6 research outputs found

    On-line Ramsey numbers

    Get PDF
    Consider the following game between two players, Builder and Painter. Builder draws edges one at a time and Painter colours them, in either red or blue, as each appears. Builder's aim is to force Painter to draw a monochromatic copy of a fixed graph G. The minimum number of edges which Builder must draw, regardless of Painter's strategy, in order to guarantee that this happens is known as the on-line Ramsey number \tilde{r}(G) of G. Our main result, relating to the conjecture that \tilde{r}(K_t) = o(\binom{r(t)}{2}), is that there exists a constant c > 1 such that \tilde{r}(K_t) \leq c^{-t} \binom{r(t)}{2} for infinitely many values of t. We also prove a more specific upper bound for this number, showing that there exists a constant c such that \tilde{r}(K_t) \leq t^{-c \frac{\log t}{\log \log t}} 4^t. Finally, we prove a new upper bound for the on-line Ramsey number of the complete bipartite graph K_{t,t}.Comment: 11 page

    On-line Ramsey numbers for paths and stars

    Get PDF
    Graphs and Algorithm

    On-line Ramsey numbers of paths and cycles

    Full text link
    Consider a game played on the edge set of the infinite clique by two players, Builder and Painter. In each round, Builder chooses an edge and Painter colours it red or blue. Builder wins by creating either a red copy of GG or a blue copy of HH for some fixed graphs GG and HH. The minimum number of rounds within which Builder can win, assuming both players play perfectly, is the on-line Ramsey number r~(G,H)\tilde{r}(G,H). In this paper, we consider the case where GG is a path PkP_k. We prove that r~(P3,P+1)=5/4=r~(P3,C)\tilde{r}(P_3, P_{\ell+1}) = \lceil 5\ell/4 \rceil = \tilde{r}(P_3, C_\ell) for all 5\ell \ge 5, and determine r~(P4,P+1\tilde{r}(P_4, P_{\ell+1}) up to an additive constant for all 3\ell \ge 3. We also prove some general lower bounds for on-line Ramsey numbers of the form r~(Pk+1,H)\tilde{r}(P_{k+1},H).Comment: Preprin

    Online Ramsey theory for a triangle on FF-free graphs

    Get PDF
    Given a class C\mathcal{C} of graphs and a fixed graph HH, the online Ramsey game for HH on C\mathcal C is a game between two players Builder and Painter as follows: an unbounded set of vertices is given as an initial state, and on each turn Builder introduces a new edge with the constraint that the resulting graph must be in C\mathcal C, and Painter colors the new edge either red or blue. Builder wins the game if Painter is forced to make a monochromatic copy of HH at some point in the game. Otherwise, Painter can avoid creating a monochromatic copy of HH forever, and we say Painter wins the game. We initiate the study of characterizing the graphs FF such that for a given graph HH, Painter wins the online Ramsey game for HH on FF-free graphs. We characterize all graphs FF such that Painter wins the online Ramsey game for C3C_3 on the class of FF-free graphs, except when FF is one particular graph. We also show that Painter wins the online Ramsey game for C3C_3 on the class of K4K_4-minor-free graphs, extending a result by Grytczuk, Ha{\l}uszczak, and Kierstead.Comment: 20 pages, 10 page

    Packings and coverings with Hamilton cycles and on-line Ramsey theory

    Get PDF
    A major theme in modern graph theory is the exploration of maximal packings and minimal covers of graphs with subgraphs in some given family. We focus on packings and coverings with Hamilton cycles, and prove the following results in the area. • Let ε > 0, and let GG be a large graph on n vertices with minimum degree at least (1=2+ ε)n. We give a tight lower bound on the size of a maximal packing of GG with edge-disjoint Hamilton cycles. • Let TT be a strongly k-connected tournament. We give an almost tight lower bound on the size of a maximal packing of TT with edge-disjoint Hamilton cycles. • Let log 1^11^17^7 nn/nnpp≤1-nn^-1^1/^/8^8. We prove that GGn_n,_,p_p may a.a.s be covered by a set of ⌈Δ(GGn_n,_,p_p)/2⌉ Hamilton cycles, which is clearly best possible. In addition, we consider some problems in on-line Ramsey theory. Let r(GG,HH) denote the on-line Ramsey number of GG and HH. We conjecture the exact values of r (PPk_k,PP_ℓ) for all kk≤ℓ. We prove this conjecture for kk=2, prove it to within an additive error of 10 for kk=3, and prove an asymptotically tight lower bound for kk=4. We also determine r(PP3_3,CC_ℓ exactly for all ℓ
    corecore