquire different labels during constraint solving, because the label of the variable (of type
label) is being automatically inferred. In this case, the contained label is a conservative approximation
to the true label of the variable, and different dynamic components may contain different conservative
approximations.
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L={.P.}
I'={.P.}
VidjAF P C
AFrLCL

P

AFo>o
Vj(Al—r;-to vV HiAl—rg-tri)

A F (policy o: ..r;..) C (policy o' : r;)

true
A F (label-param uid) C (label-param uid)

true

A F (covariant-label uid) C (covariant-label uid)

AF L1 C L
A F (dynamic uid L;) T (dynamic uid L5)

A LCL
AFLCL
AFL=~L

Figure 4-10: Inferring the C relation

4.3.3 Classscope and environments

JFlow is unique among languages that support static checking of information flow because it supports
object-oriented classes. It is aso unique in its support of parameterization, including parameterization
over both labels and principals. This section describes several functions and predicates that support these

Handling class parameters. A classin JFow has a possibly empty list of formal parameters that may be
instantiated with actual parameters of the appropriate sort. For code both external and internal to the class,
it is necessary to create environments in which these formal parameters are bound. Functions for creating

these augmented environments are defined in Figure 4-11.
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class-erv(C..Q;..]) =
case AI[C] of
(class C[[..Pi..]} ...y D A9 paramrid(P;) == Q;..]
end

inner-class-env(C') =
case AI[C] of
(class C[[PZ]} [authority(..pk..)]> :
let A = A9[..param-id(P;) := formal-to-actual(P;)..] in
Alauth := {..interp-P(p, A)..}]

end
end
param-id(P) =
case P of
{covariant] label id : id
principal id : id
end

formal-to-actual (P) =
case P of
covariant label id : (covariant label fresh-uid())
label id : (param label fresh-uid())
principal id : (param principal fresh-uid())
end

Figure 4-11: Modifying an environment for class scope

The function class-env is used when checking code external to the class, where that code mentions an
instantiation of the class. It augments the environment with definitions for the parameters of aclass, given
some instantiation of the class on parameters, creating abinding from each formal parameter of the classto
the corresponding actual parameter used in the instantiation.

Thefunctioninner-class-enval so augments environmentswith class parameters, creating an environment
for checking the code of the class itself. It adds definitions for the parameters of the class, but treats the
formal parameters as actual parameters of the appropriate type. Checking the code of a class against these
definitions ensures that the class is safe for all possible actual parameters that might be supplied. For
example, a class parameter of type label is bound to a label containing a single component of the form
(param label fresh-uid()), where fresh-uid() is the function that generates a previously unused identifier.
The static checking rulestreat this component as an opaque label about which nothing is known except that
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A" = Althis == (var final C[..Q;..]{A[pc]} fresh-uid())]
A" = extend-all-ivars(4’, C[..Q;..))
A" = obj-env(4, C..0;.)

case A9[C] of
(class C’[[’Pz]} {implements by, ]{ Sh
A=A
(class C[[PZ]} extends ts...) :
A" = extend-all-ivars( A, interp-T (¢, class-env(C|[..Q;..])))
end
A" = extend-ivars(4’, C[..Q;..])
A" = extend-all-ivars(A, C[..9;..])

A9I[C] = (class C .. . {... [ﬁnal]n T Un ... })
V=1{n| [final]n A T, = label{l,}}

Vi={n| [final}n N 1y, = principal{l, }}
V ={.n;.}
V'={.n.}
L,, = fresh-variable()

A" = Al..v,; = (var final label{L, } fresh-uid())..]
A" = Al..vpy 1= (var final principal{Ly} fresh-uid())..]
A"+ L, ~interp-L(l,, A")

A" = extend-ivars(4, C[..Q;..])

Figure 4-12: Extending the object environment

it is equivalent to itself. Because this condition holds for any possible label, code parameterized over this
label will be sound regardless of what actual parameter that code is instantiated on.

Building object environments. In JFlow, final instance variablesof typelabel and principal may beusedto
construct dynamic label components and policies when their containing objects are in scope. For example,
one instance variable of type label may be used to label another instance variable in the same object. These
instance variables may also be used to construct labels within non-static methods of the class.
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When performing static checking, the obj-env predicate extends the environment to add definitions for
final instance variables of type label or principal. Itsdefinitionis shownin Figure 4-12. The primary use of
obj-env is for checking the correctness of a method body. In this context, the variable this also isin scope.
Other instance variables do not need to be placed in scope because an ordinary accessto an instance variable
z istreated as the expression this.z.

The predicate extend-all-ivars ensures that all the appropriate instance variables are added to the envi-
ronment. It too is defined in Figure 4-12. Instance variables are added to the environment starting from
the topmost superclass, and working down. This ordering ensures that any instance variables that shadow
superclass definitions are bound correctly.

The predicate extend-ivars, also shown in Figure 4-12, addsthe final instance variables of typelabel and
principal that are members of the single classthat is the second argument. The rule works by extracting the
indices of the final variables of type label and principal into variables ..n;.. and ..n,.., respectively. These
indices are used to select the variables that are entered successively into the augmented environments A’
and A”. This processis complicated by the fact that the labels of the instance variables may refer to each
other. For each instance variable v,,, a new label variable L,, is used to handle the potential circularity. The
label L, is the label used when entering the variable into the environment, and it is required by the final
antecedent to be equivalent to the interpretation of the declared |abel of the variable (1,,) in the environment
in which al of the necessary instance variables are defined (A4").

I nstancevariableand method signatures. Animportant part of static checkingislooking up the signatures
of class members, including members that are inherited from superclasses. These class members include
both instance variables and methods.

The judgement S = signature(T', f) has the meaning that the member f of the type T' has the signature
S. Thetype T must be a class type. The rules for looking up signatures are given in Figures 4-13. The
member f may be either the name of an instance variable, or a method identifier, which is of the form
m(T;), where the T; are the types of the arguments. If f isthe name of an instance variable, the signature
has the form ([final] 7 id). When using the rule provided to look up method signatures, a signature match
the argument types T; only if the argument typesin the signature are supertypes of the corresponding types
t;. Thiscondition is the final antecedent of the rule for method signature lookup. However, using thisrule,
multiple overloaded signatures may satisfy given argument types T;. In Java, this situation is a static error
unless one of the signatures is at least as specific as al the others. The rules given here do not capture this
aspect of static checking, for the sake of simplicity.

Methods and fields can also be inherited from superclasses, using the last rule in Figure 4-13. In this
rule, ¢, represents the type expression for the superclass of C', and T’ represents the superclassof C'. The
type expression ¢, is interpreted in the environment class-env(C|..Q;..]) because it may mention formal
parameters of the class C. The same rule holds for methods as well, if m(Tj) is substituted for f.
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A9[C] = (class [[.P;.]] ... {... [final] 7 £ ...}
A = obj-env(A9, C[..Q;..])
Ty = type-part(r, A)
Ly = (if labeled(r) then label-part(r, A) else 1)
([final] 74{L;}) = signaturg(C’[..Q;.., /)

AI[C] = (class [[Pl]] A
... [static] 7 m[{T}| (-7 a;..) [:{R}] throws(..7..) where K; {S} ...
1

A = classenv(C|[..Q;..])
A b T; < type-part(7;, A)

([static| 7, m [{1}] (.75 a;..)[:{R}] throws(..7;...) where ;) = signature(CT..Q;.], m(T}))

A9[C] = (class [[Pl]} extends ts ...{...})
f isnot amember of C
T, = interp-T(ts, class-env(C[..Q;..]))
S = signature(Ts, f)
S = signature(C|..Q;..], f)

Figure 4-13: Looking up field and method signatures

4.3.4 Reasoning about subtypes

Consider the judgement A -7 S < T', which is relevant to JFlow, as to al languages with subtyping.
Here, S and T are ordinary unlabeled types. The subtype rule is as in Java, except that it handles class
parameters. If S or T' is an instantiation of a parameterized class, subtyping is invariant in the parameters
except when a label parameter is declared to be covariant. This subtyping rule is the first one shown in
Figure 4-14. Using this rule, Vector[L] (from Figure 3-8) would be a subtype of AbstractList[L'] only if
L=1L'.

Checking subtype relations in JFlow is straightforward. If .S and 7" are not instantiations of the same
class, it is necessary to walk up the type hierarchy from S to T', rewriting parameters, as shown in the
second rule in Figure 4-14. Together, the two rules inductively prove the appropriate subtype relationships,
including reflexivity and transitivity. Two instantiations of the same class have a subtype relation if their
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A9[C] = (class C[[.P:.] ... {..})
(AF Q; = Q) V (P; = (covariant label id) A A - Q; C Q)
Abp C[.Q;.] < CL.O]

AI[C] = (class C[[P,]] extends ts...{...})
T, = interp-T(ts, class-env(C[..Q;..]))
Abp Ty < C'[.QL]

At C[.Qi] < C'..QL.]

Figure 4-14: Subtyperules

parametersare equivalent, or if the parameter isacovariant label and thelabels havethe appropriate relation.

Theserulesfor checking a subtype rel ationship between instantiations of parameterized typesare similar
to the checking performed by the PolyJ compiler, which supports only type parameters[MBL97]. Checking
a subtype relation between a class and an interface, or between two interfaces, is done in exactly the same
way as between two classes.

4.4 Checking Java statementsand expressions

This section presents rules for statically checking information flow in the statements and expressions that
JFlow inherits from Java. The semantics for these statements are the same as in Java, so no discussion of
their behavior is needed. One kind of Java expression is deferred until Section 4.6: a call to method or
constructor, which differs somewhat in JFlow from Java

441 Simplerules

Rulesfor most statement forms can be expressed simply using the definitionsprovided sofar. Figure4-15
contains some important static-checking rules.

The first rule in the figure is interpreted as follows: an empty statement always terminates normally,
with the same pc at its end as at the start. Thus, it simply passes along its pc to any statement that follows
it. Inthe secondrule, it is seen that aliteral expression such as anumeric constant also terminates normally
aways, and is labeled with the current pc, as described earlier.

The third rule in Figure 4-15 applies to any statement, and is important for relaxing restrictive path
labels. Theintuitive meaning of thisrule isthat if a statement can terminate only normally, the pc at the end
is the same as the pc at the beginning. The normal termination of the statement gives no new information.
The same is true if the statement can terminate only through a return statement. This rule is caled the
single-path rule. It would not be safe for this rule to apply to exception paths, so the rule requires that
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true
At Xgln = Alpc]]

true
A+ literal : Xy[n := A[pc], nv := A[pc]]

A S Xg[s =1
s € {n,r}
At S X[s:= Alpd]]

Figure 4-15: Some simplerules

AFE1: X,
A[IE = Xl[ﬂ]] FE>: Xo
X=Xih:=00&X,
AFE+Ey: X

AFE1: X,
A[IE = Xl[ﬂ]] FE>: Xo
X = exc(X1[n := 0] ® X2, X2[nv], ArithmeticException)
AFEi/E;: X

exc(X,L,C) = X[n:= X[n]UL, nv:= X[nv|UL, C:= X[C|UL]
Figure 4-16: Arithmetic rules

the single path s be either n or r. To see why, suppose that a set of path labels formally contains only a
single exception path C. However, that path might include multiple paths consisting of exceptions that are
subclassesof C. Thesemultiple paths can be discriminated using atry. . . catch statement. Becausethe Java
exception model identifies exceptions with types, and Java supports subtyping, the single-path rule may not
be applied safely to exception paths. If exceptions were not identified with types (asin CLU [LAB™84]),
the single path rule could be applied to exceptionstoo.

442 Arithmetic

Figure 4-16 gives rules for checking arithmetic operations. Arithmetic operations that cannot throw an
exception, such asaddition, are covered by thefirst rule. Javaevaluatesthe second argument to an arithmetic
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operation only when the first argument terminates normally. Therefore, the second argument is checked
statically using apc of X1[n]. The operation can terminate in any of the waysthat E; can terminate, except
normally, because in that case E, would be evaluated. The operation can also terminate in any of the ways
that E, can terminate. Therefore, the path labels for the whole expression are derived by applying the @

operator to the path labels from the individual expressions (X, and X>), with the normal termination path
from E; removed.

For arithmetic operations that can throw an exception, such as division or modulo, the second rule
applies. These operations throw an exception if the second argument is zero. To simplify the description
of the static checking, the function exc is used. Its definition is repeated at the bottom of the figure. This
function creates a set of path labels that are just like the input path labels X, except that they include an
additional path, the exception C, with the path label L. If normal termination or the normal termination
value are observed, the knowledge that the exception was not thrown may leak the same information as the
knowledge that it was thrown. Therefore, the exc applies the label L to these two components (n and nv)
aswell. For example, in the division rule, an arithmetic exception is thrown depending on the value of the
denominator; hence, the static rule applies exc with L = X>[nv].

443 Local variables

The static checker storesinformation about local variablesin the environment. The function extend, defined
in Figure 4-17, is used to augment environments with definitions of local variables. When applied to any
statement, the function extracts the local variable definitions; it is needed because Java (and JFlow) allow
variable definitions at any point within amethod. Angle brackets are placed around the statement argument
for clarity. For most statement forms, the function extend returns an unchanged environment. For local
variable definitions, it adds an appropriate binding, as shown in the first case. Note that the label of the
variable is interpreted in the environment A; the variable v may not be used in its own label. A sequence
of statementsis also considered to be a single statement; the second definition recursively applies extend to
statements in the sequence to accumulate al the definitions.

The function var-label creates the appropriate label for a variable declared to have extended type 7.
If the variable has a declared label, the true label is the declared label joined with the pc at the point of
declaration. Any access to the variable must be tainted by pc, so applying a weaker label to the variable
would make it immutable.

Argument variable definitions are added to the environment by adifferent set of rules (see Section 4.7.4).

444 Variableaccess

Some simple rules for accessing variables and components of objects are given in Figure 4-18. The first
rule covers an expression consisting of avariable name. The value of avariableislabeled with not only the
variable's label, but also the current pc. Joining the label with the current pc is necessary because the label
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extend(4, ([final| 7 v)) = A[v = (var [final | type-part(r, A){var-label(r, 4)} fresh-uid())]
extend(A, (S1; S2)) = extend(extend(4, (S1)), (S2))
extend(4, (S)) = A (for other statements S

var-label(r, A) = (if labeled(7) then label-part(r, A) U A[pc]| else fresh-variable())

Figure 4-17: Adding local variable definitions

of every expression includes the pc in which the expression occurs. The label of the variable itself only
includesthe pc at the point of declaration of the variable.

The second rule covers an array index expression. This rule mirrors the order of evaluation of the
expression. First, the array expression (E,) is evaluated, yielding path labels X, . If it completes normally,
the index expression (E) is evaluated, yielding X,. If this completes normally, two tests are performed.
First, the array is checked to make sureit is not null; then, the index is checked to make sureit isin bounds
for the array. If either test fails, an appropriate exception is thrown.

The meaning of the final antecedent in this rule is that the label of the array index expression depends
on the labels of the array expression, the index expression, and the array elements (L,). The possible
termination paths of an array index expression include all of the normal termination paths of E, and Ej,
plus the two exceptionsjust mentioned. Thisrule usesthe @ operator to coalesce all these paths.

The third rule in Figure 4-18 is for checking accesses to instance variables (fields). It is similar to the
rule for checking array index expressions, except that there is no index to be evaluated or tested. Also, the
label of theinstance variableis obtained by using the predicatefield-label, defined just below. This predicate
ensures that the label L isthe label of the field f in the type T', by using the signature predicate to obtain
the field's signature, and then interpreting the label of that signature. Thefield-label predicate will be useful
again shortly.

The final rule checks accesses to the immutable pseudo-field length of arrays. Note that the value of
length is not labeled with L, the label of the array elements, becauseit isimmutable.

445 Variable assignment

Figure 4-19 contains various rules for assignment. The first rule covers the simple assignment of an
expression E to anon-final local variable v. The termination paths of the statement are exactly those of the
expression E. Theonly restriction is that the label of the variable must be more restrictive than the label of
the result being assigned (A + X|[nv] C L).

Therulesfor assignment to array elements and object fields are complicated by the fact that Java defers
checking the validity of the variable being assigned until the right-hand sideis fully evaluated. Therule for
array element assignment is similar to the rule for array element access. First, the array expression E, is
evaluated, yielding path labels X,. If it completes normally, the index expression E is evaluated, yielding
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Alv] = (var [final] T{L} uid)
X = Xy[n := Alpc], nv := L L Alpc]]
AFov: X

Abp Ey : T{Ly}[]
A+ E,: X,
Alpc = Xgn]] F Ep : X,

X1 = exc(X, @ Xy, X4 [nv], NullPointerException)
X2 = exc(X1, Xq[nv] U Xp[nv], OutOfBoundsException)
X = Xp[nv i= L, U Xp[nv]|
AF Ey[Ey| - X

A E:T
L = field-label(T, f)
AFE: Xg
X' = exc(Xg, Xg[nv], NullPointerException)
X = X'[nv := LU Xg[nv]]
AFE.f . X

([final] 7 f) = signature(T, f)
A = class-env(T)
L = (if labeled(7) then label-part(r, A) else L)
L = field-label(T, f)

Al E :array[T, L]
AFE: Xg
X = exc(Xg, Xg[nv], NullPointerException)
A+ E.length : X

Figure 4-18: Accessing variables and fields

Xp. Then, the assigned valueis evaluated. Java checks for three possible exceptions before performing the
assignment. Finally, avoiding leaks requiresthat thelabel on the array elements(Z,) is at least asrestrictive
as the label on the information being stored (X, [nv] LI X[n]).

Assignment to an instance variable also is similar to access to an instance variable. Asin that earlier

114



AFE: X
Alv] = (var T{L} uid)
AF X CL
Arv=FE:X

AFE,: X,
Abp Ey : T{Ly}[]
Alpc = Xgn]] F Ep : X,
Alpc = Xp[n]] - By : X,

X1 = exc(X, ® Xp @ Xy, Xq[nv], NullPointerException)
X2 = exc(X1, Xq[nv] U Xp[nv], OutOfBoundsException)
X = exc(X2, Xq[nv] U X, [nv], ArrayStoreException)
A b Xy[nv]UX[n] C L

AF E By =Ey: X

Abp E1: T
L = field-label(T, f)
AFE1: X,
A[IE = Xl[ﬂ]] FE>: Xo
X = exc(X1 @ X2, X1[nv], NullPointerException)
Al X[nv] C L
AFELf=E: X

Figure 4-19: Assignment rules

rule, the predicate field-label obtains the label of the instance variable. This label is compared against the

label of the assigned information to prevent leaks.

4.4.6 Compound statements

Figure 4-20 presents rules for checking some compound statements. The first rule is for the simplest
statement containing other statements: asequence of two statements. The second statement is executed only
if the first statement terminates normally, so the pc is augmented to include the information of its normal
termination (X1[n]). The environment of the second statement also includes any local variables that were
defined in the first. The possible termination paths of the sequence include al the termination paths of S,
plus the abnormal termination paths of S1. Note that the statement sequence operator (;) is assumed to be
associative; this rule works even when S; and S, are sequences of statements themselves.
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A S X,
extend(A, S1)[pc := Xi[n]] F S2: X»
X =Xn:=0® X
AF S5 X

AFE: Xg
A[m = XE[M]] = Sl 1 Xq
A[m = XE[M]] = Sz 1 X
X=Xph:=0le X109 X,
Atif (E) Spelse S2: X

L = fresh-variablg()

A" = Alpc:= L, (gotoe) := L]

A'FE: Xg
AI[LC = XE[M]] FS:Xg
A+ Xgn] E L

X =(Xg® Xg)[(goto €) := @]

At while (E) S: X
At do S while () : X

At {S1; while (E1) {S3; S2}}: X
A for (S1; Eq; S2) S3: X

Figure 4-20: Compound statement rules

The next rule shows how to check an if statement. First, the path labels X of the expression are
determined. Since execution of S or S is conditional on E, the pc for these statements must include the
value label of E, Xg[nv]. Finaly, the statement as a whole can terminate through any of the paths that
terminate E, S1, or So—except normal termination of E, because normal termination would cause one of
S1 or S to be executed. If the statement has no else clause, the statement S5 is considered to be an empty
statement, and the second rule in Figure 4-15 is applied.

The third rule, for the while statement, is more subtle because of the presence of a loop. This rule
introduces a label variable L to represent the information carried by the continuation of the loop through
various paths. The label L is a loop invariant on pc; its value is discovered by the constraint solver
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AFE: Xg
X = Xg[n:=0]® Xy[r := Xg[n],rv = Xg[nv]]
AFreturn B X

A = Alpc] C Af(goto L)]
A+ continue L : Xp[(goto L) := T]
A+ break L : Xy[(goto L) := T]

L = fresh-variablg()
A" = A[(goto L) := L]
A'F Sl . ¢
Al[m = Xl[ﬂ] |_|L] F S Xo
X = (X1[n :=0]® X>)[(goto L) := 0]
AFSy; L S5 X

Figure 4-21: Checking goto-like statementsin JFlow

described in Chapter 5. It may carry information from exceptional termination of E or .S, or from break or
continue statements that occur inside theloop. An entry is added to the environment for (goto €) to capture
information flows from any break or continue statements within the loop. The rules for checking break
and continue, presented in the next section, use these environment entries to apply the proper restriction on
information flow.

447 Goto-likestatements

Figure 4-21 gives the rules for checking statements that transfer control non-locally. First is a rule
for areturn statement. A return statement can terminate either by abnormal termination of the expression
evaluated, or by ther path. Thus, the rule shown results. If there is no expression to return, the proper path
labelsaresimply X = Xy[r := A[pc]]. Theseare the same path |abels generated by the return of a constant,
except that there is no return value label (rv).

The break and continue statements are handled by using a special entry in the environment that keeps
track of the label containing all information transferred to their targets. In therule for while, in Figure 4-20,
we saw an example of such an entry for break and continue statements lacking a specific target. Since
break and continue transfer information about the current pc to their target, the rule for these statements
simply requires that the restrictions in the current pc be transferred to the target, which is expressed as
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Alpc] C Al(goto L)]. Thesetwo statements also generate path |abels containing a mapping from the tuple
(goto L) tothelabel T. Thereason for adding these mappingsis to prevent the single-path rule from being
erroneously used. Thelabel T is used because the label binding is not used except that it must not be equal
to 0.

The next rule ensures that appropriate environment entries are created for named goto targets. It
introduces a binding from the name of a goto label that maps (goto L£) to alabel variable L. This binding
is placed in the environment that is used to check S7 and S>. This rule exploits non-determinism for
conciseness; because statement sequencing is associative, the rule does not make clear what sequences of
statements should be considered to be S; and S,. It is only necessary that S; contain all break statements
naming £, and that S> contain all continue statements naming it. If S; and S, cannot be chosen in this
manner, the program is incorrect.

The JFHow compiler implementation does not precisely follow the approach described in this rule;
instead, for each method it constructs a table targets that maps targets to label variables. Thistableis used
to impose the condition A[pc| C targets[L] for each break or continue statement encountered, just asin the
rule.

448 Exceptions

Exceptions can be thrown and caught safely in JFlow using the usual Javaconstructs. Figure 4-22 shows
the rules for various exception-handling statements. Thefirst rule, for throw statements, is straightforward.

The next rule shows how to desugar an arbitrary statement of the form try. .. catch...finally into a
try. .. catch statement nested within a try. .. finally statement, which reduces the set of statements to be
checked statically.

Theideabehindthetry. .. catch ruleisthat each catch clauseis executed with apc that includes all the
paths that might cause the clause to be executed: all the paths that are exceptions where the exception class
is either a subclass or a superclass of the class named in the catch clause. The function exc-label joinsthe
labels of these pathsin path labels X. The join isfinite because only the exceptions paths of X that are not
0 need to be joined. The path labels of the whole statement merge all the path labels of the various catch
clauses, plus the paths from X g that might not be caught by some catch clause, which include the normal
termination path of X if any.

Thetry. .. finally ruleis similar to the rule for sequencing two statements. Oneinteresting differenceis
that the statement S is checked with exactly the sameinitial pc that Sy is, because S is executed no matter
how S; terminates.

To see how these exception rules work, consider the code in Figure 4-23. In this example, x and y
are boolean variables. This code transfers the information in x to y by using an implicit flow resulting
from an exception. In fact, the code is equivalent to the assignment y = x. Using the rule of Figure 4-
22, the path labels of the throw statement are {E — {x}}, so the path labels of the if statement are
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AbFr E:classC{...}
AFE: Xg
X = exc(Xg, Xg[nv],C)[n = (]
Al throw F : X

A F try{try {S} ..catch(C; v;) {S;}..} finally{S"} : X
AFtry {S} ..catch(C; v;) {S;}.. finally{S"} : X

AFS: Xg
pc; = exc-label(Xg, C;)
Alpc = pg;, v; := (var final C;{pc;} fresh-uid())] - S; : X;
X = (; X;) ® uncaught(Xg, (.., C;, ..))
AFtry {S} ..catch(C; v;) {Si}.. 1 X

Al—Slin Al—Szin
X =Xih:=0l®X,
AFtry {S1} finally {S>2} : X

eXC'IabeI(X, C) = UC’:(C”SC v C<Cr) X[Cl]
(X' = uncaught(X, (..,Cj,..))) = Vs X'[s] = (if (3¢ (s < Cy)) then @ else X[s])
Figure 4-22: try statements

y = true;

try {
if (x) throw new E();
y = false;

catch (Ee) { }

Figure 4-23: Animplicit flow using throw

X ={E — {x},n — {x}}. Theassignmenty = false is checked with pc = X[n] = {x}, so the codeis
alowed only if {x} C {y}. Thisrestriction is correct because it is exactly what the equivalent assignment
statement would have required. Finally, applying both the try-catch rule here and the single-path rule from
Figure 4-15, the value of pc after the code fragment is seen to be the same as at its start. Throwing and

119



AFE: X
A+ FEinstanceof t 1 X

AFE: Xg
X = exc(Xg, Xg[nv], ClassCastException)
AF(@)E: X

Figure 4-24: Dynamic type discrimination
catching an exception does not necessarily taint subsequent computation.

4.4.9 Dynamic type discrimination

Java provides two mechanisms for dynamic type discrimination: checked run-time type casts and the
instanceof operator. The rules for checking these constructs are shown in Figure 4-24. They are both
straightforward. In each case, the result of the expression depends on the label of the value of the expression
E. For instanceof, the path labels of the boolean result are the same asfor E. For arun-time cast, the path
labels are the same asfor E, except that a ClassCastException isthrown if E hasthe wrong dynamic type;
this exception is conditional on the value label of E, that is, X g[nv].

45 Checking new statementsand expressions

The previous section presented the rules for checking information flow in existing Java statements and
expressions. This section shows how to statically check the JFlow statements and expressions that are not
found in Java.

45.1 Testingthe principal hierarchy

The actsFor statement is used to dynamically test the relationship between two principals in the current
principal hierarchy. If the relationship exists between the two named principals, a statement is executed.
Figure 4-25 shows how this statement is checked statically. The expressionsp; and p, must be identifiers;
this condition is enforced because the function interp-P is used to interpret them. They must name either
external principals or run-time principals, because principals that are class parameters of type principal are
not availableat runtimeto betested. Sincethe expressionsp; and p, areidentifiers, they cannot generate any
exceptionswhen evaluated. However, if they name run-time principals, their values may carry information,
which affects the result of the test; this information isin the labels X1[nv] and X;[nv]. For this reason, the
pc for S is augmented to include these labels. The ph component of the environment is also augmented to
include the pair (p}, p}), making the knowledge that p1 > p, available when statically checking S;. Note
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AF p1 - X1
Alpc = Xq[n]] F p2 : X>
py = interp-P(p1, A) ph = interp-P(pz, A)
Auid (p} = (pr-param uid) V p}, = (pr-param uid))
A’ = Alpc := Xy[nv] LI Xo[nv]]
A'[ph := A[ph] U {(p3,p5)}] - S1: X3
if [else So| (A’ S5 : Xa) else (X4 = X)
X=X10Xo00 X330 X4
A I actsFor(p1,p2) S1 [else Sz} X

Figure 4-25: Checking the actsFor statement

AFE: Xg
L = interp-L(I, A)
A F Xg[nv] C interp-L(L, A) U auth-label(A)
A | declassify (E,1) : X

L = interp-L(I, A)
A+ Alpc] C LUauth-label(A)
Apc:=LIF S: Xs
X = Xg[n := Xg[n]U Alpc]]
A& declassify (1) S : X

auth-label (L, A) = | |(p € AJauth])(policy p : )

Figure 4-26: Declassification statement and expression

that no extra knowledge is available when statically checking .S; as discussed in Section 2.4.3, negative
information about the principal hierarchy is not useful during static checking.

45.2 Declassification

JFlow providestwo mechanismsfor declassifyinginformation: the declassify expression and thedeclas-
sify statement. Both of these constructs are checked statically, using the static authority of the code at the
point of invocation, as shown in Figure 4-26. The static authority of the code is stored in the environment
entry A[auth] asaset of principals—principals for whom the code is currently known to have the authority
to act. Principalsfor whom principalsin AJauth] can act also areimplicitly in the static authority.
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AFE: Xg

L; = interp-L(l;, A)

A F Xgnv] C L;U Lgy

A Fr BT

T; = interp-T(¢;, A)
Abr T <T;
pco = Xg(n]

pC; = p¢; 1 U label (Xg[nv] U L)
Alpc = pg;, v; = (var final T;{L;} fresh-uid())] F S; : X;
X=Xg® (@l Xi)
A+ switch label(E){..case (¢;{l;} v;) S;..} : X

Figure 4-27: Checking switch label

To check whether alabel L1 can be declassified to L, the equation L, C L, LI auth-label (A) must be
satisfied, thusenforcing the constraint Ly T Lo LI L 4 from Section 2.4.4. Thelabel auth-label(A), definedin
the figure, contains policies of theform (policy p :) for every principal p in A[auth]. Thislabel isequivalent
to L 4, alabel inwhich policiesof theform (policy p :) are present for every principal p inthe static authority,
because the additional policies are redundant according to the redundancy rule of Section 2.4.4.

Thefirst rule determinesthe path labels on the expression E and ensuresthat the label of the value of £
(XE[nv]) can be declassified to the label L. The second rule ensures that the current pc can be declassified
to the desired label L; this hew declassified pc is then used to check the statement S. The declassified pc
does not carry through to the statement following the declassify, because the fourth line rejoins A[pc] to the
normal termination label. However, any exceptions or return statements performed within S will be able to
take advantage of the declassified pc, because these paths are not joined to A[pc].

This statement could have been defined to modify the pc of the subsequent statements by defining
X[n] = X,[n], but that definition seems more likely to result in unintentional declassification. The
semantics chosen are an engineering choice to avoid programming accidents.

45.3 Run-timelabd tests

The most interesting aspect of checking JFlow is checking the switch label statement, which inspectsa
label value at run time. The inference rule for checking this statement is given in Figure 4-27. Intuitively,
the switch label statement tests the equation X g[nv] C L; for every arm until it finds one for which the
equation holds, and executesit. However, this test cannot be evaluated either statically or at run time. For
this reason, the test is split into two stronger conditions: one that can be tested statically, and one that can
be tested dynamically. This rule naturally contains the static part of the test.
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label(L) =

label(T) =

label ( IabeI param uid)) = label({covariant-label uid)) = L
(
(

(
label((dynamic uid L)) = subst(uid, L, L)
label((policy o : .., r;,..)) = pr-label(o) U ... L pr-label(r;) L ...
pr-label (p) =

case p of

(pr-external name) : L

(pr-param uid) : L

(pr-dynamic uid L) : L
end

Figure 4-28: Taking the label of alabel

Let Lrr be the join of all possible run-time-representable policies (that is, policies that do not
mention label or principal parameters). The static test is that Xg[nv] U Lgr C L; U Lrr (equivaently,
Xg[nv] C L; U Lgrr); the dynamic test is that Xg[nv] N Lrr C L; 11 Lgr. Together, these two tests imply
the full condition Xg[nv] C L;.

The test itself may be used as an information channel, so after the check, the pc must include the
labels of Xg[nv] and every L; up to this point. The rule uses the label function, defined in Figure 4-28,
to determine which labels to join together. When applied to alabel L, the function label generates a new
label that includes all the policies on variables that are mentioned in L. This function is complicated by the
possibility of transferring information through dynamic principals, an information channel that is captured
by the function pr-label.

Extracting the label from adynamic component must account for the possible presence of recursivelabel
references. Intuitively, the label of a component (dynamic uid L) issimply the label L. However, the |abel
L might refer to the component that contains it. Recursive label references are not generated by any static
checking rule seen so far; they are created by the constraint solver as it doesits work. The definition of the
function subst, which rewrites L to eliminate recursive references, accordingly is deferred until Chapter 5,
where the constraint solver is discussed.

46 Method and constructor calls

Static checking in object-oriented languages is often complex, and the various features of JFlow only add
to the complexity: covariant and invariant class parameters, implicit argument parameters, and method
constraints. This section shows how, despite this complexity, method calls and constructor calls (via the
operator new) can be checked statically.
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4.6.1 Generic checking

The rules for checking method and constructor calls are shown in Figures 4-29 through 4-31. To avoid
repetition, the checking of both static and non-static method calls, and also constructor calls, is expressed
in terms of the predicate call, which is defined in Figure 4-29. This predicate isin turn expressed in terms
of two predicates: call-begin and call-end.

The predicate call-begin checksthe argument expressions and checkswhether the constraintsfor calling
the method are satisfied. It produces the begin label Ly, the argument environment A%, which binds all
the method arguments to appropriately labeled types, and the default return label L‘ff";. Invoking a method
requires evaluation of the arguments E;, producing corresponding path labels X ;. The argument labels are
bound in A® to labels L;, so the line (X [nv] C L;) ensures that the actual arguments can be assigned to
the formals. If the begin-label is explicitly declared (as tested by if [I] ), it isinterpreted and is required to
be more restrictive than the pc after evaluating al of the arguments, which is Xy ;- If the begin-label is
not declared, it isan implicit parameter and is bound to X4 (;). It therefore passesthe test against Xmay ()
automatically.

The predicate satisfies-constraintsis used by call-begin to establish that the constraints ; for calling the
method are satisfied. Only caller and actsFor constraints need to be satisfied, because authority constraints
are tested when the class of the method is compiled, rather than when the method is used. The rule for
this predicate, also in Figure 4-29, uses the function interp-P-call, which maps identifiers used in the
method constraintsto the corresponding principals. Thisfunctionisdefined in Figure 4-30. To perform this
mapping, the function needs environments corresponding to the calling code (A), the called code (A%), and
a special environment that binds the actual arguments (A™). The environment entry A[auth] contains the
set of principals that the code is known statically to act for.

Finally, the predicate call-end produces the path labels X of the method call by assuming that the
method returns the path labels that its header claims. The label L‘ff"; is used as the label of the return value
in the case where the return type, 7., is not labeled. It joins together the labels of all of the arguments,
becausetypically the return value of afunction dependson all of its arguments. Thisrule also showsthat the
default end-label is the same as the begin-label, and that the end-label is included in the labels of all of the
exception paths as well asin the label of the return value. The argument labels are not by default included
in the end-label, because exceptions often do not depend on all of the argumentsto afunction; if argument
labels were included by default, the programmer would be encouraged to write method specifications that
were overly restrictive.

4.6.2 Specific rulesfor checking calls

The rulesfor the various kinds of method calls are built on top of this framework, as shown in Figure 4-31.
Theonly subtlety that arisesin theserulesisthat constructorsare checked asthough they were static methods
with asimilar signature. The function signature obtains the signature of the named method from the class.
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At (A®, Ly, L%) = call-begin(C[Qi], (., Ej, ..),S)
At call-end(C[Qi), S, A%, Ly, L¥)) - X
AFcall(C[Q, (., Ej,..),8) i X

8 = ([static| 7, m [{1}] (..7; a;..)[:{R}] throws(..7;...) where K;)
Xo = Xy[n := Alpd]]
Alpc := X a[n]] - Ej : X;
L; = fresh-variable()
uid; = fresh-uid()
A¢ = class-env(C[Q;])
A® = A®[..aj := (var final type-part(7;, A°){L;} uid;)..]
L; = (i [{I}] then interp-L(I, A%) else Xy (j)[n])
A+ Lj ~ (if labeled(r;) then label-part(r;, A%) U Ly else L;)
A F Xjlnv] T L;
A b Xma(j)ln] E Lg
Lt = (if (r, = void) then {} else | |;X;[nv])
satisfies-constraintg(A4, A%, A[..a; := Ej..], (..K;..))

)
AF (A% Ly, L%) = call-begin(C[Qi], (.-E;..),S)

let interp(p) = interp-P-call(p, A, A%, A™) in
Vi case IC; of
authority(...) : true
caller(..pj..) : V(p;)3(p' € Alauth]) A+ p' > interp(p;)
actsFor(p1,p2) : A Finterp(p1) = interp(p2)
end
end

satisfies-constraintg( A, A%, A™, (..K;..))

S= ([static] Tr m[{[}} (.75 aj..) [{R}] throws(..7%..) where ;)
Lp = Ly U(if | : {R}] then interp-L(R, A?) else {})
Lry = Ly U (if labeled(r, ) then label-part(r,, A*) else L%7)
Ck| ] = type-part(7y, class-env(C|[Q;]))

X' = (@, X;)[n:= Lg, nv:= Lgy]
X = X’@X@[Ck = Iabel-part(rk,Aa) I—lLR--]

AF call-end(C[Qi], S, A% Ly, LED) - X

Figure 4-29: Generic method-call checking
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interp-P-call(p, A, A%, A™) =
let p’ = interp-P(p, A%) in
case p’ of
(pr-dynamic uid L) : interp-P(A™[p], A)
else p'
end
end

Figure 4-30: Interpreting principalsin amethod call

At E: C[QZ]
Abp Ej : T]
S = signature(C..Q;..], m(..T}..))
AFE,: X,
Alpc := X,[nv]] F call(C[..Q;..], (..E;..),S) + X
AFEs.m(.E;.): X

T = interp-T(¢, A)
Abp Ej : T]
S = signature(T, m(..Tj..))
At cal(T,(..E;..),S) : X
AbFt. m(E]) X

T =C[..Q;..] = interp-T(t, A)
A9[C] = (class C' [[.P;.]] ... [authority(-.pg..)] ...}
Abp Ej : T]

S = signature(T, C(..T}..))

S = (0[{1}] (.7j a;..) [:{R}] throws(..7x..) where ;)

S’ = (static T'{} dummy{{[}] (.75 aj..) [{R}] throws(..7..) where K;)
At cal(T, (. .Ej.),8"): X
V(parametersp) 3(p € Alauth]) A - p > interp-P(py, class-env(T'))
AFnewt(.Ej;.): X

Figure 4-31: Method and constructor call checking

Ordinary method calls are checked by using the call predicate in a straightforward manner. The pc
for the call predicate is set from the normal termination path of the expression for the method receiver,
E;. Static method calls are checked even more simply, because there is no evaluation of a method receiver
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AI[C] = class C[[PZ]] [extends ts] [implements iy by authority(..pk..)]{
Mo [final] 7 v

A = inner-class-env(C)
A + authority-ok(C)
A + match-method(interp-T(¢s, A), Mp,)
A F match-method(interp-T(¢;, A), M,)
T = interp-T(CJ..param-id(P;)..], A)
A + check-method(T', M.,,)
(if [final} . then true else invariant(type-part(r,, A)) A invariant(label-part(r,, A)))
check-class(C)

Figure 4-32: Checking aclass

before the arguments are eval uated.

Thefinal rulein Figure 4-31 coverscallsto a constructor, which are handled similarly to acall to astatic
method. In fact, as the rule shows, a constructor call is checked as though it were a static method of the
same class.

There is one additional check needed for constructor calls, however. Recall that the class declaration
can have an authority clause that mentions principals that the objects of that class can act for. Two kinds of
principals may be named in that clause: external principals, and parameters of the class of the type principal.
The authority of an external principal derives from the user who installs the class in the system, but the
authority of aprincipal parameter derives from the code that creates the object by calling a constructor. As
the rule shows, the static authority of the caller must include any actual principal parameters passed in the
position of formal parameters that happen to be listed in the authority clause of the class.

4.7 Checking classes and methods

The rules for checking virtually all of the statements and expressions of JFlow have now been defined.
These rules have relied on the environment being properly set up with entries such as Afauth] and A[ph],
and entries for method argument variables and class parameters. This section addresses static checking of
information flow in entire class definitions, including the method and constructor declarations within them.

4.7.1 Checking classes

A class contains some number of methods and possibly extends a superclass and some interfaces. It
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may also be granted some authority by external principals or by principalsthat are its own parameters. The
rule in Figure 4-32 describes how the various components of a class are checked in terms of a number of
lower-level predicates that are discussed in the following sections.

In the figure, the function inner-class-env is used to create an environment in which the contents of
the class C are checked. This function was defined earlier in Section 4.3.3. It adds a definition to the
environment A for every formal parameter of the class. For example, label parameters of the classare bound
to entries of the form (param label uid), which stand in for the actual parameters suppliedin aninstantiation
of the class. The static checking rules are conservative with respect to these parameters, ensuring that
the class would also statically check if any actual parameter were substituted for the corresponding formal
parameter. Thetype expressiont, denotesthe superclassof C, if any, and the type expressionst; denotethe
interfaces that C' implements, if any. These type expressions are interpreted in the environment A because
they may mention the formal parameters of the class C'.

Various aspects of the class declaration must be checked statically. The successive lines in the rule
correspond to the following static tests, which are discussed in more detail in the remainder of the chapter.

e Theauthority declared inthe authority clause of the class must actually have been granted to the class.
This authority must also be at least as great as the authority of the superclass. These conditions are
tested by the predicate authority-ok, described in Section 4.7.2.

e The signature of every method M, must aso be compatible with signatures that are inherited from
the superclass or from interfaces that the class implements. The predicate match-method, defined in
Section 4.7.3 verifies this compatibility.

e Each of the methods of the class also must provide an implementation that is safe with respect to
information flow, and obeysthe declared signature of the method. The predicatecheck-method ensures
that the methods of the class have these properties, as described below in Section 4.7.4.

e Covariant label parameters may not be used to construct the labeled type of any instance variable
(vn) unlessit is declared final. Instance variables that mention covariant label parameters cannot be
mutable because they could be used to create information leaks.

4.7.2 Classauthority

The authority clause of a class declaration, if any, must be validated; any external principals listed in
this clause must have granted their authority to the installation of this class. The authority clause may also
name principals that are parameters of the class, but as discussed in Section 4.6.2, the authority for these
principals is granted at the time of object creation. The predicate authority-ok checks that the claimed
authority is present in the global environment, as shown in Figure 4-33.

The final two lines of this rule enforce ancther condition, that the authority declared in the authority
clause of the classis at |east as great as the authority declared in its superclass. Otherwise authority would
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A9[C] = (class C’[[Pz]] {extends Cs } [implements by, } authority(..pg..))
P = interp-P(py, A)

case pj, of
(pr-external uid) : 3(p} € A9[auth]) A9 - p} > p},
(pr-param uid) : true

end

AI[Cs] = (class C; ... authority(..p;..)...)

Vi 3A(p" € {.p}..}) A9+ p" = interp-P(p;, A)

A + authority-ok(C')

Figure 4-33: Checking the authority of aclass

A9[C1] = (class C’l{[ P;. ]] oo Me))
My =t m[[{1}]] (-7} )| - {Ra}] throws(.7..) where(K}){. ..}
Mo =8{...}
Ay = class-env(C4]..Q;..])

A1+ (Ly, A4) = check-arguments([[{1}]], (-.73.), (-a}.), (-K..))

type-part(r;, A1) = type-part(r?, Az)
Al = obj-env(A4Y, 01[ Q;..])
A+ call(Cy[..Q;.1, (ak.), 82) :
Afl - check-body(Ly, X, ;, | : {Rl}} b ()

A = match-method-one(C1|..Q;..], M2

\]
[y

I\Jw

(RN

X
(-

M = (static 72 m[{I}](r? ajz.)[ : {Rz}]2 throws(..73..) where(K32))
A = match-method-one(C[..Q;..], M)

Figure 4-34: Superclass method conformance

be obtained by inheriting methods from the superclass.

4.7.3 Method signature compatibility

The methods of the class must have signatures compatible with the same methods in its superclass and
interfaces it implements. JFow follows Javain requiring exact matches in argument types for a method to
be considered the same; overloaded methods are distinguished by their argument types. However, labels
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A + match-method-one(C[.. Q;..], M)
AI[C] = (class C[[P,]] {extends ts] {implements b, } o)
A" = class-env(C..9;..])
if [extends ts] then (A F match-method(interp-T(t,, A'), M))
if {implements b, w then (A F match-method(interp-T(¢;, A"), M))
A = match-method(CT..Q;..], M)

Figure 4-35: Recursively checking method compatibility

on argument and return types are not part of the method identity, and need not be the samein aclassasin
its superclass. Asin the usual contravariance/covariancetype rules [AC96], argument labels may be made
more restrictive, whereas return labels and exception labels may be made less restrictive. In both cases, the
subclass is able to accept more (or at least as many) values as method arguments, and may return fewer
values. In addition, the constraints on the superclass method must be sufficiently strong to guarantee the
satisfaction of the constraints on the subclass method.

All these conditions are enforced by the match-method-one test in Figure 4-34. In JFlow, as in most
object-oriented languages, the essence of the test for method conformity is that the subclass method should
be a valid implementation of the superclass method in the case that the object on which the method is
invoked is actually of the subclass type. The rule in Figure 4-34 performs exactly this test, with one
additional condition: the types of method arguments must be equal in the two classes—a Javarule. This
strengthening condition is needed because the subclass method is a valid implementation of the superclass
method even when the types of the method arguments in the subclass are supertypes of the corresponding
method argument types in the superclass. Java enforces this rule because it supports overloading, not
because it is needed for type soundness. In the rule, the subscript 1 indicates superclass components, and
the subscript 2 indicates subclass components. The goal of theruleisto check the signatures of the methods
M1 and M against each other. The signature S» isthe signature of the method M ; the body of the method
isirrelevant to thistest. The rule works by simulating the checking of a call to method M from within a
method with the same signature as M.

The second rule in Figure 4-34 shows that checking for method signature conformance is not needed
for static methods. It is also unnecessary for constructors. Finally, the match-method-one test is satisfied
not only through the rule of Figure 4-34, but aso if the superclass C..Q;..] has no method with amatching
name and argument types, a condition that is more easily described in words than in an inferencerule.

Method compatibility must be insured not only with the direct superclass, but also with indirect
superclasses and interfaces. The match-method test, used in the rule for check-class above, applies
match-method-oneto all of the supertypes of the class, as shown in Figure 4-35.
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M = [static| 7 m[{I}](.7j a;.) [:{R}] throws(..7;..) where K; {S}
At (L, A') = check-arguments( [{7}], (.7;..), (~a;..), (-.Ki..))
if [static| then A" = A’ else A" = obj-e(4', C..Q;..)
A+ check-body(L;, X, S, [ : {R}] T (2 T5ee2))
A+ check-method(CT..Q;..], M)

Figure 4-36: Checking method declarations

L; = fresh-variable()
uid; = fresh-uid()
A’ = [..a; = (var final type-part(r;, A){L;} uid;)..]
Ly = (if [{I}] then interp-L(1, A') else (covariant-label fresh-uid()))
A+ L; =~ arg-labeI(Tj,A’) ULy
A" = A'lpc := Ly, auth := constraint-authority((..X;..), A’), ph := constraint-ph((..;..), A")]
V(p € A"[auth])3(p' € Afauth]) A" p'=p
At (Ly, A") = check-arguments( {{I}J (75), (ag..))

arg-label(r, A) = (if labeled(7) then label-part(r, A) else (covariant-label fresh-uid()))

Figure 4-37: Checking a method header

474 Method declarations

There are several kinds of methods: object methods, static methods, and different kinds of constructors.
Object methods and static methods are treated similarly. The predicate check-method is defined for these
methods as shown in Figure 4-36. There are three parts to this rule: first, the method arguments (a;) and
constraints (K;) are used to create an environment A’ in which the body of the method (the statement .S) can
be checked. If the method is non-static, the environment A’ is effectively extended to include definitions for
the identifier this and the non-final instance variables.

We saw earlier that checking callsto these different kinds of methods had much in common, and general
predicates call-begin and call-end were defined to capture this common checking. Similarly, there is much
common in checking the declarations of different kinds of methods. In particular, checking the method
arguments and the paths at method termination involve common work. These common checks are defined
by the check-arguments and check-body predicates, defined in Figures 4-37 and 4-40.
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caller

{ method
call-begin

check-arguments

call-end

check-body

Figure 4-38: Structure of method checking

Checkingmethod arguments. The check-argumentspredicateissimilar informto the call-begin predicate
defined earlier in Figure 4-29. This is not surprising, because these two predicates are the caler-side
and callee-side tests for method arguments, respectively, as indicated intuitively in Figure 4-38. The
check-arguments predicate establishes the begin-label L;, which is also the label of the object this in a
non-static method. This label is defined as the interpretation of the label {1} if it is provided, or as alabel
parameter otherwise. In either case, the initial pc for checking the method body isdefined by Ly. If {I}is
omitted, Ly is defined to be afresh label parameter that cannot be mentioned anywhere outside the method.
No results of computations performed by the method can be stored externally, because no external label can
be provably asrestrictive as L. For thisreason, methods lacking an explicit begin-label are side-effect free.

The predicate check-argumentsal so establishesthe environment A”, whichisused for statically checking
the body of the method. It contains definitions for the arguments of the method. The arguments are
automatically final variables of the declared type. The method arguments are all in scope for use in label
expressions in the method header, so a level of indirection is required to define their labels. To alow the
variablesto refer to one another, the argumentsa; areboundto label variables L ;, in thethird line. Equations
are then constructed that require these L; to be equivalent to the interpretation of the label part of 7;, in the
environment A’, which containsbindingsfor a;. Thisindirection allowsthe label parts of 7; to refer to each
other’s variables. Note that the begin-label, L, is automatically a part of every argument label. The sixth
line establishes the environment A” that is used to check the body of the method. This environment extends
the argument environment A’ to add definitions for the method body pc, its authority (auth), and static
principal hierarchy (ph). The functions constraint-authority and constraint-ph, defined in Figure 4-39, are
used to construct these definitions. The seventh line ensures that the authority claimed by the method (in its
authority clause) is a subset of the authority possessed by the class. The environment A, which was defined
by the inner-class-env function, contains the class authority; the seventh line requires that each principal
in the method authority is authorized by some principal in the class authority (which may be a principal
parameter).
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constraint-authority((..X;..), A) =
let (for al [) auth; =
case (K;) of
(authority (..pt..)) : {..interp-P(pl, A)..}
(caller (pé)) ; {..interp—P(pé-, )}
else {}

end

(UJ; auth;
end

constraint-ph((..C;..), A) =
let (for al 7) ph; =
case (K;) of
(actsFor (p}, ph)) : {(interp-P(p, A), interp-P(ph, A))}
else {}

end

Ui phy

end

Figure 4-39: Building environment entries from constraints

AFS: X,
X =Xo0 X;
Lp = (if [ : {R}] then interp-L(R, A') U Ly else Ly)
A F X[n]uX[r] C Lg
Ly = (if H A labeled(7; ) then label-part(r,, A) U L else 0)
AF X[M]l_lX[ﬂ] C Lgy
V(C': X[C'] #0) V(k: C" < type-part(r, A)) A = X[C'] C label-part(ry, A)U Lg
A + check-body(L7, Xo, S, [ : {R}J, M (T6..))

Figure 4-40: Checking a method body

Checking method bodies. Using the environment established by check-arguments, checking of a method
body is completed by using the check-body predicate, shown in Figure 4-40. This rule determines the path
labels of S in the environment A and then requires that the result path labels declared in the method header
are at least asrestrictive as the path labels of S. The need for the second argument, X, will not be clear at
this point; it isused for checking constructors. It effectively allowsthe insertion of an arbitrary statement to
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= (CH{D}] (-7 a;..) [:{R}] throws(..7..) where K; {S})
final-vars(C) = {}
At check-arguments([{7}], (-.7;..), (.a;..), (-px--), L1, A')
A" = obj-env(A', C[..Q;..])
A" i+ check-body(Lr, Xy, S, | - {R}], | ], (-7%..))

A I check-method(C[..Q;..], M)

Figure 4-41: A simple constructor

= <c[{f}}(..rj aj..)[-{R}} throws( Tk..) where KC; {C(En); S})
At check-arguments([{7}], (-.7;..), (~a;..), (-px--), L1, A')
A9[C] = (class c[[.. ..]] )
q; = param-id(P;)
A" new C[..q;.[(Em) : X
A" = obj- env(A’ Cl..Q;..])
A" - check-body(Ly, X, S, | {R}} ] (7))

A + check-method(CT..Q;..], M)

Figure 4-42: A constructor with a superclass constructor invocation

be executed in the method body before S. For ordinary methods, Xo = Xj.

Checking constructor bodies. Constructors are checked similarly to ordinary methods, but there is added
complexity because of the need to initialize instance variables and invoke superclass constructors. A
constructor for a class with no final instance variables and no superclass is checked simply, as shown in
Figure 4-41. The condition final-vars(C') = {} prevents C from having any final instance variables.

A constructor may also defer initialization to another constructor of the sameclass, as shownin Figure 4-
42. It is checked as though the constructor body is executed after another object of class C is created.

Thefinal form of aconstructor is one that invokes a superclass constructor, as shown in Figure 4-43. All
final instance variables must to be initialized before the call to the superclass constructor. The object (this)
and itsinstance variables are not in scopein this prologue to the constructor, nor in the call to the superclass

constructor. This scoping rule is shown by the use of the environment A’ in these contexts.
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M = (C{1}] (-7 a;..) [:{R}] throws(..7y..) where K; {S1; super(Em); S2})
At check-arguments([{1}], (-.7;..), (.a;..), (-px--), L1, A')
A"+ A" = check-inits(C, Sy, final-vars(C'), Xo)
A9[C] = (class C[[..P;..] | extends ¢, ...)
A"[pc := Xo[n]] - new t4(Ey,) : X1
A" = A"[this := (var final C[Q;]{A[pc]} fresh-uid()), pc := X1[n]]
A" - check-body(L 1, Xo® X1, 5, | : {R}, [ ], (7))
A F check-method(CT..Q;..], M)

Figure 4-43: A constructor with final instance variables

true
A+ A = check-inits(C, ;, {}, Xg[n := A[pc]])

(5) = (v=FE; 52)
A[C] = (classC...{...finalTv...})
AFE: Xg
A F Xgnv] C label-part(r, A)
Alpc := Xg[n]] F A" = check-inits(C, S2, V — {v}, X2)
X =Xp® Xy
At A" = check-inits(C, S, V, X)

(S) = (51, 52)
AbF Sl .¢]
Alpc := X1[n]] F A" = check-inits(C, Sz, V, X))
A+ A" = check-inits(C, S, V, X)

Figure 4-44: Checking instance variableinitialization

Checking instance variableinitialization. A constructor prologue must be checked while keeping track
of which final instance variables have been initialized. The check-inits predicate, in Figure 4-44, describes
this checking. The predicate builds a new environment into which final instance variables of type label are
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(S) = (v1 =2} S2)
AlC] = (classC...{...final Tv1...})
Alvg] = (var final label{ L} uid)
A+ LUA[pc] C label-part(r, A)
A" = Alvg := (var final label{label-part(r, A)} uid)
A'F A" = check-inits(C, Sz, V — {v}, X)
A+ A" = check-inits(C, S, V, X)

Figure 4-45: Improving static reasoning about dynamic labels

placed for usein label checking.

Figure 4-45 contains one final rule that improves static reasoning about dynamic labelsin constructors,
by keeping track of what expression final instance variables of type label are initialized with. Thisruleis
used preferentially to the more general rule for an initial statement v = E. Its effect is that if an instance
variableisinitialized from another final variable of type label, the two variables will share the same uid and
will betreated as containing the same label. Without this rule, we would expect that v1 would obtain afresh
uid and would be treated statically as containing a different label. This optimization avoids unnecessary
dynamic testing of the labelsin some situations where they can be determined to be identical statically. One
example of this situation is in the implementation of the class Protected, in Figure 3-15. The assignment
context = x can be checked statically becauselb and LL are bound to the same dynamic label variable using
therule of Figure 4-45. Thekey step in thisruleis the fifth line, which creates the environment A’, setting
the label of the instance variable v, to be uid, which isthe same as the label of the assigned variable, v, as

seen in the second line.
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Chapter 5

Constraint Solving and Trandation

This chapter covers some aspects of implementing JFlow that were not described in Chapter 4. Figure 5-1
depicts the top-level structure of the JFlow compiler. In this figure, the dark ovals indicate two parts of
this implementation that have yet to be described. Chapter 4 described the first phase of static checking:
application of the inference rules by the rule checker. The second phase of static checking is constraint
solving, which is described in Section 5.1. Constraint solving is used to assign labels automatically to local
variables and to the program counter (pc). If asatisfying assignment is constructed by the constraint solver,
the JFlow program istranslated into an equivalent Java program, a process that is described in Section 5.2.

5.1 Constraint solving

Astherulesfor static checking are applied, they generate a constraint system of labels for each method. For
example, the assignment rule of Figure 4-15 generates a constraint X [nv] C L. In this constraint system,

Inference
rules

JFlow Rule Constraint Constraint
program checker system solver

Java
program

Figure 5-1: Structure of the JFlow compiler
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some of the labels are unknowns and are called label variables. The job of the constraint solver is to
find assignments for these label variables that satisfy all of the constraints. The inference rules generate
label variables whenever the function fresh-variable() is used, as described in Section 4.2.7. This section
describesthefinal step in statically checking JFlow code: solving the system of constraints generated during
the application of the inference rules, and producing satisfying assignments for all label variables. By
producing these satisfying assignments, the constraint solver automatically infers labels for local variables
and the program counter.

5.1.1 Integrating static checking and constraint solving

As the inference rules in Chapter 4 are used to check the program, antecedents in the form of label
constraints are encountered. In general, these constraints contain label variables and cannot be tested when
the constraints are first encountered. The static checker records these constraints for later consideration.

Each constraint takestheform A = L; T Lo, where A is an environment and L1 and L, are labels.
Constraints may also takethe form A - L1 ~ L5, but this constraint is equivalent to the pair of constraints
AF LiC LyandA - Ly C Ly.

Deferring the checking of label constraints is safe because no searching is necessary to apply the
inference rules of the previous chapter, despite the apparent non-determinism of the rules. The selection
of which rule to apply at each step is based on syntactic considerations, not whether a particular label
constraint can be satisfied. In other words, removing all the antecedents from the inference rules that are
label constraints would have no effect on which rules would need to be applied to show a program correct.

Solving constraints is also practical because it is done on a method-by-method basis rather than on an
entire program. Although the rules of the previous chapter do not makeit explicit, the constraints generated
by statically checking one method do not affect the constraints of any other method, so the constraint systems
of the various methods can be solved in isolation without loss of expressive power. This property holds
because every label variable (for which the constraint solver isto find a value) is associated with only one
method, and each constraint mentions label variables from only one method. Constraint systems tend to be
small because the constraint system generated by each method can be solved in isolation.

5.1.2 Constraint equations

The first step in solving a set of constraint equations is to put them in canonical form. The constraints
generated by application of theinferencerulesare all of theform A + L; T Ly, where L1 and L, may be
the join of other labels. Thefirst step in creating the canonical constraint equationsisto break up the labels
L, and L5 into their individual components. The letter P will be used here to denote a label containing
a single component, so the labels L; and L can be written as a join of their components .. LI P} Li.. and
.U P]? LI.. . Because of the properties of the join operator (L), the constraint L1 C L, is equivaent to
a set of individual constraints Pz-l C..u Pj2 LI.. for each left-hand-side component Pil. Therefore, in the

138



Constraint:
LHS C RHS

LHS:
SimpleComponent
L abel Variable
label (L abel Variable)

RHS:
L
RHS U RHSComponent

SimpleComponent:
(policy o : .., 74, ..)
(label-param uid)
(covariant-label uid)
(dynamic uid DynamicL abel)

Label Variable:
(variable uid)

RHSComponent:
LHS
Lipny
Lgr
DynamicL abel:
1
DynamicL abel LI SimpleComponent
DynamicL abel LI LabelVariable

Figure 5-2: Grammar of canonical constraints

canonical form of the constraints, the left-hand side of each equation is a single component.

The canonical form of a constraint is expressed by the grammar in Figure 5-2. The terminals in this
grammar are all expressionsthat appear in the static checking rules of the previous chapter. Thefour simple
component types (policy, label-param, covariant-label, dynamic) are the only components that may appear
in the constraint solver solution. The job of the constraint solver isto replace each label variable with ajoin
of these simple components, with the result that all the constraints are satisfied. These components and the

other components are summarized here:
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(policy o : ..r;..) apolicy

(label-param uid) an invariant label parameter

(covariant-label uid) acovariant label parameter

(dynamic uid L) adynamic label contained in afinal variable of typelabel

(variable uid) alabel variable: alabel to be solved for

Liny the join of all componentsthat are not invariant label parameters

Lyt the join of all run-time representable components

label (L) the label of alabel L, which may contain only simple components or

variable components

Certain terms may appear on the right-hand side of an equation but not on the left: the two special
labels Lgr and L;,,,, which are used when checking the switch label statement and the invariant predicate,
respectively. These labels are infinite but are never expanded during static checking.

A constraint term also may take the form label(L) for some label L, using the function label that was
defined earlier in Figure 4-28. Applying label to ajoin of several componentsis defined asthe join of label
applied to the individual components. The result of applying label to all label componentsis well-defined,
except for label variables (of type (variable uid)). Therefore, the function label shows up in the canonical
constraint equations only in terms of the form label ((variable uid)).

Dynamic labels have the unique property that they contain another label L. In the canonical form of the
constraint system, this internal label L is also reduced to canonical form, as a join of simple components
and label variables, as shown in the grammar.

A constraint equation contains more than just a pair of labels; it aso contains an environment A, which
records the static checking environment in which the label constraint occurred. However, only one part
of the static checking environment is relevant for label constraints: the static principal hierarchy, which
is stored in A[ph]. The static principa hierarchy affects judgements about the C relation between two
policies, as seen earlier in Figure 4-10.

5.1.3 Solving constraints

A simple iterative work-list algorithm can be used to solve constraintsin the canonical form just described.
Ignoring dynamic components and terms involving the function label, the constraint equations form a
simple system of lattice constraintsthat can be solved using a generalization of the linear-time algorithm for
satisfying boolean Horn clauses [DG84, RM96]. The Horn-clause algorithm works because only the join
operator appears in the constraint equations; if the meet operator were allowed, the SAT problem would be
reducible to this form, and the constraint-solving problem would become NP-complete [RM96].
Thealgorithmworksby keeping track of conservative upper boundsfor each label variable, anditeratively
refining that upper bound downward in the label lattice. Initialy, all the upper bounds are set to T, the
top of the label lattice. The algorithm then iteratively refines the upper bounds, until either all constraints
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are satisfied or a contradiction is observed. The upper bound of a variable always is either T or ajoin of
simple components. At each step, the algorithm picks a constraint that might not be satisfied when all label
variables are substituted by their upper bounds and appliesthe constraint, forcing it to become satisfied.

A possibly unsatisfied constraint is applied as follows: If the constraint has a label variable on its
left-hand side, the upper bound estimate for the variable is lowered to be the meet (M) of its current upper
bound and the value of the right-hand side. The upper bound of a variable is denoted here by U (V). In
evaluating the right-hand side, all variables are replaced with their current upper bound estimates. In other
words, a constraint of the form V' C L, where V' is alabdl variable and L is ajoin of some componentsis
satisfied by theassignment U (V') := U (V) N U(L). Thisassignment ensuresthat the constraint in question
is satisfied by the current assignments of all variables, even if V' appearsin L. If the assignment has no
effect, the constraint was already satisfied by the existing U (V). Since the meet operator produces the most
restrictive label that is at most as restrictive as its operands, the new U (V') is the most restrictive label that
V' can havewhile still managing to satisfy both the constraint and the old upper bound. Inductively, the new
upper bound remains conservative.

At every step during constraint solving, the upper bound of each variable is either T or a join of
components of the sorts that are allowed in the final solution: policy, param-label, covariant-label, or
dynamic. Therefore, once al constraints are satisfied, the upper bounds of each variable arelegal satisfying
assignments. If at some step the component on the | eft-hand-side of an unsatisfied constraint is not avariable
(that is, one of the constant policies named above), the constraint system is not solvable: a contradiction
has been observed. The reason that the constraints are not solvable is that all variable assignments are
conservative upper bounds, so no set of refinements of variable assignments can cause the unsatisfied
constraint to become satisfied.

The labels found by this simple algorithm are the most restrictive labels that satisfy the constraints.
However, the actual valuesthat theinference algorithm finds are irrelevant, becausethey are never converted
to first-class values of type label. What isimportant is that there is a satisfying assignment to all the labels,
proving that the codeis safe.

The specia labels Lgr and L;,, are added to the constraint system by checking the switch label
statements and the invariance of labels, respectively. In principle, theselabelsare each ajoin of apotentially
infinite set of components. In practice, they can be integrated into the algorithm just described in a
straightforward manner. Recall that Lz is the join of al run-time-representable label components, as
defined in Section 4.5.3. The label Lrr appearsin constraints of the form V C L U Lgr, where V isa
variable component and L is ajoin of arbitrary terms. If this constraint is selected to be satisfied, U (V)
is updated just as in the simple algorithm. Thenew U(V) isU (V)N U (LU Lgr), which is equivalent to
(U(V)NU(L))U(U(V)N Lgr) becauseof thedistribution propertiesof M and L. ThetermU (V') 1M Lgr
istheintersection of U (V') and Lgr, whichisajoin of al run-time-representable componentsin U (V). In
other words, the infinitely large label L g can be manipulated without expansion into its full form.

The label L;y,, istreated similarly. This label, defined in Section 4.2.9, arises only from occurrences

141



(label-param uid) Mp (label-param uid) = (label-param uid)
(covariant-label uid) Mp (covariant-label uid) = (covariant-label uid)

(dynamic uid L1) Mp (dynamic uid Ly) = (dynamic uid (L1 M Ly))

0=0V(PFd o)

(policy o 1 .., i, ..) Mp (policy o' : ..,75,..) = (policy 0 & .., 7iy ey oy 75, 00)

Prox~od A(o#0)
L = (policy 0@ .., 7i; 0y oy 75, ) U (policy 0 1y ooy oy g, )

(policy o ..,ri,..)Mp (policy o' : .., 77, ..) = L

Figure 5-3: The meet of two related components

of the invariant predicate. This predicate resultsin constraints of the form V' C L;,,. If this constraint is
selected to be satisfied, the upper bound for V' ischanged to U (V') M Ly, ; in other words, any components
of the form (covariant-label uid) are dropped from the upper bound of V.

514 Determining the meet of two components

In Section 2.4.4, the rule for the meet of two labels was defined. However, in the model of Chapter 2,
labels only contained policy components. The rule for meet extends to labels containing the four simple
kinds of components, while preserving the necessary |abel lattice properties. Therulefollows directly from
the rule for the ordering operator C presented earlier in Section 4.3.2. Asin Chapter 2, the meet of two
components that have no relabeling relationship is the bottom label, L. If the two components have a
relabeling relationship according to the rules of Figure 4-10, their meet is defined by the rulesin Figure 5-3.
Note that the meet of two components is defined with respect to a static principal hierarchy P; this is
indicated in the rules by writing the static principal hierarchy as a subscript: Mp. Note that the last two
rulesin the figure correspond to the definitions of Section 4.3.2. Thenotation P + o’ = o isusedto indicate
that o’ actsfor o in P, but not vice-versa.
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label(L) =

label(T) =

label ( IabeI param uid)) = label({covariant-label uid)) = L
(
(

(
label((dynamic uid L)) = subst(uid, L, L)
label((policy o : .., r;,..)) = pr-label(o) U ... L pr-label(r;) L ...
pr-label (p) =

case p of

(pr-external name) : L

(pr-param uid) : L

(pr-dynamic uid L) : L
end

Figure 5-4: Taking the label of alabel

5.1.5 Handling dynamic constraints

The algorithm described in the previous section does not handle terms in constraint equations of the form
label ((variable uid)). These terms may be generated by uses of the switch label construct, as seen in the
rule of Figure 4-27.

A term of this form may occur on either the | eft- or right-hand side of a constraint equation. Let usfirst
consider how to handle terms of this form that occur on the right-hand side.

An important property of the constraint systems considered in the previous section is that as the upper
bounds are refined downward in the label lattice, the values of the right-hand sides of constraint equations
also change monotonically downward in the lattice. That is, if the upper bound for a variable U (V)
iteratively takesthevalues Vi, . . ., V,, during constraint solving, it isalwaysthecasethat V,, C ... C V3. In
addition, if theright-hand side of aconstraint isthe label L, then U (L) also decreases monotonically during
solving. This property is important for ensuring that U (V') is always a conservative upper bound on V', so
application of constraints with a non-variable on the |eft-hand side can be delayed until all constraints with
avariable on the left-hand side are satisfied.

Because of the structure of the function label, this important property can be preserved even with the
introduction of terms that use label. The definition of label, which was presented earlier in Figure 4-28, is
reproduced here in Figure 5-4. This definition allows the function label to be applied to the current upper
bound of any variable, sinceit is defined for all componentsthat can occur in an upper bound.

When label is applied to a dynamic component, the result is the contained label L. Some substitution
(applied by the function subst) may be necessary to handle recursive references; this effect is described
shortly. Asthe constraint solver refines variables downward, the current upper bound of the contained |abel
L aso changes downward monotonically, and therefore so does the result of applying label to the dynamic
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component. As the constraint solver iteratively refines the upper bounds of variables, the set of dynamic
components in the current upper bound of a variable only can decrease in size, because the upper bound is
refined by using the meet operator.

When the function label is applied to a label L, the result may contain components that derive from
policy components in L where the principals in the policy are variables of type principal. The function
pr-label in Figure 5-4 extracts the label of such policies. Just as with dynamic components, the set of
policiesin an upper bound only can decreasein size.

Since the set of dynamic components and policy components only can decrease as constraints are
applied, and the result of applying label to either kind of component can move only downward in the label
lattice, the result of applying label to alabel can move only downward in the label lattice as well.

This argument shows that terms of the form label (V') are well-behaved during constraint solving, and
so the constraint-solving algorithm needs little modification to support terms of this form on theright-hand
side of a constraint equation. When a constraint is used to refine the upper bound of avariable, any terms
of this form are evaluated using the current upper bound for the variable V' and the definition of label in
Figure 5-4.

Terms of the form label (V') may also appear on the left-hand side of a constraint. A constraint of the
form label (V') C L is called a dynamic constraint here. A dynamic constraint is applied differently from
other constraints. If it is not satisfied, at least one component P’ in label (U (V) is not covered by any
componentin U(L). Thiscomponent must come from the contained label L’ of some dynamic component
or policy PinU(V).

In general, there are two ways to refine the upper bounds of variablesin the constraint system to ensure
that P isnot part of label (U (V')). In genera, neither refinement is guaranteed to preserve the upper-bound
property. One refinement is to drop the component P from U (V'), lowering the upper bound of V. Itisalso
possiblethat U (L) contains P’ because L' includesavariable V', and the component P’ ispart of U (V). If
U(V') isthe only source of P’, then dropping P’ from U (V") aso will ensure the constraint label (V') C L.
If both refinements (dropping P from U (V') or P’ from some U (V")) can be used to ensure the constraint,
then neither refinement is in general safe, in the sense that neither U (V') nor U (V') are guaranteed to be
upper bounds for their respective variables. The two refinements are not guaranteed to be confluent.

If thereisambiguity about which refinement to apply to eliminate aparticular component P/, thedynamic
constraint is deferred, and another unsatisfied constraint is applied instead. If all unsatisfied constraints
are dynamic constraints with this ambiguity, the JFlow constraint solver always selects the refinement of
dropping P from U (V). If this arbitrary choice results in a contradiction, the constraint solver reports that
it is unable to prove that the method is correct, rather than reporting that the method is provably incorrect.
In this case, the programmer must add label annotations to the code to help the constraint solver. Adding
these label annotations is usually straightforward. It is only necessary for code that contains the relatively
infrequent switch label construct, and only when the label of either the expression whose label is being
tested, or of the case labels, must be at least partly inferred automatically. However, in this case the
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programmer can annotate the code with explicit |abels in order to avoid the need to infer them. Thus, the
label inference algorithm is not complete for code containing switch label statements, but it is sound. It
would be possible to provide a complete constraint solver by adding searching (allowing both refinements
to be tried). However, the worst case solving time then would be exponential in the size of the program.

5.1.6 Recursion in dynamic components

A problem that is unique to dynamic componentsis recursion. When the dynamic component is evaluated
using the current upper bounds of the label variables, these upper bounds may mention the dynamic
component that is being evaluated, creating infinite recursion. This situation can arise when label variables
refer to each other, asin the following function definition:

void f(label{xb} a, label{xa} b) {
}
Thisfunction hastwo arguments of typelabel, each of which dynamically labelsthe other. Thisfunction

will result in constraints of thefollowing form, wherea, b, la, and b are the uniqueidentifiersfor the various
components:

(variable a) LT (dynamic [b (variable b))

(variable b)) C  (dynamic la (variable a))

Assuming the first constraint is applied first, the algorithm as described so far will refine the upper bounds
in the following infinite sequence:

(variable a) = (variable b) :=T

(variable @) = (dynamiclb T)

(variable b) = (dynamic la (dynamic (b T))

(variable @) = (dynamic [b (dynamic la (dynamic [b T)))

(variable b) = (dynamic la (dynamic b (dynamic la (dynamic [b T))))

Toavoid thisrecursion, an additional kind of component isneeded when thelabel contained in adynamic
component refers to its containing label. This kind of recursive reference cannot occur in the initial set
of constraints, even when reduced to canonical form, but as the previous example demonstrates, it can
arise during constraint applications. A component of the form (dynrec uid) is used to support recursive
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subst(uid, L, ..U P; U..) = .. Usubst(uid, L, P;) U ..

subst(uid, L, (label-param uid)) = (label-param uid)
subst(uid, L, (covariant-label uid)) = (covariant-label uid)

subst(uid, L, (policy o : ..r;..)) = (policy pr-subst(uid, L, o) : ..pr-subst(uid, L, r;)..)

subst(uid, L, (dynrec uid'}) = (if (uid = uid’) then L else (dynrec uid))

pr-subst(uid, L, p) =
case pin

(pr-dynamic uid L')) : (pr-dynamic uid subst(uid, L, L"))

else . p
end

Figure 5-5; Substituting away recursive label references

dynamic components. components of the form (dynamic uid L) where the |abel L contains a reference to
the enclosing component. To prevent infinite recursion, any such reference is replaced by a component of

the form (dynrec uid), with amatching uid. The previous exampleis solved as follows:

(variable a

(variable a

)
)
(variable b)
(variable a)

)

(variable b

variable b) :=T
dynamic [b T)

(

(

(dynamic la (dynamic [b T))
(dynamic Ib (dynamic la (dynrec [b )))
(

dynamic la (dynamic [b (dynrec la )))

At this point, both constraints are satisfied by the upper bounds of the two label variables.

Componentsof thisnew form can occur only within adynamic component that refersto the samevariable.
Therefore, the definition of label for dynamic components must takeinto consideration the possible presence
of dynrec components by replacing them with the containing component. This substitution is performed
by the function subst, defined in Figure 5-5. It rewrites the label that is its third argument, substituting any
occurrences of (dynrec uid) for its second argument. The function subst only needsto be defined on smple

components, plus dynrec components.
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5.1.7 Orderingtherelaxation steps

The algorithm as described may require O(nh) constraint applications, where n is the number of variables
in the constraint system, and A is the maximum height of the label lattice. The height of the lattice that can
be observed during an execution of thisalgorithmis at most equal to the number of hon-variable components
present in the constraint system. Therefore, the number of lowerings is at most O(n?) in the size of the
method being checked, even when constraints are selected for application in the worst possible order. The
performance of the algorithm usually can be improved by more intelligently selecting constraints to be
applied. This section discusses how to select and apply constraints so that a satisfying assignment (or a
contradiction) is arrived at as rapidly as possible.

The constraint systems solved by the JFlow static checker are similar in form to a dataflow analysis
framework [Kil73, KU76], and techniques used to accelerate iterative datafl ow analysis also can be used to
accelerate their solution.

Thekey observation for accel erating the constraint solver isthat there are dependenciesbetween different
constraints in the constraint system. We are now concerned only with constraints in which the left-hand
sideisavariable; constraintsin which the left-hand side isnot a variable are only used to determine whether
the constraints are satisfiable once all the former constraints have been satisfied. If one constraint £, hasa
variable v, onitsleft-hand side, applying this constraint will result in v being updated so that E; is satisfied.
If v1 appearson the right-hand side of another constraint E», then F» can be said to depend on E;. It makes
senseto apply E; before E, so that the constraint enforced by F; affects E,'s variable.

The dependencies among the constraints can be envisioned as a dependency graph, with nodes for each
of the constraints in the constraint system. The dependency graph is a directed graph; nodes in the graph
are connected if there is a dependency between the corresponding constraints. In the simplest case, the
dependency graph is acyclic, and the constraint system can be solved with only one application of each
constraint. In this case, the constraints are topologically sorted and then applied sequentially in the order
generated. Thetime required to perform the topological sort islinear in the number of constraints.

In general, the dependency graph will contain cycles. For example, loops in the program will generate
cyclesin thelabel dependency graph. Intherulefor the while statement (Section 4.4.6), alabel variable L is
introduced and explicitly made part of a constraint cycle. Cyclesin the dependency graph result in strongly
connected components. sets of constraintsin which each constraint is transitively dependent on every other
constraint. A strongly connected component can be handled by simply looping on each of the constraintsin
the component in turn until every constraint is satisfied.

The JFlow constraint solver selects constraints by first topologically sorting the constraints using the
standard algorithm based on the depth-first traversal of the constraints [CLR90]. Thisalgorithmisshownin
the PolyJ code of Figure 5-6. This code placestheindices of the constraintsO. .. n — 1inthearray ordering,
and assumes that dependencies(i) produces an Iterator that yields the indices of constraints dependent on
constraint i. Theinverse of ordering is placed in the array position.
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ordered = 0;
visited = new boolean[n];
ordering = new int[n];
position = new int[n];
for (inti=0;i < n; i++) visit(i);
void visit(int i) {
if (visited[i]) return;
visited[i] = true;
Iterator[int] e = dependencies(i);
while (e.hasMore()) visit(e.next());
ordered++;
ordering[n — ordered] = i;
position[i] = n — ordered;

Figure 5-6: Ordering the constraint equations

When applied to a directed acyclic graph, this algorithm produces an ordering of the nodesin which a
node never occurs before any node that it depends on. Strongly connected components within the ordering
then can be identified by a depth-first traversal of the transposed dependency graph—also a linear-time
algorithm [CLR90].

The agorithm using strongly connected components effectively constructs a schedule for solving the
constraint system. Oncethey areidentified, the constraint solver appliesthe strongly connected components
intopological order. Each strongly connected component islooped over sequentially intheorder inwhichits
node occurred within the original topological sort, until every constraint in the component is satisfied. Once
an entire component is satisfied, its constraints need no further consideration. A subtle benefit of applying
strongly connected components using the topological ordering is that constraints tend to be propagated
very effectively within a strongly connected component. For example, a strongly connected component
comprising a single cycle needs to repeated only once in order to ensure that al the constraints in the
component are satisfied.

This algorithm is similar in its use of topological sorting and identification of strongly connected
componentsto the Priority-Scc algorithm used to optimize iterative datafl ow analysis[HDT87]. Apart from
the difference in the form of the constraint equations, one difference between the algorithms is that the
dataflow analysis algorithm orders variables rather than constraints as in this algorithm. Ordering on the
basis of individual constraints appears always to offer better performance in empirical measurements. The
number of iterations required by the datafl ow analysis algorithm has been shown to be O(nd) whered isthe
maximum number of back edgesin depth-first traversal of the constraint dependency graph. For dataflow
analysis it has been observed that the number of back edges d is bounded for reasonable programs; this
property seemsto hold for label constraints as well. Even when the number of back edgesis linear in the

148



200

150
—a— fixed
j -+--LRF
100 ---@-- topo-fixed

—a— FIFO queue
—— topo-scc

Constraint applications required

50

. . | .
0 20 40 60
Size of constraint system (terms)

Figure 5-7: Performance of various heuristics for ordering constraints

size of the graph, it proves very difficult to observe the O(n?) behavior that this asymptotic bound predicts;
for example, the results in the next section do not suggest O(n?) behavior. However, atighter bound on the
run time of the algorithm has not been shown.

5.1.8 Empirical comparisons

The observed behavior of the JFlow compiler isthat constraint solving is a negligible part of run time when
compiling methods of a few tens of lines in length. However, an empirical analysis of performance is
useful for understanding how the performance of the constraint-solving technique scales with the size of the
constraint system.

Thealgorithm based on strongly connected componentsand several other algorithmsfor solving datafl ow
systems were empirically compared for label constraint systems. Many of the same ordering algorithms
have been empirically compared earlier for use in dataflow analysis [KW94]. The results observed for
dataflow analysis largely agree with the results for label constraints, which are shown in Figure 5-7. The Y
axis is the maximum number of iterations required to solve a complex system of constraints containing a
number of back edgeslinear in the number of constraints, using varioustechniquesfor choosing constraints.
The size of the constraint systemstested is about the same as or somewhat larger than the constraint systems
generated by typical method definitions.

The constraintsin these systemsare al of theform v1 C v, LI L;, where vy and v, arevariablesand L; is
anon-variable constraint. Empirically, constraints of thisform require arelatively large number of iterations
to arrive at afixed point assignment to all of the upper bounds. The maximum number of iterations for a
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constraint system is determined by introducing components L; such that the meet of every possible subset
of the L; resulted in a different label. Programs with this behavior are extremely unlikely, but the resulting
constraint system is useful in gaining some understanding of the behavior of the algorithms. The constraint
systems used for the comparison are related to each other in a simple fashion; each consecutive constraint
system is the same as the next smaller constraint system, but with one or two additional constraints.

The performance of several heuristics for ordering was compared for these constraint systems. In this
comparison, al of the ordering heuristics are used within a common constraint-solving framework. This
framework usesinformation about the dependencies between constraints, to keep track of which constraints
might be unsatisfied at any given step. Often aconstraint is known to be satisfied because it was previously
known to be satisfied, and no variable on its right-hand side has been modified since that point. With all of
the constraint-ordering heuristics, a constraint was not applied if it was known to be satisfied based on this
reasoning.

The ordering heuristics tested were the following:

e fixed: the constraints are placed in afixed order; the first potentially unsatisfied constraint is applied
at each step.

e topo-fixed: the constraintsaretopologically sorted using the algorithm of Figure 5-6, and this ordering
is used asin the fixed ordering.

e LRF: the least-recently-fired ordering of Kanamori and Weise [KW94]; the least-recently-applied
unsatisfied constraint is selected at each step.

e FIFO queue: a FIFO gueue of potentially unsatisfied constraints is maintained. Thisis the standard
technique for iterative dataflow analysis [KW94].

e topo-scc: thisistheapproachimplementedinthe JFlow constraint solver; asdescribedin Section 5.1.7,
it loops on strongly connected components.

In the particular example for which results are presented, almost the entire constraint system was a single
strongly connected component. This situation is a worst case for the topo-scc ordering for comparison to
the other orderings. However, the topo-scc ordering still resultsin substantially better performance than the
other ordering techniques. Theresults shown in Figure 5-7 arein fact typical for avariety of different kinds
of constraint systems containing strongly connected components.

Interestingly, the best ordering techniques appear to be the FIFO queue ordering and the topological
sort with strongly connected components. The number of iterations required with a simple fixed ordering
grows as O(n?) for this sequence of constraint systems, and even for simpler constraint systemsthat do not
contain strongly connected components.
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T [actsFor(p1, p2) S1 [else 52] ] =
if (Principal.actsFor(T [p1], T [p2])) T[S1] [else T [[52]]]

T[p] = case A[p] of

(param principal uid) : error
constant principal) : jflow.principal.p.ThePrincipal
var final principal{L} uid) : p

o~ o~

end

Figure 5-8: Trandlating principals and actsFor

5.2 Trandation

The JFlow compiler isastatic checker and source-to-sourcetranglator. Its output is astandard Javaprogram.
Most of the annotations in JFlow have no run-time representation; translation erases them, leaving a Java
program. For example, all type labels are erased to produce the corresponding unlabeled Javatype. Class
parameters and authority clauses are erased, including the label parameter of array types. Method begin-
and end-labels and constraints are erased. The declassify expression and statement are replaced by their
contained expression or statement.

Variables of the built-in types label and principal are translated to the Java types jflow.lang.Label and
jflow.lang.Principal, respectively. Variables declared to have these types remain in the translated program.
Only two statements translate to interesting code: the actsFor and switch label statements. The translated
code for each is simple and efficient, as shown in Figures 5-8 and 5-9. In these figures, T[E] is the
trandation of a JFlow expression £ into a Javaexpression, and T [ S ] isthe translation of a statement S.

5.2.1 Principal valuesand the actsFor statement

The actsFor statement translates to an if statement that tests the current principal hierarchy and executes
either the statement S; or S5, depending on whether the relation between the two principals exists. The
class jflow.lang.Principal provides a static method actsFor that can be used to test whether one principal
may act for ancther.

Principals in JFlow are represented both by classes that are subclasses of jflow.lang.Principal, and by
instances of these classes. Having a class for each principal in the system simplifies the management of the
principal hierarchy in aJavarun-time system. Each Principal object containsalist of other Principal objects
that can act for it directly: its immediate superiorsin the principa hierarchy. The object also contains a
hash table that maps Principal objects to booleans; this hash table is used to memoize actsFor tests so that
they can be performed more quickly the second and following times. Every subclassof Principal containsa
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T[t] =t
T[] =t
T[] =¢[]

new Label(TL [ P1]).join(new Label(TL [ P2])..... join(new Label(TL[P,]))...))

TL [v] = case A[v] of
(var [final| T{L} uid) : TL[L]
(constant principal) : Label.bottom()

(param principal uid) : Label.bottom()
end

TL[o: ..,ri..] =new Label(T[o],..,T[r:],-.)

TL[ xv] =
case Afv] of
(var final label{ L} uid) : v
end

T [[switch label(E){..case( t;{l;}) S;.. else Se} ] =
Tv =T[E];
if (TL [[XE[M] Il LRT]] .reIabeIsTo(TL [[L1|_| LRT]] )){
T[S1]
telse. ..
if (TL [ Xg[nv]N Lgr] .relabelsTo(TL [L; M Lgr]){
T[Si]
}...else{T[Sc]}

Figure 5-9: Translating labels and switch label

static initializer that setsup its ThePrincipal object with theinitial list of superiors and an empty hash table.

Every subclass of the class Principal is located in the package jflow.principal, and contains a static
variable ThePrincipal of type Principal. Thus, references in JFlow code to an external principal p are
tranglated to expressionsof the form jflow.principal.p. ThePrincipal. New principals may be added freely to
the package jflow.principal, since a principal is only responsible for identifying the principals that may act
for it; adding a new principal cannot grant new privileges to that principal, or give power to any principal

152



over any other principal but the new principal. However, the right to modify the class of aprincipal in order
to add new superiors must be controlled, since adding superiors to or removing superiors from an existing
principal can affect the principal hierarchy in potentially unsafe ways. The current implementation does not
model this aspect of the system, although it appearsto be straightforward.

5.2.2 Labd valuesand the switch labd statement

Asindicated by Figure5-9, most |abel sare simply erased from the JFlow program asit istrandated into Java.
L abelsthat must be represented at run time are represented asval ues of typejflow.lang.Label. Thetranslation
function TL [ L] translates a label expression into a Java expression that generates the appropriate run-
time representation. It is undefined for components that are not representable at run time, such as label
parameters. Note that policies within a label are translated by translating the principals mentioned in the
policies; apolicy isonly representable at run time if al of the principals it mentions are also representable
at run time.

The translation rule for switch label uses definitions from the static checking rule for switch label in
Figure 4-27. Asdiscussed earlier, the run-time check to be performed is Xg[nv| M Lrr C L; M Lgr, atest
that mentionsonly labelsthat are representable at runtime. TherelabelsTo method is used to check whether
thislabel relationship exists. Like actsFor, the relabelsTo method is accel erated by a hash table lookup into
acache of memoized results.

153



154



Chapter 6

Related Work

Most of this thesis has been concerned with the problem of protecting the secrecy of data. This problem
has been recognized for at least 25 years, and also has been referred to as confinement [Lam73] of data,
or confidentiality. In this thesis, it has been referred to as protecting privacy, since the goa is to protect
data owned by mutually distrusting principals, rather than the secret data of a single entity such as the
government. A great deal of work has goneinto addressing the problem of secrecy, and it is not feasible to
enumerate all of it. This chapter summarizes previous work done on various kinds of security techniques
that relate to this work, particularly focusing on information flow control.

6.1 Accesscontrol

Most systems protect privacy and integrity through discretionary access control, or what is usually called
simply access control. The idea of access control is that before a potentially dangerous action may
be taken by a computer program, a run-time test is made to ensure that the program has been granted
the necessary authority for the action. Many access control mechanisms have been designed, such as
capabilities [DV66, WCCT74], access control lists [Lam71], and various hybrid schemes (e.g., [RSC92)).
Actionsthat do not conformto stated policiesare not permitted, whether they arereads, writes, or higher-level
operations. Unix file permissions are an example of asimple, well-known access-control mechanism.
Since JFlow provides a simple mechanism for controlling the privileges of a program, in the form
of static authority, it is interesting to compare it to existing Java access control models, based on stack
inspection [WBF97, WF98]. Current versions of the Java run-time environment provided by Netscape,
Microsoft, and Sun implement variants of this model [Net97, Mic97, GS98]. In Java, privileges are needed
to perform various unsafe operations, such as accesses to the local filesystem. In the stack inspection
approach, these privileges are known as targets. Each class can be authorized to claim one or more
privileges, but by default, the class code does not possess these privileges. Explicit operations are provided
for enabling and disabling privileges. When a privilege is needed in order to perform an unsafe operation,
the stack leading up from the point of invocation is inspected at run time. Every class whose codeis on the
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stack, up to the point where the needed privilege was enabled, must be authorized to claim that privilege.
This model allows a classto grant a privilege, but only if it has itself enabled the privilege explicitly. The
privilege can be granted only to the code of another trusted class that could have claimed the privilege for
itself. Thus, privilegeisenabled explicitly, but granted implicitly, by the act of calling another method while
the privilege has been enabled.

This set of design choices differsin several respects from those in JFlow. In JFlow, principals may be
used to represent targetsaswell asusers. The authority clause of aclassgivesaclassthe power to act for the
named principals, but individual methods do not possess the corresponding privilege unless they explicitly
declare it. Thus, the models are similar in that privileges are not available unless explicitly declared. In
JFlow, authority is granted to a called method explicitly: it is passed as an argument of type principal that is
present in acaller clause of the called method. Unlikein Java, the called method need not have the potential
authority of that principal (i.e., target). The stated reason for preventing this in the Java modelsis that it
defeats luring attacks in which the authority granted is misused by the called method. Luring attacks are a
greater concern in the Java model, since authority is granted implicitly. In JFlow, it is clear what authority
is granted to the called method (although it may be a run-time parameter). JFlow also allows authority to
be bound into an object in a parametric fashion; a class can require that its constructors be caled from a
sSite possessing the authority of its principal parameters; this authority is bound into the object. An obvious
difference between the models is the manner in which they are enforced. The JFlow authority mechanisms
are largely statically checked (though there is support for dynamic checking), whereas the Java model is
checked entirely dynamically, with consequent run-time overhead. Static checking is possible in JFlow
because authority transfers are completely explicit. Since the Java model of access contral is largely a
subset of that in JFlow, it seems likely that it could be enforced at load time by an extended Java Virtual
Machineif classfiles were extended with explicit annotations about granted authority.

6.2 Limitations of discretionary access control

Discretionary access control does not support privacy well, because although it preventsinformation release,
it does not control information propagation. For example, consider the tax preparer example of Section 1.1,
reproduced here in Figure 6-1. In this example, Bob is preparing his tax form using a piece of software
called “WebTax". Bob would like to be ableto prepare hisfinal tax form using WebTax, but without trusting
WebTax to protect his privacy. Bob can impose an access check that determines whether Preparer can
see his tax data. However, once the access is alowed, Bob cannot control how Preparer distributes the
information it has read. He is forced to trust that the WebTax program will respect his privacy correctly.
Thus, discretionary access protects the privacy of data against others, but it is vulnerable to Trojan horse
programs.

Everything that hasjust been said about privacy appliesto integrity aswell. If program A allows program
B to modify A’'s data, then A has controlled who may write the data, but cannot control how B obtains the
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Figure 6-1: Tax preparer example

data to write there. With only discretionary access control, A must trust not only B but every program
that might have affected the data B is providing. Discretionary access control is a point-of-sale mechanism
that cannot control either the propagation of information after its release or the propagation of information
leading to an update.

6.3 Information flow control

In the case of both privacy and integrity, what is wanted is a way to extend access restrictions transitively,
arbitrarily far from the point where dataiis released or updated. Thistransitive extensionis not possiblein a
conventional discretionary access control system, becausethe decision about whether to transfer information
from program A to program B is made based upon the authority and privileges possessed by A and B;
restrictions that the data’s ultimate source or destination might like to apply cannot be enforced reliably
because information about these restrictions in general has been lost. Thisinsight leadsto information flow
control and mandatory access control models, which apply sensitivity labelsto data. Theselabels propagate
with the data and are used to mediate information transfers within and between programs. Restrictions on
the use of data propagate with the data and apply to any data derived from it. Privacy restrictions prevent
data from being seen by untrusted users; integrity restrictions prevent untrusted data from affecting storage
locations. A good overview of information flow control is presented by Denning [Den82].

The origina model of information flow for secrecy comes from the early work of Bell and LaPad-
ula [BL75]. In this work, objects in the system are assigned to security classes from a small ordered set
(e.g., unclassified, classified, secret). Information can flow between the partitions only by moving upward
in security class. A subject, or process, in the system is assigned a security class, and the datait manipulates
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is assigned the same security class. It can read data from a subject of the same or lower security class.
The Bell-LaPadulamodel supports privacy through information flow control; it also controls writes through
access control. Non-destructive writes are permitted to an object of a higher security class, but destructive
writes are permitted only to objects of the same security class. This rule prevents low-level subjects from
overwriting high-level data, even though this overwriting would not cause an information leak.

The most common information flow enforcement mechanismis dynamic. Fenton's DataMark Machine
(DMM), an early abstract model for information flow enforcement [Fen73, Fen74], is a good example of
the dynamic approach to fine-grained information flow. Asa program computes, sensitivity labels (security
classes) are associated with all data values. The sensitivity label of a computed value must be at least as
restrictive as the sensitivity labels of the values it was computed from. In the DMM model, the program-
counter label pc is maintained at run time. One weakness of the DMM model is its inability to deal with
implicit flows precisely. After an if statement, pc does not revert to its former value, unlike in JFlow. Data
computed after aconditional becomes excessively restrictively labeled. The DMM model is made workable
becausethe pc isunaffected by afunction call, but at the cost that exceptionsare not supported. JFlow allows
the program-counter label to revert if the method can terminate only normally, but also allows fine-grained
tracking of information communicated through exceptions.

The DoD Orange book requires a dynamic mechanism for enforcing mandatory access control (MAC)
for secure systems of class B1 and higher [DOD85]. In this approach, a fixed label is associated with the
currently running process. Asinthe Bell-LaPadulamodel, aprocess may read only from objectswith alabel
that is of the same or lower level than its own. However, it may write to an object with an equal or higher-
security label. The Orange Book specifies that in systems with mandatory access control, information can
leak only by leaving the system through channels. There are two kinds of channels. single-level channels,
which have a single fixed label against which all datais dynamically tested before transmission; and multi-
level channels, which allow arbitrarily labeled data to be transmitted, but al so dynamically transmit the label
of the data along with it.

The JFlow language provides both static and dynamic enforcement of information flow, with anemphasis
on making static enforcement as expressive as possible. However, the dynamic enforcement features of
mandatory access control can be simulated in JFlow by using run-time labels and run-time principals.
Channelsin the decentralized label model are single-level channels; however, multi-level channels can be
simulated by transmitting values of the type Protected, which encapsulatesavaluewithitslabel. JFlow also
providesfine-grained tracking of information labels. With mandatory accesscontrol, aprocessisirrevocably
tainted by the label of data it has observed, and therefore passesthe label on to all datait touches afterward,
making that data unnecessarily restrictive. This approach is necessary with purely dynamic enforcement
in order to prevent implicit flows. The fine-grained static analysis in JFlow alows implicit flows to be
prevented while avoiding many unnecessary restrictions.

There has been considerable work on developing richer and more expressive models for labeling data.
Denning extended and clarified the Bell-LaPadula label model with the notion of a lattice of security

158



classes [Den75, Den76]. As in the model defined in this thesis, information may be relabeled upward
in the lattice, and information derived from multiple sources acquires a label (security class) that is the
join of the labels of the sources. The decentralized label model does not quite fit into Denning’s lattice
structure, although it retains the essential properties. One obvious differenceis that the decentralized label
model supports alimited form of declassification. Thelabel system looks different to each principal; every
principal shares a common set of safe relabelings, but has access to its own declassification relabelings.
Relabeling in the decentralized label model defines an ordering relation (C ), asin Denning’s model, but it
is not a partial order, since two labels may be equivalent without being equal. However, it does support the
lattice operations of join (L) and meet (1) on equivalence classes of labels, and these operations distribute
over each other.

Denning's lattice framework was instantiated by Feiertag et al. [FLR77] in multilevel security policies.
A multilevel security policy is a pair (A, C), where A is a hierarchical security class, and C is a set of
categories. Hierarchical security classes form a totally ordered set like that of the Bell-LaPadula model;
categories are arbitrary symbols. One multilevel security policy (A1, C1) can be relabeled to another,
(A2, (), aslongas A1 C Ay and Cy C (5. Categories operate in the reverse direction one might expect: it
is acceptabl e to increase the set of categories but not to decreasethem. They provide a notion of the owners
of the data rather than of potential readers of the data.

Multilevel security policiesareacommon underlying model used with mandatory accesscontrol systems.
However, they can be modeled straightforwardly within the decentralized label model by introducing
principals to represent each of the hierarchical security classes and each of the possible categories. The
principals representing security classes have the corresponding acts-for relations: the principal representing
top secret can act for the principal representing secret, and so on. A multilevel policy (A, {c1...¢,}) is

the relabeling rule for multilevel policies. Users are given security classifications by introducing acts-for
relations between their principals and the appropriate A and ¢; principals; the output channel to a user p
can be labeled root : p (where root is a highly trusted principal) and the relabeling rule will enforce the
appropriate restriction. One weakness of thistranslation isthat it allows the user p to declassify all the data
he can read; this flaw can be fixed using the approach of Section 2.6.3.

Biba showed that information flow control can be used to enforce integrity as well as secrecy, and that
integrity isadual of secrecy [Bib77]; thisinsight has been employed in several subsequent systems, and also
appliesto the decentralized integrity policies described in Section 2.6.1. X [MR92] isagood example of a
real-world information flow control system that implements MAC and supports both secrecy and integrity
policies simultaneously.

More recent work on label models has not been as widely adopted. One popular theme has been models
for commercial applicationsthat capture conflicts of interest and allow non-transitive flow policies [CW87,
BN89, TW89, Fol91]. The Chinese Wall policy of Brewer and Nash [BN89] has been the subject of some
study. Theideabehind this policy is that information labels should be able to enforce separation of duties.
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For example, a bank might maintain a separation between its accounts and investments departments. An
employee who is supposed to handle the investments of the bank should not have access to information
about customer accounts, and vice versa. However, Sandhu has argued that the Chinese Wall policy can
be implemented according to a standard | attice-based labeling policy by properly distinguishing users and
programs [San92]. In the decentralized label model, this separation of duties can be enforced through
restrictions on the principal hierarchy rather than through labels. The group principals accounts and
investments are introduced, and employee principals are prohibited from belonging to both groups. This
structure is arguably more intuitive, since the separation of duties is built into the principals themselves,
rather than into the labels of individual pieces of data. More recent work on modeling separation of duties
has taken a similar approach of mapping user and duties into arole hierarchy [ GGF9].

Thedecentralized |abel model hasseveral similaritiesto the ORAC model of McCollum et al. [MMN9Q]:
both models provide some approximation of the “originator-controlled release” labeling used by the U.S.
DoD/Intelligence community. The ORAC model was devel oped because of the observation that conventional
MAC and DAC policies do not adequately support this kind of security policy. Both ORAC and the
decentralized label model have the key concept of ownership of policies. Both models also support the
joining of labels as computation occurs, though the ORAC model lacks some important lattice properties
since it attempts to merge policies with common owners. In the ORAC model, as in some mandatory
access control models, both process|abel s and object 1abels can float upward in the label lattice arbitrarily, a
phenomenon called label creep that leads to excessively restrictive labels. The absence of lattice properties
and the dynamic binding of labels to objects and processes makes any static analysis of the ORAC model
rather difficult. Interestingly, ORAC does allow owners to be replaced in label components (based on ACL
checksthat are analogousto acts-for checks), but it does not support extension of the reader set. The ORAC
model also does not support any form of declassification.

All practical information flow control systemsprovidethe ability to declassify or downgrade databecause
strict information flow control is too restrictive for writing real applications. More complex mechanisms
such as inference controls [Den82, SS98] often are used to decide when declassification is appropriate.
Declassification in these systems lies outside the label model, so declassification is performed by a trusted
subject: code with the authority of a highly trusted principal. A recent variant of this approach by Ferrari
et. al [FSBJ97] introduces aform of dynamically-checked declassification through special waiversto strict
flow checking. Some of the need for declassification in their framework would be avoided with fine-grained
static analysis. Becausewaiversare applied dynamically and mention specific data objects, they seem likely
to have administrative and run-time overheads. One key advantage of the new label structure is that it
is decentralized: unlike in the trusted subject approach, other principals in the system need not trust the
declassification decision of a principal p, since p cannot weaken the policies of principals that it does not
act for.

Previous information flow techniques do not deal well with situations of mutual distrust. These tech-
niques were originally designed to protect the privacy and integrity of data owned by a single principal—
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typically, the government. If one considers privacy and integrity in a more decentralized setting, such as
the community of Web users, it is clear that no universal notion of secret sensitivity can be established.
No label including a hierarchical security class can be acceptable in a decentralized environment. Even
schemes containing a generalized lattice of |abels do not solve the problem of mutual distrust. Consider the
tax preparation examplein alattice-based MAC system. Unless Bob can act for Preparer or vice-versa, the
final tax form in this example will be labeled so that neither Bob nor Preparer are able to read it—a result
that is safe but not very useful.

JFlow provides a programming model that integrates information flow control and a simple model of
access control. Stoughton [Sto81] developed a purely dynamic model integrating both access control and
information flow control, defined formally using denotational semantics. This model does not seem to have
been implemented. In the model, objects have both a current access level and a potential access level.
The potential access level is used to enforce information flow constraints as in mandatory access control
systems. The current access level is used to enforce discretionary access control; it can be relaxed by an
appropriately trusted principal, but only to the point whereit is asrestrictive asthe potential accesslevel. To
relax it further would violate information flow control. Thus, this model does not support declassification.
Because this model is purely dynamic, it also does not treat implicit flows securely. The model of access
control is particularly simple; it mediates accesses at the level of reads and writes to objects, and does not
provide the ability to control higher-level operations.

6.4 Static enforcement of security policies

JFlow is unusual not only in integrating information flow control and access control, but also in providing
both static and dynamic enforcement of these mechanisms. Most prior security work hasfocused on dynamic
enforcement, but there has been some earlier work on static enforcement of access control.

Jonesand Liskov defined a system for statically enforcing discretionary access control through ascheme
of restricted types, in which some methods were marked as inaccessible [JL78]. Their rules define aform
of subtyping, with security guaranteed by the inability to cast downward in the type hierarchy dynamically.
However, the lack of any capability for dynamically enforcing access control checks makes this scheme
impractical.

The CACL model of access control [RSC92] has a model of mixed static and dynamic enforcement of
accesscontrol thatismore practical. AsintheJonesand Liskov model, referencesto objectsmay haveatype
in which certain methods are inaccessible. However, when objects cross protection domains, new copies of
the references are constructed for which method accessibility is recomputed lazily. In JFlow, methods can
be called only if al of their caller constraints are satisfied. When objects are passed between different trust
domains, method accessibility changes automatically based on static reasoning about authority; no rewriting
is needed.

Static analysis was applied to information flow control early on by Denning and Denning [DD77],
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but has not been adopted widely since because of its limitations. Static checking allows the fine-grained
tracking of sensitivity and integrity labels through program computations, without the run-time overhead
of dynamic security classes. Because this approach inspects entire programs, it has a significant advantage
over simple dynamic checking: a program can be checked to determine that no possible execution results
in asecurity policy violation. However, dynamic checking is needed for some programming examples, and
previous static checking techniques did not integrate dynamic checking, making them impractical. Earlier
static checking technigques did not handle exceptions, either.

Another approach to checking programs for information flows statically has been automatic or semi-
automatictheorem proving. Researchersat MITRE [Mil76, Mil81] and SRI [Fei80] devel oped techniquesfor
information flow checking using formal specifications. Feiertag [Fei80] developed atool for automatically
checking these specifications using a Boyer-Moore theorem prover.

Recently, there has been more interest in provably-secure programming languages, treating information
flow checksin the domain of type checking, which does not require a theorem prover. Palsberg and @rbask
have developed a simple type system for checking integrity [PO95]. Volpano, Smith and Irvine have
taken a similar approach to static analysis of secrecy, encoding Denning'srulesin afunctional type system
and showing them to be sound using standard programming language techniques [V SI96, Vol97]. Also,
Abadi [Aba97] has examined the problem of achieving secrecy in security protocols, aso using typing
rules, and has shown that encryption can be treated as a form of safe declassification through a primitive
encryption operator.

Heintze and Riecke [HR98] have shown that information-flow-like labels can be applied to a simple
language with reference types (the SLam calculus). They show how to statically check an integrated model
that provides access control, information flow control, and integrity. Their model is similar to Stoughton’s
earlier, dynamic model; labels include two components: one that enforces conventional access control, and
another that enforcesinformation flow control. Their model inherits some limitations of Stoughton’s model.

The models of Smith, Volpano, and Irvine and of Heintze and Riecke have the limitation that they are
entirely static: unlike JFlow, they have no run-time access control, no declassification, and no run-time flow
checking. These models also do not provide label polymorphism or support for objects. Addition of these
featuresis important for supporting a realistic programming model, though it does make the programming
language more difficult to treat with the conventional tools of programming language theory. Heintze and
Riecke do prove some useful soundness theorems for their model. This step would be desirable for JFlow,
but the various language extensions make formal proofs of correctness difficult at this point.

6.5 Modeling principalsand roles

The notion of aprincipal hierarchy, used in the decentralized |abel model, is similar to several other models
for modeling roles. The acts-for relation is similar to the speaks-for relation that is introduced by Lampson
et al. [LABW91] for describing authentication in a distributed system. In that model, a notion of compound
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principals is introduced; a compound principal is an expression such as Bob as manager, where Bob is
an ordinary principal, and manager is arole. The decentralized label model does not provide this much
structure; however, acompound principal can be modeled asathird principal for which Bob acts, and which
actsfor manager.

Somewaork on role-based access control hasal so introduced notions of arole hierarchy based on various
kinds of dominance relations among principals and roles [FK92, SCFY 96]. This structureis used to model
the assignment of usersto groups and to roles, similarly to the decentralized label model. Roles have also
been used as security classes in an information flow model [San96]. However, because this model does
not distinguish between roles and information flow labels, information can flow only upward in the role
hierarchy.

6.6 Cryptography

In the minds of many people, computer security is associated with encryption. It is reasonable to ask how
cryptographic techniquesarerelated to thiswork. Encryption can be used to achieve someimportant security
goalsthat are subsidiary to protecting privacy and integrity, and much recent computer security research has
focused on this use. One such goal is authentication: the reliable identification of who is requesting that
an action be performed [Lam71, LABW91, ABLP93]. Many computer systems use password checking to
authenticate their users. However, in a distributed system, some form of encryption is generally needed to
perform authentication securely. Reliableauthenticationisaprerequisitefor protecting privacy and integrity.
For example, any access control mechanism requires an underlying authentication mechanism so that one
can be sure that a process does possess the granted authority that claims to.

Another important feature of a secure system is reliable information channels that cannot be subverted
by unrelated third parties. Encryption protects privacy by preventing these channels from having their
information extracted; digital signatures protect integrity by preventing new material from being inserted
onto the channel by athird party to fool the receiver.

The encryption technology for reliable authentication and secure channels has been researched heavily
and also is widely available, in systems like Kerberos [SNS88] and ssh [Y1096]. Encryption provides a
rather elemental protection for privacy and integrity. The work presented herein makes the assumption that
these technologies are available as a standard component, and builds on them.

6.7 Covert channels

This work has ignored covert channels arising from time measurement and thread communication. These
channels have long been recognized as very difficult to control [Lam73]. A schemefor statically analyzing
thread communication has been proposed [Rei 79, AR8Q]; essentially, a second pc is added with different
propagation rules. A local pc handles information flow within a thread; the global pc restricts operations
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that communicate with other threads. Stoughton’s model [Sto81] also usesthis local/global approach. The
same technique can be used to control timing channels. This approach could be applied to JFlow and even
checked statically, similarly to static side-effect and region analysis[JG91], which aimsto infer all possible
side-effects caused by a piece of code. However, it is not clear how well this scheme works in practice;
it seems likely to restrict timing and communication quite severely, particularly if applied directly to a
programming model in which objects are shared between threads. In such a programming model, all object
modifications are potentially asynchronous communicationswith other threads, and will be highly restricted
if limited by a pc that is shared across all threads. Smith and Volpano have developed rules recently for
checking information flow in a multithreaded functional language [SV98]. As expected, the rules they
define prevent the run time of a program from depending in any way on non-public data, which is arguably
impractical.
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Chapter 7

Conclusions

Protecting privacy and secrecy of datahaslong been knownto beavery difficult problem. Theincreasing use
of untrusted programs in decentralized environments with mutual distrust makes a solution to this problem
both more important and more difficult to solve. Existing security techniques do not provide satisfactory
solutionsto this problem.

The goal of thiswork is to make information flow control a viable technique for providing privacy in a
complex, decentralized world with mutually distrusting principals. Information flow control is an attractive
approach to protecting the privacy (and integrity) of data because it allows security requirements to be
extended transitively towards or away from the principals whose security is being protected. However,
it has not been a widely accepted technique because of the excessive restrictiveness it imposes and the
computational overhead.

To addressthese limitations of conventional information flow techniques, thiswork focuseson two areas.
First, anew model of decentralized information flow |abel s providesthe ability to express privacy policiesfor
multiple, mutually distrusting principals, and to enforce all of their security requirements simultaneously.
Second, the new language JFlow permits static checking of decentralized information flow annotations.
JFlow seems to be the most practical programming language yet that allows this checking.

7.1 Decentralized label model

The decentralized label model described in Chapter 2 makes information flow more practical by removing
some of the unnecessary restrictiveness of earlier models. It provides considerable flexibility by allowing
individual principalsto attach flow policiesto individual values manipulated by a program. It also incorpo-
rates a notion of principal hierarchy that allows these policies to be expressed in terms of and on behalf of
more complex authority entities such as groups and roles.

Practical information flow systems require some ability to declassify or downgrade data. Since the
policiesin decentralized labels have a notion of ownership, the owner can be allowed to declassify policies
that it owns. Thisdeclassificationis safe becauseit doesnot affect the secrecy guaranteesto other principals
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who have an interest in the secrecy of the data. The owner may use reasoning processes such as information
theory techniques or inference controls to determine that the information leaked through declassification is
acceptably small, but other principals in the system do not need to trust these reasoning processes. This
support for decentralized declassification makes the label model ideal for a system containing mutually
distrusting principals.

An important feature of the decentralized label model is the formal semantics that are defined for the
model, and the relabeling rule that was shown to be both sound and complete with respect to this formal
semantics. The relabeling rule precisely captures all the legal relabelings that are allowed when knowledge
about the principal hierarchy is available statically, and has the necessary lattice properties to support static
checking and automatic label inference. Because the complete relabeling rule is as permissive as possible
without being unsafe, it is easier to model common security paradigms, allowing control of information
flow in a system with group or role principals. Examplesin Chapter 2 showed that the expressive power of
the compl ete relabeling rule was helpful in modeling reasonable application scenarios without resorting to
declassification.

Extensions to the basic model discussed in Chapter 2 also show that integrity [Bib77] constraints have
a natural lattice structure, and decentralized integrity policies can also be expressed conveniently in the
same framework, with rules precisely dual to those of decentralized privacy policies. In addition, |abelsthat
combine integrity and privacy constraints can be expressed, with straightforward rules. Finally, extensions
to the principal hierarchy model allow more expressive modeling of group and role principals.

7.2 Static analysis of infor mation flow

Information flow control is usually enforced dynamically, causing substantial loss of performance and also
difficulty in handlingimplicit information flows. Static program checking appearsto bethe only enforcement
technique that can control information flows with reasonable efficiency and precision, athough it cannot
identify certain covert channels. However, previous static analysis techniques have not been shown to be
practical.

Chapters 3-5 describe the new language JFlow, which extends the Java language to permit simple static
checking of flow annotations. The goal of thiswork isto add enough power to the static checking framework
to allow reasonable programs to be written in anatural manner. JFlow addresses many of the limitations of
previouswork in thisarea. It supports many language featuresthat previously have not been integrated with
static flow checking, including mutable objects (which subsume function values), subclassing, dynamic type
tests, dynamic access control, and exceptions.

Avoiding unnecessary restrictiveness while supporting a complex language has required the addition
of sophisticated language mechanisms: implicit and explicit polymorphism, so that code can be written
in a generic fashion; dependent types, to allow dynamic label checking when static label checking would
be too restrictive; static reasoning about access control; statically-checked declassification. Making the
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programming language convenient has also involved automatic label inference, as described in Chapter 5.
Thislist of mechanisms suggeststhat one reason why static flow checking has not been accepted widely
as a security technique, despite having been invented over two decades ago, is that programming language
techniques and type theory were not then sophisticated enough to support a sound, practical programming
model. By adapting these techniques, JFlow makes a useful step towards usable static flow checking.

7.3 Futurework

There are severa directions for extending this work. One obviously important direction is to continue to
make it amore practical system for writing applications. JFlow addresses many of the limitations of earlier
information flow systems that have prevented their use for the development of reasonable applications;
however, more experience is needed to better understand the practical applications of this approach.

Onedirection for explorationisthe development of securerun-time librarieswritten in JFlow that support
JFlow applications. Features of JFlow such as polymorphism and hybrid static/dynamic checking should
make it possible to write such libraries in a generic and reusable fashion. One interesting possihility is the
development of a secure user interface library that provides event distribution and rendering capabilities
availablein user interfacetoolkits. Thislibrary shouldinclude user interface widgetsthat support information
flow control directly; for example, atype-in that reliably notifies the user of what security policy is applied
to data entered into it.

It should also be possible to augment the Java Virtual Machine [LY 96] with annotations similar to those
used in JFlow source code. The bytecode verifier would check both types and labels at the time that code
is downloaded into the system. Other recent work [LY 96, Nec97, MWCG98] has shown that type checking
performed at compile time can be transformed into machine-code or bytecode annotations. The code can
then be transmitted along with the annotations, and the two checked by their receiver to ensure that the
machine code obeysthe constraints established at compile time. This approach also should be applicableto
information flow annotationsthat are expressible as a kind of type system.

The JFlow language contains relatively complex features such as objects, inheritance and dependent
types, and these features have made it difficult thus far to use theoretical programming-language techniques
to show that the static checking rules of Chapter 4 are sound. However, this demonstration isimportant for
widespread acceptance of alanguage for secure computation.

This work has assumed an entirely trusted execution environment. The model described here does not
work well in large, networked systemsin which different principals may have different levels of trust in the
various hosts in the network. One simple technique for dealing with distrusted nodes is to transmit opagque
receipts or tokens for the data. Anaother approach isfor athird party to provide atrusted host to get around
the impasse of mutually distrusted hosts. It would be interesting to investigate a distributed computational
environment in which secure computation is made transparent through the automatic application of these
techniques.
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This work shows how to control several kinds of information flow channels better, including channels
through storage, implicit flows, and run-time security checks. However, covert channels that arise from
timing channels and from the timing of asynchronous communication between threads are not treated in
this thesis, by ruling out timing and multi-threaded code. Supporting multi-threaded applications would
make this work more widely applicable. Although there has beenwork on analyzing these channelsthrough
static analysis [SV98, HR98], the current techniques are restrictive. One central difficulty is the need to
distinguish between locally and globally visible operations within a multi-threaded program. Current multi-
threaded programming environments have tended to minimize this distinction, but without it, static analysis
will not be areasonably precise tool for controlling information flow. An altered programming model may
be possible in which enough information is available about inter-thread communication to permit precise
analysis.

Thisthesis has provided new models and techniques for protecting privacy. Providing better protection
of privacy isachallenging and important problem for future computing environments. These environments
arelikely to belarge and distributed, and to contain distrusted users, programs, and hosts. This problem has
not received as much attention recently asit merits, and | hope that the contributions of this thesiswill serve
as afresh impetusto its further consideration.
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