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Abstract

A major theme in modern graph theory is the exploration of maximal packings and

minimal covers of graphs with subgraphs in some given family. We focus on packings and

coverings with Hamilton cycles, and prove the following results in the area.

• Let ε > 0, and let G be a large graph on n vertices with minimum degree at least

(1/2 + ε)n. We give a tight lower bound on the size of a maximal packing of G with

edge-disjoint Hamilton cycles.

• Let T be a strongly k-connected tournament. We give an almost tight lower bound

on the size of a maximal packing of T with edge-disjoint Hamilton cycles.

• Let log117 n/n ≤ p ≤ 1− n−1/8. We prove that Gn,p may a.a.s. be covered by a set

of d∆(Gn,p)/2e Hamilton cycles, which is clearly best possible.

In addition, we consider some problems in on-line Ramsey theory. Let r̃(G,H) denote

the on-line Ramsey number of G and H. We conjecture the exact values of r̃(Pk, P`) for

all k ≤ `. We prove this conjecture for k = 2, prove it to within an additive error of 10

for k = 3, and prove an asymptotically tight lower bound for k = 4. We also determine

r̃(P3, C`) exactly for all `.
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Chapter 1

Introduction

1.1 Extremal graph theory

Extremal graph theory is fundamentally concerned with the dependence of graph proper-

ties on graph parameters. This is perhaps best explained through an example. Intuitively,

we would expect it to be easier to find a triangle in a dense graph than a sparse one. We

may therefore ask: how many edges may a graph G on n vertices have and still remain

triangle-free? Certainly the complete bipartite graph Kbn/2c,dn/2e is triangle-free, so the

answer is at least bn2/4c. One of the foundational results in extremal graph theory, first

proved by Mantel [65] in 1907, is as follows.

Theorem 1.1 If G is a graph on n vertices with e(G) > bn2/4c, then G contains a

triangle.

Thus a triangle-free graph may contain up to bn2/4c edges, but no more. Interestingly,

we can say more. The following result is due to Erdős and Simonovits [29, 30, 85]. Here

the symmetric difference of two sets X and Y is denoted by X 4 Y .

Theorem 1.2 For all ε > 0, there exists some δ > 0 such that the following holds. If G

is a triangle-free graph with e(G) ≥ (1/4− δ)n2, then |E(G)4 E(Kbn/2c,dn/2e)| ≤ εn2.
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Thus in some sense, dense triangle-free graphs are the exception rather than the rule –

any sufficiently dense triangle-free graph must be very close to Kbn/2c,dn/2e. This phe-

nomenon is known as stability, and it is common in extremal problems.

In general, writing G for the class of all graphs, we may define a graph parameter

to be a function f : G → R which respects isomorphisms. We may also define a graph

property to be a subclass P ⊆ G which is closed under isomorphisms. Thus edge count

is a graph parameter, and the class of all triangle-free graphs is a graph property. (We

will generally abuse our notation slightly, and refer simply to e.g. the property of being

triangle-free.) Then much of extremal graph theory is concerned with the quantities

max{f(G) : G ∈ P} and min{f(G) : G ∈ P}. In other words, we ask the question:

how large (or small) may f(G) be in a graph satisfying P? We may also ask: if G ∈ P

with f(G) almost maximal (or minimal), what restrictions are there on the structure of

G?

Extremal graph theory is a major focus of modern combinatorics, and many of the

results in this thesis are of an extremal nature.

1.2 Hamilton cycles

A Hamilton cycle of G is a cycle C ⊆ G with V (C) = V (G). We say a graph G is

Hamiltonian if it contains a Hamilton cycle.

This concept was first introduced by Hamilton in 1857 in the context of a (succesfully

marketed) solitaire game, in which players were asked to find Hamilton cycles in the graph

of the dodecahedron. In fact, when viewed in a more general context, this simple game is

incredibly difficult. In 1972, Karp [47] demonstrated that determining the Hamiltonicity of

an arbitrary graph is an NP-complete problem. In fact, the problem remains NP-complete

even under highly restrictive conditions on the input graph. For example, Akiyama,

Nishizeki and Saito [4] proved the following.
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Theorem 1.3 Determining whether a cubic, planar, bipartite graph is Hamiltonian is an

NP-complete problem.

Despite this, there are a wealth of sufficient conditions for the existence of a Hamilton

cycle which may be checked in polynomial time. For example, the following is a well-

known extremal result of Dirac [28].

Theorem 1.4 If G is a graph on n ≥ 3 vertices, and δ(G) ≥ n/2, then G is Hamiltonian.

If δ(G) < n/2 then G may be a disconnected graph, or a bipartite graph on an odd

number of vertices. In either case, it is immediate that G does not contain a Hamilton

cycle. Thus Dirac’s theorem says that the trivially necessary condition (in terms of

minimum degree) is also sufficient. This phenomenon repeats itself in many other settings,

as we will see over the course of the thesis, and forms an important part of the subject’s

allure.

It is important to note that while the study of Hamilton cycles has led to many

beautiful results, it is by no means purely theoretical. Indeed, it has yielded algorithms

applicable to many real-world problems. The most famous example is the Travelling

Salesman Problem, which dates back to the 1930s. To solve the problem, given an edge-

weighted complete graph, one must find a Hamilton cycle of minimal weight. We may

imagine a travelling salesman who wishes to visit several cities and then return home,

while travelling as little distance as possible – the cities correspond to vertices, and the

edge weights correspond to distances between cities.

Unfortunately the Travelling Salesman Problem is NP-hard, but in practice an exact

solution is rarely needed. There are many algorithms for finding solutions which, while not

optimal, are “good enough for the task at hand”. These algorithms have been applied not

just to transportation problems, but also to problems in areas as wide-ranging as circuit

design, scheduling, and X-ray crystallography. (See e.g. Matai, Singh and Mittal [68] for

a more detailed survey.)
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1.3 Packing Hamilton cycles in graphs of high

minimum degree

Recall Dirac’s theorem from the previous section. While Dirac’s result is best possible

in the sense that the minimum degree bound may not be weakened, Nash-Williams [72]

proved in 1971 that it can be dramatically strengthened in another direction.

Theorem 1.5 If G is a graph on n vertices, and δ(G) ≥ n/2, then G contains b5n/224c

edge-disjoint Hamilton cycles.

In other words, the trivially necessary condition does not simply guarantee that G is

Hamiltonian – it guarantees that a constant proportion of G’s edge set can be decomposed

into Hamilton cycles!

As beautiful as this result is, it raises a natural question: is the bound optimal? Can

we hope to pack even more Hamilton cycles into every graph on n vertices with minimum

degree n/2? Nash-Williams [71] conjectured that if δ(G) ≥ n/2 then G contains at least

b(n+2)/8c edge-disjoint Hamilton cycles, and Babai gave a conjectured extremal example

in the same paper. In Chapter 2 we prove this conjecture for all sufficiently large graphs

which are not close to the extremal cases of Dirac’s theorem.

Interestingly, the example Babai gave not only fails to contain b(n + 2)/8c edge-

disjoint Hamilton cycles, but also fails to contain any other spanning 2b(n+2)/8c-regular

subgraph (also known as a 2b(n + 2)/8c-factor). Thus our ability to guarantee r edge-

disjoint Hamilton cycles in G is limited only by our ability to guarantee any 2r-factor at

all.

In Chapter 2, we prove that this is not a coincidence – the pattern extends to graphs

with minimum degree at least αn for all fixed α > 1/2. To make this formal, we define

the following notation.
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Definition 1.6 Let G be a graph and let n, δ ∈ N. Then we define

regeven(G) := max{r even : G contains an r-factor},

regeven(n, δ) := min{regeven(H) : |H| = n, δ(H) ≥ δ}.

Thus regeven(n, δ) is the degree of the densest even-regular spanning subgraph we can

guarantee in G given only that |G| = n and δ(G) ≥ δ. Our main result in chapter 2 is as

follows.

Theorem 1.7 For all ε > 0, there exists N ∈ N such that the following holds for all

n ≥ N . Let G be a graph on n vertices with δ := δ(G) ≥ n/2. Then one of the following

holds.

(i) G contains at least regeven(n, δ)/2 edge-disjoint Hamilton cycles.

(ii) δ ≤ (1/2 + ε)n and G is “close” to an extremal construction for Dirac’s theorem.

In particular, this proves Nash-Williams’ conjecture for large graphs in the non-

extremal case. In subsequent work, Csaba, Kühn, Lo, Osthus and Treglown [25, 26, 57, 58]

have proved the conjecture in the extremal case. Taken together with Theorem 1.7, this

implies the following result.

Theorem 1.8 There exists N ∈ N such that the following holds for all n ≥ N . Let G

be a graph on n vertices with minimum degree δ ≥ n/2. Then G contains regeven(n, δ)/2

edge-disjoint Hamilton cycles.

Note that due to independent work by Christofides, Kühn and Osthus [21] and Hartke,

Martin and Seacrest [42], the value of regeven(n, δ) is known to within an absolute error

of 1 for all n, δ ∈ N. Thus Theorem 1.8 is quantitative as well as qualitative.
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Theorem 1.8 implies that our ability to guarantee r edge-disjoint Hamilton cycles in

a graph of high minimum degree is limited only by our ability to guarantee any 2r-factor

at all. We conjecture that this idea extends further.

Conjecture 1.9 Let G be a graph on n vertices with δ(G) ≥ n/2. Then G contains

regeven(G)/2 edge-disjoint Hamilton cycles.

Thus if G’s minimum degree is large enough to guarantee any Hamilton cycles at all,

we believe that G contains r edge-disjoint Hamilton cycles if and only if G contains a

2r-factor. This conjecture was already known for large graphs with δ(G) ≥ (2−
√

2)n due

to work by Kühn and Osthus [59], and substantial progress has been made subsequently.

The conjecture has been proved for large even-regular graphs by Csába, Kühn, Lo, Osthus

and Treglown [25, 26, 57, 58], and an approximate version for all large graphs has been

proved by Ferber, Krivelevich and Szabó [33].

1.4 Packing Hamilton cycles in highly connected

tournaments

We now consider Hamilton cycles in another setting. A tournament is an orientation

of a complete graph. Hamilton cycles are ubiquitous in a complete graph – indeed, any

ordering of the vertices of Kn will yield a Hamilton cycle. We may therefore expect to find

many (directed) Hamilton cycles in a tournament, but this is not the case. A tournament

need not even be Hamiltonian! Indeed, consider the transitive tournament T on [n], in

which every edge ij with i < j is oriented towards j. (Here [n] is shorthand for {1, . . . , n}.)

Then a Hamilton cycle in T would contain an edge leaving n, which is clearly impossible.

More generally, we make the following definition.

Definition 1.10 A digraph G is strongly connected if for all distinct vertices u, v ∈

V (G), there exist paths in G from u to v and from v to u.

6



Since a Hamilton cycle is strongly connected, it is immediate that any Hamiltonian

tournament must also be strongly connected. Fortunately, a classical result of Camion [20]

tells us that this is the only obstacle.

Theorem 1.11 A tournament T is Hamiltonian if and only if it is strongly connected.

But what happens if we try to find multiple edge-disjoint Hamilton cycles in a tour-

nament? Certainly a strongly connected tournament need not contain two edge-disjoint

Hamilton cycles. Indeed, by taking the transitive tournament on [n] and reversing the

edge between 1 and n, we obtain a strongly connected tournament with a unique Hamilton

cycle. We might, however, hope that a “more strongly connected” tournament may con-

tain more Hamilton cycles. There are two natural ways of formalising this requirement,

both by analogy with connectivity in undirected graphs.

Definition 1.12 Let k ∈ N, and let G be a digraph with |G| ≥ k + 1. Then G is

strongly k-connected if G − U is strongly connected for all U ⊆ V (G) with |U | ≤ k − 1.

Alternatively, G is strongly k-edge-connected if G− F is strongly connected for all F ⊆

E(G) with |F | ≤ k − 1.

Strong edge-connectivity turns out to be of little use to us – Thomassen [89] proved

in 1982 that there exist tournaments with arbitrarily high edge connectivity which fail to

contain two edge-disjoint Hamilton cycles. However, strong k-connectivity is a stronger

notion – indeed, any strongly k-connected digraph is also strongly k-edge-connected – and

so we should not lose hope. In fact, Thomassen conjectured the following.

Conjecture 1.13 For all k ∈ N, there exists f(k) ∈ N such that any strongly f(k)-

connected tournament must contain k edge-disjoint Hamilton cycles.

Unfortunately, finding two edge-disjoint Hamilton cycles is dramatically harder than

finding a single Hamilton cycle. Indeed, removing a Hamilton cycle from a tournament

7



destroys n edges, an effect which seems to dwarf any constant connectivity. Consequently,

until our research in the area, it was an open problem to prove even the existence of f(2).

In Chapter 3, we prove Thomassen’s conjecture in its entirety.

Theorem 1.14 There exists C > 0 such that for all k ∈ N, any strongly Ck2 log2 k-

connected tournament must contain k edge-disjoint Hamilton cycles.

Thus we prove not only that f exists, but also that f(k) = O(k2 log2 k) – surprisingly

small. In fact, our value for f is almost best possible – we provide a construction showing

that f(k) = Ω(k2). We therefore make the natural conjecture that in fact f(k) = Θ(k2).

This conjecture has since been proved by Pokrovskiy [75]. Interestingly, just as in the

setting of graphs with high minimum degree, our conjectured extremal construction fails

to contain not just k edge-disjoint Hamilton cycles but any k-regular spanning subgraph.

As part of our proof, we prove another result which is of independent interest. The

following theorem of Menger [69] is well-known.

Theorem 1.15 Let G be a strongly k-connected digraph, and let X = {x1, . . . , xk} and

Y = {y1, . . . , yk} be disjoint subsets of V (G). Then there exist vertex-disjoint paths

P1, . . . , Pk ⊆ G and a permutation σ : [k]→ [k] such that Pi is a path from xi to yσ(i).

In other words, in a strongly k-connected digraph, we can join up two vertex subsets

of size k with vertex-disjoint paths, but with no control over the endpoints of each path.

In our proof, however, we need to join pairs of sets in this way with full control over the

endpoints. For this, we require the following property.

Definition 1.16 Let k ∈ N, and let G be a digraph with |G| ≥ 2k. Then G is k-linked if

whenever X = {x1, . . . , xk} and Y = {y1, . . . , yk} are disjoint subsets of V (G), there exist

vertex-disjoint paths P1, . . . , Pk such that Pi is a path from xi to yi.

Fortunately, as Thomassen [90] proved in 1984, for all k ∈ N there exists g(k) ∈ N

such that any strongly g(k)-connected tournament is k-linked. (This is not the case for
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general digraphs, as proved by Thomassen [91].) We are therefore able to use linkedness

in our proof of Theorem 1.14. However, Thomassen’s upper bound on g(k) is exponential

in k. In Chapter 3, we improve this substantially.

Theorem 1.17 There exists C > 0 such that for all k ∈ N, any strongly Ck log k-

connected tournament is also k-linked.

Thus we prove that g(k) = O(k log k). This is almost best possible, since k-linkedness

trivially implies strong k-connectedness, and we conjecture that in fact g(k) = Θ(k). This

conjecture has since been proved by Pokrovskiy [76].

Our method of proof is novel, and involves finding powerful “linking structures” in

our tournament. Pokrovskiy [75, 76] used similar methods to prove our two conjectures.

Similar methods were also used in subsequent work by by Kühn, Osthus and Townsend [62]

to prove another conjecture of Thomassen (see [82]) – that if T is a sufficiently strongly

connected tournament, then V (T ) can be partitioned into t vertex-disjoint strongly k-

connected subtournaments.

1.5 Random graphs and the Erdös-Rényi-Gilbert

model

Suppose we are studying a graph property P . It is very natural to ask not only when a

graph G satisfies P , but also whether “most” graphs satisfy P . We may make this idea

precise with the following definition.

Definition 1.18 We define Gn,1/2 to be a uniformly random (labelled) graph on n ver-

tices. We say Gn,1/2 satisfies some property P asymptotically almost surely (or a.a.s.)

if

P(Gn,1/2 satisfies P)→ 1 as n→∞.

9



It is difficult to work with Gn,1/2 directly, but fortunately there is an easier way – we

may model Gn,1/2 as a random graph on n vertices in which every possible edge is included

independently with probability 1/2. This independence between edges then gives us access

to a wide array of powerful techniques from probability theory.

Unfortunately, Gn,1/2 often fails to capture the aspects of a problem we are most

interested in. For example, we have seen that “most” dense graphs contain a triangle, in

the sense that if e(G) ≈ n2/4 and G is triangle-free then G must be close to Kbn/2c,dn/2e.

In fact, far more is true. Even if we restrict our attention to graphs with e(G) = m(n)

for some function m : N → N, “most” such graphs will contain a triangle as long as

m(n) = ω(n) as n→∞! This phenomenon is interesting, and similar behaviour occurs in

many other extremal problems, but study of Gn,1/2 sheds little light on it. Indeed, Gn,1/2

is a.a.s. approximately (n/2)-regular, so it seems unlikely to be the best tool to study

graphs with average degree Θ(log log n) (for example).

We would therefore like to define a random graph which allows us to talk about the

properties of “most” sparse graphs, in the same way that Gn,1/2 allows us to talk about

the properties of “most” arbitrary graphs. Perhaps the most natural approach, taken by

Erdős and Rényi [32] in 1960, is the following model.

Definition 1.19 Let m : N → N be a function. We define G(n,m) to be a uniformly

random (labelled) graph on n vertices with m(n) edges. We say G(n,m) satisfies some

property P a.a.s. if

P(G(n,m) satisfies P)→ 1 as n→∞.

It is then indeed the case that G(n,m) contains a triangle a.a.s. whenever m = ω(n).

However, working with G(n,m) is far less pleasant than working with Gn,1/2, since edges

are no longer independent. In 1959, working independently from Erdös and Rényi,

Gilbert [38] introduced the following alternative model – now widely known as the Erdős-

Rényi-Gilbert model.

10



Definition 1.20 Let p : N→ [0, 1] be a function. We define Gn,p to be a random (labelled)

graph on n vertices in which each possible edge is included independently with probability

p(n). We say Gn,p satisfies some property P a.a.s. if

P(Gn,p satisfies P)→ 1 as n→∞.

Intuitively, it is easy to see that Gn,p models sparse graphs when p is small, and dense

graphs when p is large. Moreover, since we have independence between edges, we are free

to use the same powerful techniques that we used to study Gn,1/2.

It may therefore seem that we are left with a choice – we can work with G(n,m), which

perfectly captures the idea of a property holding for “most” graphs of a given density,

or we can work with Gn,p, which is less exact but far easier to work with. Happily, this

is not the case. There is a very strong correspondence between the two models, and in

most circumstances a property will hold a.a.s. in Gn,p iff it holds a.a.s. in G(n, p
(
n
2

)
). (For

more details, see e.g. Janson,  Luczak and Ruciński [46].) Thus Gn,p boasts both excellent

modelling power and relative approachability, a combination which has cemented its study

as a major focus of modern graph theory.

1.6 Covering random graphs with Hamilton cycles

We now turn to the study of Hamilton cycles in Gn,p. The most obvious question we

can ask is: for which values of p is Gn,p a.a.s. Hamiltonian? It is relatively easy to

show that when p = (log n + 2 log log n + O(1))/n, we have δ(Gn,p) ≤ 1 with probability

bounded away from zero. Thus Gn,p clearly cannot be a.a.s. Hamiltonian unless p =

(log n+ 2 log log n+ ω(1))/n. In fact, Ajtai, Komlós and Szemerédi [3] and Bollobás [14]

proved that this is the only obstacle.

Theorem 1.21 Suppose p = (log n+ 2 log log n+ ω(1))/n. Then Gn,p is a.a.s. Hamilto-
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nian.

In fact, they proved something substantially stronger. We may visualise the uniformly

random graph G(n,m) as a random process, obtaining G(n,m + 1) from G(n,m) by

adding an edge chosen uniformly at random. In this setting, a.a.s. the very same edge

which raises the minimum degree of G(n,m) to 2 will also introduce a Hamilton cycle!

Such results are known as hitting time results, and are well-studied in the literature.

As we might expect, the more general problem of packing Hamilton cycles in Gn,p

has also been well-studied. Certainly Gn,p cannot contain more than bδ(Gn,p)/2c edge-

disjoint Hamilton cycles, since the cycles must be disjoint at any vertex of minimal degree.

However, this turns out to be the only restriction. The following result is due to Knox,

Krivelevich, Kühn, Osthus and Samotij [51, 54, 59].

Theorem 1.22 Let p : N → [0, 1] be an arbitrary function. Then a.a.s. Gn,p contains

bδ(Gn,p)/2c edge-disjoint Hamilton cycles.

As an aside, note that this trivially implies that we can (a.a.s.) guarantee r edge-

disjoint Hamilton cycles in Gn,p as soon as we can (a.a.s.) guarantee any 2r-factor at all –

just as with graphs of high minimum degree and highly connected tournaments. Also note

that when p = ω(log n/n), we a.a.s. have δ(Gn,p) ∼ ∆(Gn,p) and so this result implies

that Gn,p may be almost entirely decomposed into edge-disjoint Hamilton cycles!

It is natural to consider the dual problem of covering the edge set of Gn,p with as

few Hamilton cycles as possible. In other words, we seek a small set of Hamilton cycles

such that every edge of Gn,p is contained in at least one Hamilton cycle. We may see a

large packing of Hamilton cycles into Gn,p as approximating a decomposition of G “from

below”, and a small covering as approximating a decomposition of G “from above”.

It is clear that we cannot hope to cover Gn,p with fewer than d∆(Gn,p)/2e Hamilton

cycles, since the cycles must cover all edges incident to any vertex of maximal degree.
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Unlike with packing, however, there are other barriers. The first is simple – we cannot

cover Gn,p with Hamilton cycles at all if it doesn’t contain any Hamilton cycles! The

second is less obvious. Suppose p is very large, so that with probability bounded away

from zero Gn,p is the complete graph with one edge removed. As we note in Chapter 4, a

simple parity argument implies that this graph cannot be covered with (n−1)/2 Hamilton

cycles when n is odd. We therefore do not expect to be able to cover Gn,p with d∆(Gn,p)/2e

Hamilton cycles when p = (log n+ 2 log log n+O(1))/n, or when p = 1− Ω(n−2).

Interestingly, these barriers may be the only ones. Glebov, Krivelevich and Su-

dakov [39] have proved that when p = Ω(n−1+ε) for any fixed ε > 0, Gn,p can be covered

with (1 + o(1))∆(Gn,p)/2 Hamilton cycles. In Chapter 4, we improve this to an exact

result with a sharper lower bound on p.

Theorem 1.23 Suppose G ∼ Gn,p. If log117 n/n ≤ p ≤ 1 − n−1/8, then a.a.s. the edges

of Gn,p can be covered with d∆(Gn,p)/2e Hamilton cycles. If p > 1−n−1/8, then a.a.s. the

edges of Gn,p can be covered with (1 + o(1))∆(Gn,p)/2 Hamilton cycles.

It would be very interesting to know the exact range of p for which this result holds,

and whether it can be generalised to a hitting time result in the same way that Ajtai,

Komlós and Szemerédi’s original result can be.

1.7 Ramsey theory

Ramsey theory may be thought of as the study of the inevitable appearance of order in

large structures. As a more concrete example, consider the following simple question. If

we colour the edges of Kn red and blue in an arbitrary fashion, must there always be a

monochromatic triangle? We may think of the vertices of Kn as guests at a party, where

an edge is coloured blue if two guests know each other and red if they do not. Then the

question becomes: in a party with n guests, must there always be either three guests who

are mutual acquaintances or three guests who have never met? It is relatively easy to
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show that the answer is yes, as long as n ≥ 6. In 1928, Ramsey [81] proved the following

substantially stronger result.

Theorem 1.24 For any fixed graphs G and H, there exists r(G,H) ∈ N such that the

following holds for all n ≥ r(G,H). Suppose the edges of Kn are coloured red and blue.

Then Kn contains either a red copy of G or a blue copy of H.

We call r(G,H) the Ramsey number of G and H. Similar phenomena often arise in

other settings, and also fall under the umbrella of Ramsey theory. For example, Ramsey’s

original result applied to uniform hypergraphs as well as graphs. We may also consider

Ramsey theory on the integers – for example, the following foundational result is due to

van der Waerden [94].

Theorem 1.25 For any k ∈ N, there exists W (k) ∈ N such that the following holds for

all n ≥ W (k). Suppose the elements of [n] are coloured red and blue. Then [n] contains a

monochromatic arithmetic progression of length k.

This result has been substantially generalised. We may view an arithmetic progression

of length k as a solution to a set of simultaneous linear equations. In 1933, Rado [79] gave

a necessary and sufficient condition for an arbitrary set of simultaneous linear equations

to satisfy a similar result. For the rest of this thesis, however, we shall be concerned only

with Ramsey theory on graphs.

A central research problem in graph Ramsey theory is the exact and approximate

determination of Ramsey numbers. The problem is famously difficult, and Burr [19]

proved in 1984 that it is NP-hard. (Indeed, given a graph G on n vertices, one may

determine the chromatic number of G from the value of r(G,Pn3) in time polynomial

in n.) Erdős once famously described the difficulty as follows. “Suppose aliens invade

the earth and threaten to obliterate it in a year’s time unless human beings can find

[r(K5, K5)]. We could marshal the world’s best minds and fastest computers, and within
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a year we could probably calculate the value. If the aliens demanded [r(K6, K6)], however,

we would have no choice but to launch a preemptive attack.” The best known general

bounds on r(Kk, Kk) are as follows, due to Spencer [86] and Conlon [23].

Theorem 1.26 There exists C > 0 such that for all k ∈ N,

(√
2

e
+ o(1)

)
(k + 1)2(k+1)/2 ≤ r(Kk+1, Kk+1) ≤ k−C

log k
log log k

(
2k

k

)

Note that there exists C ′ > 0 such that

k−C
log k

log log k

(
2k

k

)
≥ 4k−C

′ log2 k,

so these bounds are still very far apart. However, for other graphs G and H, the prob-

lem often becomes easier – r(G,H) has been determined exactly in many cases. See

Radziszowski [80] for a detailed dynamic survey.

1.8 On-line Ramsey numbers of paths and cycles

In 1983, Beck [11] considered the following question. Suppose we are given a colouring

of the edges of Kn, where n is substantially larger than r(Kk, Kk), and we wish to find

a monochromatic Kk (as opposed to proving that one exists). How many edges must we

examine in order to do so, in the worst case? We define the kth on-line Ramsey number

r̃(Kk, Kk) to be the answer to this question. Beck was able to prove that r̃(Kk, Kk) ≥ 2k/2,

ruling out the existence of a deterministic algorithm to find a monochromatic Kk in time

polynomial in k.

Alternatively, as emphasised in Beck’s seminal paper [12] on the subject, we may define

r̃(Kk, Kk) in terms of a combinatorial game. We consider a game played by two players,

Builder and Painter, on the infinite clique KN. In each round of the game Builder chooses

an edge of KN, and Painter colours it red or blue. Builder wins when a monochromatic
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clique has been formed. Builder wishes to win in as little time as possible, and Painter

wishes to draw the game out for as long as possible. We may then define r̃(Kk, Kk) to be

the duration of the game, assuming that both Builder and Painter play optimally. Note

that r̃(Kk, Kk) is well-defined, since Builder can always win by uncovering all the edges

of a clique on r(Kk, Kk) vertices. We may likewise define r̃(G,H) for general graphs G

and H by requiring Builder to construct either a red copy of G or a blue copy of H.

As Alon observed (see [12]), Beck’s result has an easy proof in this setting. Indeed, for

any graphs G and H, by definition there exists an edge-colouring of Kr(G,H)−1 containing

no red copy of G and no blue copy of H. If Painter simply copies this colouring, it is

immediate that she cannot lose the game until Builder has uncovered edges incident to

r(G,H) distinct vertices. This strategy allows Painter to survive for at least b(r(G,H)−

1)/2c rounds, so r̃(G,H) ≥ r(G,H)/2. In particular, r̃(Kk, Kk) ≥ 2k/2, and so Beck’s

result follows. In general this setting is substantially easier to work with, and has been

widely adopted in the literature.

As with classical Ramsey numbers, determining the exact values of on-line Ramsey

numbers is an extremely difficult problem. In fact, determining on-line Ramsey numbers

seems to be even harder than determining classical Ramsey numbers. For example, while

the exact value of r(Pk+1, P`+1) was determined for all k, ` ∈ N by Gerencsér and Gyárfás

in 1967, determining the values of r̃(Pk+1, P`+1) remains an unsolved problem despite

repeated attempts. Until our work in the area, only very loose general bounds (and a few

exact values for small k and `) were known.

In Chapter 5, we conjecture the following exact values for r̃(Pk+1, P`+1).
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Conjecture 1.27 For all k, ` ∈ N with k ≤ `, we have

r̃(Pk+1, P`+1) =



` if k = 1,

d5`/4e if k = 2,

d(7`+ 2)/5e if k = 3,

d3`/2e+ k − 3 if k ≥ 4.

We prove our conjecture exactly for k = 2 and to within an additive error of 10 for

k = 3. We also prove an asymptotically tight lower bound for all fixed k as `→∞. Our

error is linear in k, and our lower bound improves on the previous state of the art unless

k is very close to `. The general problem of determining r̃(Pk+1, P`+1) for all k, ` ∈ N

remains open, however.

We also prove that r̃(P3, C`) = r̃(P3, P`+1) for all ` ≥ 5. This is somewhat counter-

intuitive – it seems as though it should be easier for Builder to extend a path than

to close a cycle. It would be interesting to know for which other graphs G we have

r̃(G,P`+1) = r̃(G,C`) for sufficiently large `.

Surprisingly, all our lower bounds follow from considering so-called F-blocking strate-

gies for Painter, in which she colours each edge (wlog) red unless doing so would create a

red graph in some forbidden family F . Thus an F -blocking strategy is essentially an en-

lightened greedy strategy, in which Painter is allowed to avoid “dangerous” graphs other

than G. We believe this is the first non-trivial case in which such strategies have given

tight lower bounds. Note that they are certainly not optimal in general – for example,

r̃(K3, K3) = 8 (see Kurek and Ruciński [64]) but it is easy to show via case analysis that

no F -blocking strategy will allow Painter to survive longer than 7 rounds. However, it

would be fascinating to know for which graphs an optimal F -blocking strategy does exist.
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Chapter 2

Optimal packings of Hamilton

cycles in graphs of high minimum

degree

2.1 Introduction

Dirac’s theorem [28] states that any graph on n ≥ 3 vertices with minimum degree at

least n/2 contains a Hamilton cycle. This degree condition is best possible. Surpris-

ingly, though, the assertion of Dirac’s theorem can be strengthened considerably: Nash-

Williams [72] proved that the conditions of Dirac’s theorem actually guarantee linearly

many edge-disjoint Hamilton cycles.

Theorem 2.1.1 Every graph on n vertices with minimum degree at least n/2 contains at

least b5n/224c edge-disjoint Hamilton cycles.

Nash-Williams [71] initially conjectured that such a graph must contain at least bn/4c

edge-disjoint Hamilton cycles, which would clearly be best possible. However, Babai

observed that this trivial bound is very far from the truth (see [71]). Indeed, the following

construction (which is based on Babai’s argument) gives a graph G which contains at most

19



b(n+2)/8c edge-disjoint Hamilton cycles. The graph G consists of one empty vertex class

A of size 2m, one vertex class B of size 2m + 2 containing a perfect matching and no

other edges, and all possible edges between A and B. Thus G has order n = 4m+ 2 and

minimum degree 2m+ 1. Any Hamilton cycle in G must contain at least two edges of the

perfect matching in B, so G contains at most b(m+ 1)/2c edge-disjoint Hamilton cycles.

The above question of Nash-Williams naturally extends to graphs of higher minimum

degree: suppose that n/2 ≤ δ ≤ n− 1. How many edge-disjoint Hamilton cycles can one

guarantee in a graph G on n vertices with minimum degree δ?

Clearly, as δ increases, one expects to find more edge-disjoint Hamilton cycles. How-

ever, the above construction shows that the trivial bound of bδ/2c cannot always be

attained. A less trivial bound is provided by the largest even-regular spanning subgraph

in G. More precisely, let regeven(G) be the largest degree of an even-regular spanning

subgraph of G. Then let

regeven(n, δ) := min{regeven(G) : |G| = n, δ(G) = δ}.

Clearly, in general we cannot guarantee more than regeven(n, δ)/2 edge-disjoint Hamilton

cycles in a graph of order n and minimum degree δ. In fact, we conjecture this bound can

always be attained.

Conjecture 2.1.2 Suppose G is a graph on n vertices with minimum degree δ ≥ n/2.

Then G contains at least regeven(n, δ)/2 edge-disjoint Hamilton cycles.

Our main result confirms this conjecture exactly, as long as n is large and δ is slightly

larger than n/2.

Theorem 2.1.3 For every ε > 0, there exists an integer n0 = n0(ε) such that every

graph G on n ≥ n0 vertices with δ(G) ≥ (1/2 + ε)n contains at least regeven(n, δ(G))/2

edge-disjoint Hamilton cycles.
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In fact, we even show that if G is not close to the extremal example, then G con-

tains significantly more than the required number of edge-disjoint Hamilton cycles (see

Lemma 2.5.15). Our proof of Theorem 2.1.3 is based on a recent result (Theorem 2.3.2) of

Kühn and Osthus [61, 59], which states that every “robustly expanding” regular (di)graph

has a Hamilton decomposition. In [59], a straightforward argument was already used to

derive Conjecture 2.1.2 for δ ≥ (2 −
√

2 + ε)n (see Section 2.3.2). Our extension of this

result to δ ≥ (1/2 + ε)n involves new ideas.

Subsequently, Csaba, Kühn, Lo, Osthus and Treglown [58, 25, 26, 57] have proved

Conjecture 2.1.2 for large n, by solving the case when δ is allowed to be close to n/2. The

proof relies on Theorem 2.1.3 and Theorem 2.1.6. (The latter provides a stability result

when δ is close to n/2.)

Earlier, Christofides, Kühn and Osthus [21] used the regularity lemma to prove an

approximate version of Theorem 2.1.3. Hartke and Seacrest [43] were able improve this

result while avoiding the use of the regularity lemma (but still with the same restriction

on δ). This enabled them to omit the condition that G has to be very large. They also

gave significantly better error bounds.

Accurate bounds on regeven(n, δ) are known. Note that the complete bipartite graph

whose vertex classes are almost equal shows that regeven(n, δ) = 0 for δ < n/2. Katerinis

[48] considered the case when δ = n/2. His result was independently generalised to larger

values of δ in [21] (see [59] for a summarised version) and by Hartke, Martin and Seacrest

[42]. The following bounds are from [42].

Theorem 2.1.4 Suppose that n, δ ∈ N and n/2 ≤ δ < n. Then

δ +
√
n(2δ − n) + 8

2
− ε ≤ regeven(n, δ) ≤

δ +
√
n(2δ − n)

2
+

4√
n(2δ − n) + 4

. (2.1.5)

where 0 < ε ≤ 2 is chosen to make the left hand side of (2.1.5) an even integer.
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Note that (2.1.5) always yields at most two possible values for regeven(n, δ) and even

determines it exactly for many values of the parameters n and δ. For example, (2.1.5)

determines regeven(n, n/2) (e.g. in the case when n is divisible by 8 it is n/4). The bounds

in [21] also give at most two possible values. The lower bound in (2.1.5) is based on

Tutte’s factor theorem [92]. The upper bound is obtained by a natural generalization of

Babai’s construction (see Section 2.3.1 for a description).

Our second result concerns the case of Conjecture 2.1.2 where we allow δ to be close

to n/2. In this case, we obtain the following ‘stability result’: if δ(G) = (1/2 + o(1))n,

then Conjecture 2.1.2 holds for large n as long as G has suitable expansion properties.

In this case, we even obtain significantly more than the required number of edge-disjoint

Hamilton cycles again. These expansion properties fail only when G is very close to the

extremal examples for Dirac’s theorem.

Theorem 2.1.6 For every 0 < η < 1/8, there exist ε > 0 and an integer n0 such that

every graph G on n ≥ n0 vertices with (1/2 − ε)n ≤ δ(G) ≤ (1/2 + ε)n satisfies one of

the following:

(i) There exists A ⊆ V (G) with |A| = bn/2c and such that e(A) ≤ ηn2.

(ii) There exists A ⊆ V (G) with |A| = bn/2c and such that e(A,A) ≤ ηn2.

(iii) G contains at least max{regeven(n, δ(G))/2, n/8}+εn edge-disjoint Hamilton cycles.

Note that if G satisfies (i) then e(A,A) must be roughly n2/4, i.e. G is close to Kn/2,n/2

with possibly some edges added to one of the vertex classes. If G satisfies (ii), then both

e(A) and e(A) must be roughly n2/8, i.e. G is close to the union of two equal-sized cliques.

Although Conjecture 2.1.2 is optimal for the class of graphs on n vertices and minimum

degree δ, it will not be optimal for every graph in the class – some graphs G will contain

far more than regeven(n, δ)/2 edge-disjoint Hamilton cycles. The following conjecture
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accounts for this and would be best possible for every single graph G. Note that it is far

stronger than Conjecture 2.1.2.

Conjecture 2.1.7 Suppose G is a graph on n vertices with minimum degree δ(G) ≥ n/2.

Then G contains at least regeven(G)/2 edge-disjoint Hamilton cycles.

For δ ≥ (2−
√

2+ε)n, this conjecture was proved in [59], based on the main result of [61].

It would already be very interesting to obtain an approximate version of Conjecture 2.1.7,

i.e. a set of (1− ε)regeven(G)/2 edge-disjoint Hamilton cycles under the assumption that

δ(G) ≥ (1 + ε)n/2.

As a very special case, Conjecture 2.1.7 would imply the long-standing ‘Hamilton

factorization’ conjecture of Nash-Williams [71, 73]: any d-regular graph on at most 2d

vertices contains bd/2c edge-disjoint Hamilton cycles. Jackson [73] raised the same con-

jecture independently, and proved a partial result. This was improved to an approximate

version of the conjecture in [21]. The best current result towards the Hamilton factoriza-

tion conjecture is due to Kühn and Osthus [59] (again as a corollary of their main result

in [61]). Note that the set of Hamilton cycles guaranteed by Theorem 2.1.8 actually forms

a Hamilton decomposition.

Theorem 2.1.8 For every ε > 0 there exists an integer n0 such that every d-regular

graph on n ≥ n0 vertices for which d ≥ (1/2 + ε)n is even contains d/2 edge-disjoint

Hamilton cycles.

Frieze and Krivelevich conjectured that the trivial bound of bδ(G)/2c edge-disjoint Hamil-

ton cycles is in fact correct for random graphs. Indeed, the results of several authors

(mainly Krivelevich and Samotij [54] as well as Knox, Kühn and Osthus [51]) can be com-

bined to show that for all 0 ≤ p ≤ 1, the binomial random graph Gn,p contains bδ(Gn,p)/2c

edge-disjoint Hamilton cycles with high probability. Some further related results can be

found in [45, 59, 61].
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2.2 Notation

Given a graph G, we write V (G) for its vertex set, E(G) for its edge set, e(G) := |E(G)|

for the number of its edges and |G| for the number of its vertices. Given X ⊆ V (G), we

write G−X for the graph formed by deleting all vertices in X and G[X] for the subgraph

of G induced by X. We will also write X := V (G) \X when it is unambiguous to do so.

Given disjoint sets X, Y ⊆ V (G), we write G[X, Y ] for the bipartite subgraph induced by

X and Y . If G and G′ are two graphs, we write G∪̇G′ for the graph on V (G)∪̇V (G′) with

edge set E(G)∪̇E(G′). If V (G) = V (G′), we also write G + G′ for the graph on V (G)

with edge set E(G) ∪ E(G′). An r-factor of a graph G is a spanning r-regular subgraph

of G. If H is an r-factor of G and r is even then we also call H an even factor of G.

If G is an undirected graph, we write δ(G) for the minimum degree of G, ∆(G) for the

maximum degree of G and d(G) for the average degree of G. Whenever X, Y ⊆ V (G),

we write eG(X, Y ) for the number of all those edges which have one endvertex in X and

the other in Y . We write eG(X) for the number of edges in G[X], and e′G(X, Y ) :=

eG(X, Y ) + eG(X ∩ Y ). Thus e′G(X, Y ) is the number of ordered pairs (x, y) of vertices

such that x ∈ X, y ∈ Y and xy ∈ E(G). Given a vertex x of G, we write dG(x) for the

degree of x in G. We often omit the subscript G if this is unambiguous. Also, if A ⊆ V (G)

and the graph G is clear from the context, we sometimes write dA(x) for the number of

neighbours of x in A. If G is a digraph, we write δ+(G) for the minimum outdegree of G

and δ−(G) for the minimum indegree of G.

In order to simplify the presentation, we omit floors and ceilings and treat large num-

bers as integers whenever this does not affect the argument. The constants in the hi-

erarchies used to state our results have to be chosen from right to left. More precisely,

if we claim that a result holds whenever 0 < 1/n � a � b � c ≤ 1 (where n is the

order of the graph or digraph), then this means that there are non-decreasing functions
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f : (0, 1] → (0, 1], g : (0, 1] → (0, 1] and h : (0, 1] → (0, 1] such that the result holds

for all 0 < a, b, c ≤ 1 and all n ∈ N with b ≤ f(c), a ≤ g(b) and 1/n ≤ h(a). We will

not calculate these functions explicitly. Hierarchies with more constants are defined in

a similar way. Note that this is distinct from the other common definition of � as a

substitute for Landau O-notation.

Whenever x ∈ R we shall write x+ := max{x, 0}. We will write a = x±ε as shorthand

for x− ε ≤ a ≤ x+ ε, and a 6= x± ε as shorthand for the statement that either a < x− ε

or a > x+ ε.

2.3 Proof outline and further notation

2.3.1 The extremal graph

We start by defining a graph Gn,δ,ext on n vertices which is extremal for Theorem 2.1.4

in the sense that Gn,δ,ext has minimum degree δ but the largest degree of an even factor

of Gn,δ,ext is at most the right hand side of (2.1.5). Given δ > n/2, let ∆ be the smallest

integer such that ∆(δ+∆−n) is even and ∆ ≥ (n+
√
n(2δ − n))/2. Partition the vertex

set of Gn,δ,ext into two classes A and B, with |B| = ∆ and |A| = n − ∆. Let Gn,δ,ext[A]

be empty, let Gn,δ,ext[B] be any (δ + ∆ − n)-regular graph, and let Gn,δ,ext[A,B] be the

complete bipartite graph. Clearly δ(Gn,δ,ext) = δ. Moreover, if H is a factor of Gn,δ,ext,

then one can show that d(H) is at most the right hand side of (2.1.5) (see [42] for details).

In particular, Gn,δ,ext contains at most d(H)/2 Hamilton cycles. Essentially the same

construction was given in [21].

2.3.2 Tools and proof overview

An important concept in our proofs of Theorems 2.1.3 and 2.1.6 will be the notion of

robust expanders. This concept was first introduced by Kühn, Osthus and Treglown [63]

for directed graphs. Roughly speaking, a graph is a robust expander if for every set S
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which is not too small and not too large, its “robust” neighbourhood is at least a little

larger than S.

Definition 2.3.1 Let G be a graph on n vertices. Given 0 < ν ≤ τ < 1 and S ⊆ V (G),

we define the ν-robust neighbourhood RNν,G(S) of S to be the set of all vertices v ∈ V (G)

with dS(v) ≥ νn. We say that G is a robust (ν, τ)-expander if for all S ⊆ V (G) with

τn ≤ |S| ≤ (1− τ)n, we have |RNν,G(S)| ≥ |S|+ νn.

The main tool for our proofs is the following result of Kühn and Osthus [61] which states

that every even-regular robust expander G whose degree is linear in |G| has a Hamilton

decomposition.

Theorem 2.3.2 For every α > 0, there exists τ > 0 such that for every ν > 0, there

exists n0(α, τ, ν) such that the following holds. Suppose that

(i) G is an r-regular graph on n ≥ n0 vertices, where r ≥ αn and r is even;

(ii) G is a robust (ν, τ)-expander.

Then G has a Hamilton decomposition.

Let G be a graph on n vertices as in Theorem 2.1.3. Let δ := δ(G) = (1/2 + α)n. (So

α ≥ ε.) As observed in [59], every graph on n vertices whose minimum degree is at

least slightly larger than n/2 is a robust expander (see Lemma 2.5.2). Thus our given

graph G is a robust expander. Let G∗ be an even factor of largest degree in G. So

d(G∗) ≥ regeven(n, δ). If G∗ is still a robust expander, then we can apply Theorem 2.3.2

to obtain a Hamilton decomposition of G∗ and thus at least regeven(n, δ)/2 edge-disjoint

Hamilton cycles in G. The problem is that if α is small, then we could have d(G∗) ≤ n/2.

So we cannot guarantee that G∗ is a robust expander. (However, this approach works if

α is at least slightly larger than 3/2 −
√

2. Indeed, in this case Theorem 2.1.4 implies
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that d(G∗) will be slightly larger than n/2 and so G∗ will be a robust expander. This

observation was used in [59] to prove Theorem 2.1.3 for such values of α.)

So instead of using this simple strategy, in the proof of Theorem 2.1.3 we will distin-

guish two cases depending on whether our graph G contains a subgraph which is close to

Gn,δ,ext. Suppose first that G contains such a subgraph, G1 say. We can choose G1 in such

a way that δ(G1) = δ, so G1 must have an even factor G2 of degree at least regeven(n, δ).

We will then use the fact that G1 is close to Gn,δ,ext in order to prove directly that G2 is a

robust expander. As before, this yields a Hamilton decomposition of G2 by Theorem 2.3.2.

This part of the argument is contained in Section 2.4.

If G does not contain a subgraph close to Gn,δ,ext, then we will first find a sparse even

factor H of G which is still a robust expander and remove it from G. Call the resulting

graph G′. We will then use the fact that G is far from containing Gn,δ,ext to show that G′

still contains an even factor H ′ of degree at least regeven(n, δ). Since robust expansion is a

monotone property, it follows that H+H ′ is still a robust expander and may therefore be

decomposed into Hamilton cycles by Theorem 2.3.2. So in this case we even find slightly

more than regeven(n, δ)/2 edge-disjoint Hamilton cycles. This part of the argument is

contained in Section 2.5. Altogether this will then imply Theorem 2.1.3.

In order to prove Theorem 2.1.6, we first show that every graph G whose minimum

degree is close to n/2 either satisfies conditions (i) and (ii) of Theorem 2.1.6 or is a robust

expander which does not contain a subgraph close to Gn,δ,ext. So suppose G does not

satisfy (i) and (ii). We will use the fact that G is a robust expander to find a sparse

robustly expanding even factor of G, and then argue similarly to the second part of the

proof of Theorem 2.1.3 to find slightly more than regeven(n, δ)/2 edge-disjoint Hamilton

cycles in G. This proof is contained in Section 2.6.
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2.3.3 η-extremal graphs

The following definition formalises the notion of “containing a subgraph close to Gn,δ,ext”.

For technical reasons we extend the definition to the case where α is negative – this will

be used in Section 2.6 (with |α| very small). Note that if δ = (1/2 + α)n, then the

vertex classes A and B of Gn,δ,ext have sizes roughly (1/2−
√
α/2)n and (1/2 +

√
α/2)n

respectively, and that Gn,δ,ext[B] is regular of degree roughly (α +
√
α/2)n.

Definition 2.3.3 Let η > 0 and −1/2 ≤ α ≤ 1/2, and let G be a graph on n vertices

with δ(G) = (1/2 + α)n. Recall that α+ = max{α, 0}. We say that G is η-extremal if

there exist disjoint A,B ⊆ V (G) such that

(E1) |A| = (1/2−
√
α+/2± η)n;

(E2) |B| = (1/2 +
√
α+/2± η)n;

(E3) e(A,B) > (1− η)|A||B|;

(E4) e(B) < (α+ +
√
α+/2 + η)n|B|/2.

Note that (E1) and (E2) together imply

(E5) n− |A ∪B| ≤ 2ηn.

Note also that we allow G[A] to be arbitrary – we do not force A to be close to an

independent set, for example. This is necessary, since adding edges internal to A does not

disrupt the extremality of Gn,δ,ext.

The following result states that if G is η-extremal, then G[B] is “almost regular”.

Lemma 2.3.4 Suppose 0 < η � α, 1/2−α < 1/2. Suppose G is an η-extremal graph on

n vertices, with δ(G) = (1/2 + α)n, and let A,B ⊆ V (G) be as in Definition 2.3.3.

(i) For all vertices v ∈ B, we have dB(v) ≥ (α +
√
α/2− 3η)n.
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(ii) For all but at most 2
√
ηn vertices v ∈ B, we have dB(v) ≤ (α +

√
α/2 + 2

√
η)n.

Proof. (i) immediately follows from (E1) and (E5). Indeed, for all v ∈ B, we have

dB(v) ≥ δ(G)− dA(v)− dA∪B(v)
(E5)

≥ δ(G)− |A| − 2ηn

(E1)

≥
(
α +

√
α

2
− 3η

)
n, (2.3.5)

as desired.

Suppose (ii) fails. Then there exist at least 2
√
ηn vertices in B with degree greater

than (α +
√
α/2 + 2

√
η)n in B. We therefore have

eG(B) =
1

2

∑
v∈B

dB(v)
(2.3.5)
>

1

2

((
α +

√
α

2
− 3η

)
n|B|+ 2

√
ηn · 2√ηn

)
≥ 1

2

(
α +

√
α

2
+ η

)
n|B|.

But this contradicts (E4), so (ii) must hold. �

2.4 The near-extremal case

Suppose that 0 < 1/n� η � α < 1/2, and that G is an η-extremal graph on n vertices

with δ(G) = (1/2 + α)n. Recall that our aim in this case is to show that G contains a

factor of degree regeven(n, δ)/2 which is a robust expander. Let A,B ⊆ V (G) be as in

Definition 2.3.3. We will first show that G contains a spanning subgraph G1 which is

close to Gn,δ,ext and satisfies δ(G1) = δ(G).

Lemma 2.4.1 Suppose 0 < 1/n � η � 1/C � 1/2 − α ≤ 1/2, so that in particular

0 ≤ α < 1/2. Let G be an η-extremal graph on n vertices with δ := δ(G) = (1/2 + α)n,

and let A,B ⊆ V (G) be as in Definition 2.3.3. Then there exists a spanning subgraph G1

of G which satisfies the following properties:
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(i) A and B satisfy (E1)–(E4) for the graph G1. In particular, G1 is η-extremal.

(ii) δ(G1) = δ.

(iii) eG1(A) < Cη|A|2.

Proof. We will define G1 using a greedy algorithm. Initially, let G1 := G. Suppose that

G1[A] contains an edge xy such that dG1(x), dG1(y) > δ. Then remove xy from G1, and

continue in this way until G1 contains no such edge. Note that we have δ(G1) = δ, and

(E1)–(E4) are not affected by these edge deletions, so G1 satisfies (i) and (ii).

Suppose eG1(A) ≥ Cη|A|2, and note that we have

δ =

(
1

2
+ α

)
n ≤

(
1

2
+

√
α

2

)
n

(E2)

≤ |B|+ ηn.

(Indeed, x ≤
√
x/2 for all 0 ≤ x ≤ 1/2.) If v ∈ A is a vertex with dG1(v) = δ, we

therefore have

dG[A,B](v) = dG1[A,B](v) ≤ δ − dG1[A](v) ≤ |B|+ ηn− dG1[A](v).

Each edge in G1[A] must have at least one endpoint with degree δ in G1, so

eG(A,B) =
∑
v∈A

dG[A,B](v) ≤ |A||B| −
∑

v∈A, dG1
(v)=δ

(
dG1[A](v)− ηn

)
≤ |A||B|+ ηn2 − eG1(A) ≤ |A|

(
|B|+ η

n2

|A|
− Cη|A|

)
.

Since 1/C � 1/2− α, we have C|A| ≥ 2|B|+ n2/|A| by (E1) and (E2). Hence

eG(A,B) ≤ |A|(|B| − 2η|B|) = (1− 2η)|A||B|,
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which contradicts (E3). We therefore have eG1(A) < Cη|A|2, and so G1 satisfies (iii) as

desired. �

Let G1 be as in Lemma 2.4.1, and let G2 be a degree-maximal even factor of G1. (So

G2 is an even-regular spanning subgraph of G1 whose degree is as large as possible.) By

Theorem 2.1.4, we have that

d(G2) ≥ regeven(n, δ) ≥ n

4
+
αn

2
+

√
α

2
n− 2. (2.4.2)

It can be shown that any degree-maximal even factor of Gn,δ,ext contains almost all edges

inside the larger vertex class B. The following lemma uses a similar argument to prove a

similar statement for G1.

Lemma 2.4.3 Suppose 0 < 1/n � η � 1/C � α, 1/2 − α < 1/2. Suppose that G is

an η-extremal graph on n vertices with δ(G) = (1/2 + α)n. Let G1 be the graph obtained

by applying Lemma 2.4.1 to G, and let G2 be a degree-maximal even factor of G1. Let

A,B ⊆ V (G) be as in Definition 2.3.3. Then for all but at most 3η1/4n vertices v ∈ B,

we have

dG2[B](v) ≥
(
α +

√
α

2
− 3η

1
4

)
n.

Proof. Let r be the degree of G2. Suppose that dG2[B](v) < (α +
√
α/2 − 3η1/4)n for

more than 3η1/4n vertices. Then by Lemma 2.3.4(ii), we have

r|B| =
∑
v∈B

dG2(v) = eG2(A,B) + 2eG2(B)

≤ r|A|+
(
α +

√
α

2
+ 2
√
η

)
n|B|+ 4

√
ηn2 − 3η

1
4n · 3η

1
4n

≤ r|A|+
(
α +

√
α

2
− 3
√
η

)
n|B|.
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Since |B| − |A| ≥ (
√

2α− 2η)n by (E1) and (E2), it follows that

√
2αrn ≤

(
α +

√
α

2
− 3
√
η

)
n|B|+ 2ηn2,

and hence

r ≤
(√

α

2
+

1

2
− 3

√
η

2α

)
|B|+ η

√
2

α
n

(E2)

≤
(√

α

2
+

1

2
− 3

√
η

2α

)(
1

2
+

√
α

2
+ η

)
n+ η

√
2

α
n

≤
(

1

4
+
α

2
+

√
α

2
− η3/4

)
n.

(In the last inequality we used that η � α.) It therefore follows from (2.4.2) that r <

regeven(n, δ). But G2 was chosen to be degree-maximal, so this is a contradiction. �

We now collect some robust expansion properties of G2. For convenience, if X ⊆ V (G2),

we shall write XA := X ∩ A and XB := X ∩ B. In particular, if S ⊆ V (G) then (for

example) RNν(SA)B = RNν(S ∩ A) ∩B.

Lemma 2.4.4 Suppose that 0 < 1/n � ν � η � µ � τ � λ � 1/C � α, 1/2 − α <

1/2. Suppose that G is an η-extremal graph on n vertices with δ(G) = (1/2 + α)n. Let

G1 be the graph obtained by applying Lemma 2.4.1 to G, and let G2 be a degree-maximal

even factor of G1. Let A,B ⊆ V (G) be as in Definition 2.3.3. Then in the graph G2, the

following properties all hold.

(i) If S ⊆ A with |S| ≥ |A|/2, then |RNν(S)B| ≥ (1− µ)|B|.

(ii) If S ⊆ B with |S| ≥ |B|/2, then |RNν(S)A| ≥ (1− µ)|A|.

(iii) If S ⊆ A with |S| ≥ τn/3, then |RNν(S)B| ≥ |B|/2 + λn.

(iv) If S ⊆ B with |S| ≥ τn/3, then |RNν(S)A| ≥ |A|/2 + λn.
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(v) If S ⊆ B, then |RNν(S)B| ≥ |S| − µn.

Proof. Write d := d(G2). We first prove (i). Suppose S ⊆ A with |S| ≥ |A|/2.

Lemma 2.3.4(ii) implies that in G2 all but at most 2
√
ηn ≤ µ|B| vertices v ∈ B satisfy

dA(v) = d− dA∪B(v)− dB(v)

(2.4.2),(E5)

≥
(

1

4
+
α

2
+

√
α

2

)
n− 2− 2ηn−

(
α +

√
α

2
+ 2
√
η

)
n

≥
(

1

4
− α

2
− 3
√
η

)
n ≥

(
1

4
− 1

2

√
α

2
+ η

)
n+ νn

(E1)

≥ |A|
2

+ νn,

where the third inequality follows since x <
√
x/2 for all 0 < x < 1/4. Thus in the

graph G2 we have |NA(v) ∩ S| ≥ νn, and hence v ∈ RNν(S), for each such v. The result

therefore follows.

We now prove (ii). Suppose S ⊆ B with |S| ≥ |B|/2. Let A′ ⊆ A be the set of vertices

which in G2 have less than |B|/2 + νn neighbours inside B. Each vertex v ∈ A′ must

satisfy

dA(v) = d− dA∪B(v)− dB(v)

(2.4.2),(E5)

≥
(

1

4
+
α

2
+

√
α

2

)
n− 2− 2ηn− |B|

2
− νn

(E2)

≥
(

1

4
+
α

2
+

√
α

2
− 2η − ν

)
n− 2−

(
1

4
+

1

2

√
α

2
+ η

)
n

≥ α

2
n,

and so we have eG2(A) ≥ αn|A′|/4. But by Lemma 2.4.1(iii) we have eG2(A) ≤ eG1(A) <

Cη|A|2. Therefore

|A′| ≤ 4Cη

α
· |A|

2

n
≤ √η |A|

2

n
≤ √η|A| ≤ µ|A|.
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However, our assumption that |S| ≥ |B|/2 and the definition of A′ together imply

that every vertex v ∈ A \A′ satisfies |NB(v) ∩ S| ≥ νn. Therefore |RNν(S)| ≥ |A \A′| ≥

(1− µ)|A|, as required.

We now prove (iii). Suppose S ⊆ A with |S| ≥ τn/3. Then we double-count the edges

between S and B in G2. The definition of a robust neighbourhood implies that

eG2(S,B) = eG2(S,RNν(S)B) + eG2(S,B \RNν(S)B) ≤ |S||RNν(S)B|+ νn2.

On the other hand, Lemma 2.4.1(iii) implies that

eG2(S,B) ≥ d|S| − 2eG2(S,A)− eG2(S,A ∪B)
(E5)

≥ d|S| − 2Cη|A|2 − 2ηn2

≥ d|S| − 3Cηn2.

Combining the two inequalities yields

|RNν(S)B| ≥ d− 3Cη
n2

|S|
− ν n

2

|S|
(2.4.2)

≥
(

1

4
+
α

2
+

√
α

2

)
n− 2− 9Cη

τ
n− 3ν

τ
n

(E2)

≥ |B|
2

+

(
α

2
+

1

2

√
α

2
− η − 9Cη

τ
− 3ν

τ

)
n− 2 ≥ |B|

2
+
α

2
n,

and so the result follows.

We now prove (iv). Suppose S ⊆ B with |S| ≥ τn/3. Then we double-count the edges

between S and A in G2. As before, we have

eG2(S,A) ≤ |S||RNν(S)A|+ νn2. (2.4.5)
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On the other hand,

eG2(S,A) ≥ d|S| −
∑
v∈S

dB(v)−
∑
v∈S

dA∪B(v)
(E5)

≥ d|S| −
∑
v∈S

dB(v)− 2ηn2.

Lemma 2.3.4(ii) implies that

∑
v∈S

dB(v) ≤ 2
√
ηn2 +

(
α +

√
α

2
+ 2
√
η

)
n|S|,

and so

eG2(S,A)
(2.4.2),(E5)

≥
(

1

4
+
α

2
+

√
α

2

)
n|S| − 2|S|

−
(
α +

√
α

2
+ 2
√
η

)
n|S| − (2η + 2

√
η)n2

≥
(

1

4
− α

2

)
n|S| − 5

√
ηn2.

Combining this with (2.4.5) shows that in G2 we have

|RNν(S)A| ≥
(

1

4
− α

2

)
n− 6

√
η · n

2

|S|
≥
(

1

4
− α

2

)
n−

18
√
η

τ
n

=

(
1

4
− 1

2

√
α

2

)
n+

(
1

2

√
α

2
− α

2

)
n−

18
√
η

τ
n

(E1)

≥ |A|
2

+
1

2

(
1

2

√
α

2
− α

2

)
n ≥ |A|

2
+ λn,

and so the result follows. (Here we used that
√
x/2 > x for all 0 < x < 1/4.)

Finally, we prove (v). Suppose S ⊆ B. Recall that e′G2
(S,RNν(S)B) denotes the

number of ordered pairs (u, v) of vertices of G2 such that uv ∈ E(G2), u ∈ S and v ∈

RNν(S)B. (Note that this may not equal e(S,RNν(S)B), as we may have S∩RNν(S)B 6=
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∅.) By Lemma 2.3.4(ii), counting from RNν(S)B yields

e′G2
(S,RNν(S)B) ≤

(
α +

√
α

2
+ 2
√
η

)
n|RNν(S)B|+ 2

√
ηn2.

By Lemma 2.4.3, counting from S yields

e′G2
(S,RNν(S)B) ≥

(
α +

√
α

2
− 3η

1
4

)
n|S| − 3η

1
4n2 − νn2.

Combining the two inequalities yields |RNν(S)B| ≥ |S| − µn as desired. �

We are now in a position to prove Theorem 2.1.3 for η-extremal graphs.

Lemma 2.4.6 Suppose 0 < 1/n � η � α, 1/2 − α < 1/2. If G is an η-extremal graph

on n vertices with δ := δ(G) = (1/2 + α)n, then G contains at least regeven(n, δ)/2 edge-

disjoint Hamilton cycles.

Proof. Let τ0 := τ(1/4) be the constant returned by Theorem 2.3.2. Choose additional

constants ν, µ, τ, λ and C such that

0 < ν � η � µ� τ � λ� 1/C � α, 1/2− α, τ0.

Take A,B ⊆ V (G) as in Definition 2.3.3. Apply Lemma 2.4.1 to G and C to obtain

a spanning subgraph G1. Let G2 be a degree-maximal even factor of G1. Note that

Lemma 2.4.4 may be applied to G2.

Claim: G2 is a robust (ν, τ)-expander.

Note that the claim immediately implies the desired result. Indeed, any robust (ν, τ)-

expander is also a robust (ν, τ0)-expander, and so Theorem 2.3.2 implies that G2 may

be decomposed into Hamilton cycles. Moreover, Lemma 2.4.1 implies that δ(G1) = δ

and so d(G2) ≥ regeven(n, δ). Hence the Hamilton decomposition of G2 yields the desired
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collection of d(G2)/2 ≥ regeven(n, δ)/2 edge-disjoint Hamilton cycles.

To prove the claim, consider S ⊆ V (G) with τn ≤ |S| ≤ (1 − τ)n. We will use

Lemma 2.4.4 to show that in G2 we have |RNν(S)| ≥ |S| + νn. We will split the proof

into cases depending on the sizes of SA = S∩A and SB = S∩B. Note that |SA∪B| ≤ 2ηn

by (E5).

Case 1: |SA| ≤ τn/3, |SB| ≤ τn/3.

In this case, we have

|S|
(E5)

≤ 2τ

3
+ 2ηn < τn,

which is a contradiction.

Case 2: τn/3 ≤ |SA| ≤ |A|/2, |SB| ≤ τn/3.

In this case, by Lemma 2.4.4(iii) we have

|RNν(S)| ≥ |RNν(SA)B| ≥
|B|
2

+ λn
(E5)

≥ |A|
2

+

√
α

2
n− 2ηn+ λn

≥ |A|
2

+
τ

3
n+ 2ηn+ νn ≥ |S|+ νn,

as desired.

Case 3: |SA| ≥ |A|/2, |SB| ≤ τn/3.

In this case, by Lemma 2.4.4(i) we have

|RNν(S)| ≥ |RNν(SA)B| ≥ (1− µ)|B| ≥ |A|+ 2

√
α

2
n− 2ηn− µn

≥ |A|+ τ

3
n+ 2ηn+ νn ≥ |S|+ νn,

as desired.

Case 4: |SA| ≤ |A|/2, |SB| ≥ τn/3.
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In this case, by Lemma 2.4.4(iv) and (v), we have

|RNν(S)| ≥ |RNν(SB)A|+ |RNν(SB)B| ≥
|A|
2

+ λn+ |SB| − µn

≥ |SA|+ |SB|+ 2ηn+ νn ≥ |S|+ νn,

as desired.

Case 5: |SA| ≥ |A|/2, τn/3 ≤ |SB| ≤ |B|/2.

In this case, by Lemma 2.4.4(i) and (iv), we have

|RNν(S)| ≥ |RNν(SA)B|+ |RNν(SB)A| ≥ |B|+
|A|
2

+ (λ− µ)n

≥ |B|
2

+ |A|+ (λ− µ)n ≥ |SB|+ |SA|+ 2ηn+ νn ≥ |S|+ νn,

as desired, where the third inequality follows since |B| ≥ |A| by (E1) and (E2).

Case 6: |SA| ≥ |A|/2, |SB| ≥ |B|/2.

In this case, by Lemma 2.4.4(i) and (ii), we have

|RNν(S)| ≥ |RNν(SA)B|+ |RNν(SB)A| ≥ |B|+ |A| − 2µn

(E5)

≥ n− (2η + 2µ)n ≥ (1− τ)n+ νn ≥ |S|+ νn,

as desired.

Thus in all cases we have |RNν(S)| ≥ |S|+ νn. Indeed, if |SB| ≤ τn/3 this follows by

Cases 1, 2 and 3; if τn/3 ≤ |SB| ≤ |B|/2 this follows by Cases 4 and 5; and if |SB| ≥ |B|/2

this follows by Cases 4 and 6. Hence G2 is a robust (ν, τ)-expander as desired. This proves

the claim and hence the lemma. �
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2.5 The non-extremal case

Suppose now that G is not η-extremal. Our first aim is to find a sparse even factor H

of G which is a robust expander. This has essentially already been done in [59], but for

digraphs. We first require the following definition, which generalises the notion of robust

expanders to digraphs.

Definition 2.5.1 Let D be a digraph on n vertices. Given 0 < ν ≤ τ < 1, we define the

ν-robust outneighbourhood RN+
ν,D(S) of S to be the set of all vertices v ∈ V (D) which

have at least νn inneighbours in S. We say that D is a robust (ν, τ)-outexpander if for

all S ⊆ V (D) with τn ≤ |S| ≤ (1− τ)n, we have |RN+
ν,D(S)| ≥ |S|+ νn.

We will now quote three lemmas from [59]. Lemma 2.5.2 implies that our given graph G

is a robust expander. We will use Lemmas 2.5.3 and 2.5.4 to deduce Lemma 2.5.5, which

together with Lemma 2.5.2 implies that G contains a sparse even factor H which is still

a robust expander.

Lemma 2.5.2 Suppose 0 < ν ≤ τ ≤ ε < 1/2 and ε ≥ 2ν/τ . Let G be a graph on n

vertices with minimum degree δ(G) ≥ (1/2 + ε)n. Then G is a robust (ν, τ)-expander.

Lemma 2.5.3 Suppose 0 < 1/n � η � ν, τ, α < 1. Suppose that G is a robust (ν, τ)-

expander on n vertices with δ(G) ≥ αn. Then the edges of G can be oriented in such a

way that the resulting oriented graph G′ satisfies the following properties:

(i) G′ is a robust (ν/4, τ)-outexpander.

(ii) d+G′(x), d−G′(x) = (1± η)dG(x)/2 for every vertex x of G.

An r-factor of a digraph G is a spanning subdigraph of G in which every vertex has in-

and outdegree r.
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Lemma 2.5.4 Suppose 0 < 1/n � ν ′ � ξ � ν ≤ τ � α < 1. Let G be a robust

(ν, τ)-outexpander on n vertices with δ+(G), δ−(G) ≥ αn. Then G contains a ξn-factor

which is still a robust (ν ′, τ)-outexpander.

Lemma 2.5.5 Suppose 0 < 1/n � ν ′ � ε � ν � τ � α < 1, and suppose in addition

that εn is an even integer. If G is a robust (ν, τ)-expander on n vertices with δ(G) ≥ αn,

then there exists an εn-factor H of G which is a robust (ν ′, τ)-expander.

Proof. We apply Lemma 2.5.3 to orient the edges of G, forming an oriented graph

G′ which is a robust (ν/4, τ)-outexpander and which satisfies δ+(G′), δ−(G′) ≥ αn/3.

We then apply Lemma 2.5.4 to find an εn/2-factor H of G′ which is a robust (ν ′, τ)-

outexpander. Now remove the orientation on the edges of H to obtain a robust (ν ′, τ)-

expander which is an εn-factor of G, as desired. �

We will now show that even after removing a sparse factor H, our given graph G still

contains an even factor of degree at least regeven(n, δ). To do this, we first show that

G−H is still non-extremal.

Lemma 2.5.6 Suppose 0 < 1/n� ε� η � 1/2− α, and that −ε ≤ α < 1/2. Let G be

a graph on n vertices with δ(G) = (1/2 + α)n which is not 2η-extremal. Suppose H is an

εn-factor of G. Then G−H is not η-extremal.

Proof. Suppose A,B ⊆ V (G) are disjoint with |A| and |B| satisfying (E1) and (E2)

of Definition 2.3.3. Let G′ := G − H. Since G is not 2η-extremal, we must have either

eG(A,B) ≤ (1− 2η)|A||B| or eG(B) ≥ (α+ +
√
α+/2 + 2η)n|B|/2. In the former case we

have

eG′(A,B) ≤ eG(A,B) < (1− η)|A||B|,
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and in the latter case we have

eG′(B) ≥ eG(B)− εn|B| ≥ 1

2

(
α+ +

√
α+

2
+ 2η − 2ε

)
n|B|

≥ 1

2

(
(α− ε)+ +

√
(α− ε)+

2
+

3η

2

)
n|B|.

Since δ(G−H) = (1/2 + α− ε)n, it follows that G−H is not η-extremal. �

We now show that G−H contains a large even factor. We will do this using the well-known

result of Tutte [92], given below.

Theorem 2.5.7 Let G be a graph. Given disjoint S, T ⊆ V (G) and r ∈ N, let Qr(S, T )

be the number of connected components C of G− (S ∪ T ) such that r|C|+ e(C, T ) is odd,

and let

Rr(S, T ) :=
∑
v∈T

d(v)− e(S, T ) + r(|S| − |T |). (2.5.8)

Then G contains an r-factor if and only if Qr(S, T ) ≤ Rr(S, T ) for all disjoint S, T ⊆

V (G).

In proving the following lemma, we follow a similar approach to that used in [21]. We

will also make frequent and implicit use of the inequality
√
x ≤
√
x+ h ≤

√
x +
√
h for

x, h ≥ 0.

Lemma 2.5.9 Suppose 0 < 1/n � ε � η � 1/2− α and that −ε ≤ α < 1/2. Let G be

a graph on n vertices with minimum degree δ := δ(G) = (1/2 + α)n, and suppose that G

is not η-extremal. Let

r :=
n

4
+

(α + ε)n

2
+

√
α + ε

2
n,

and suppose that r is an even integer. Then G contains an r-factor.

Proof. Let S, T be two arbitrary disjoint subsets of V (G). We will show that Qr(S, T ) ≤

Rr(S, T ), from which the result follows by Theorem 2.5.7. We first note a useful bound
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on Qr(S, T ). If δ ≥ |S| + |T | then every vertex outside S ∪ T has at least δ − |S| − |T |

neighbours outside S∪T , so every component of G−(S∪T ) contains at least δ−|S|−|T |+1

vertices. Thus

Qr(S, T ) ≤ n− |S| − |T |
δ − |S| − |T |+ 1

if δ ≥ |S|+ |T |. (2.5.10)

Also, note that we always have

δ − r =

(
1

4
+
α− ε

2
−
√
α + ε

2

)
n =

(
1

4
+
α + ε

2
−
√
α + ε

2
− ε

)
n ≥ εn, (2.5.11)

since 1/4 + x −
√
x = (1/2 −

√
x)2 > 0 for all 0 ≤ x < 1/4 and since ε � 1/2 − α. We

will now split the proof into cases depending on |S| and |T |.

Case 1: |T | ≤ r − 1, |S| ≤ δ − r, and |S|+ |T | ≥ 3.

We have

Rr(S, T )
(2.5.8)

=
∑
v∈T

(d(v)− r) +
∑
v∈S

(r − dT (v)) ≥ |T |(δ − r) +
∑
v∈S

1

(2.5.11)

≥ |S|+ |T |. (2.5.12)

Let k := |S|+ |T |. By (2.5.10) and (2.5.12) it suffices to show that k ≥ (n−k)/(δ−k+1).

This is equivalent to showing that

δk − k2 + 2k − n = (k − 2)(δ − k) + 2δ − n ≥ 0.

We have 3 ≤ k ≤ δ−1 and the function (k−2)(δ−k) is concave, so it must be minimised

in this range when k = 3 or when k = δ − 1. In either case, we have

(k − 2)(δ − k) + 2δ − n = δ − 3 + 2δ − n ≥ δ − 3− 2εn ≥ 0
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as desired.

Case 2: 0 ≤ |S|+ |T | ≤ 2.

If S = T = ∅, then we have Qr(S, T ) = Rr(S, T ) = 0 (since r is even). So suppose

that |S|+ |T | > 0. Then it follows from (2.5.10) that

Qr(S, T ) <
n

δ − 1
≤ 3n

n
= 3.

If T 6= ∅, we have

Rr(S, T )
(2.5.8)

≥ δ|T | − 1− r|T |
(2.5.11)

≥ 3.

If T = ∅, we have |S| ≥ 1 and so by (2.5.8) we have Rr(S, T ) ≥ r ≥ 3. We therefore have

Qr(S, T ) ≤ Rr(S, T ) in all cases.

Case 3: |T | ≥ r or |S| ≥ δ − r, but not both.

We have

Rr(S, T )
(2.5.8)

≥ (δ − r)|T | − |S||T |+ r|S|

= (|T | − r)(δ − r − |S|) + r(δ − r) (2.5.13)

≥ r(δ − r)
(2.5.11)

≥ ε

4
n2.

(Note that (2.5.13) holds regardless of the values of |S| and |T |.) Moreover, we have

Qr(S, T ) ≤ n. Hence Qr(S, T ) ≤ Rr(S, T ) as desired.

Case 4: |T | ≥ r, |S| ≥ δ − r, and |T | 6= (n+ 2r − δ)/2± 3
√
εn.
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The right hand side of (2.5.13) is clearly minimised when |S| + |T | = n. It therefore

suffices to consider this case alone, yielding

Rr(S, T )−Qr(S, T ) ≥ (δ − r)|T | − (n− |T |)|T |+ r(n− |T |)− n

= |T |2 + (δ − 2r − n)|T |+ n(r − 1).

Define a polynomial f : R→ R by

f(x) = x2 + (δ − 2r − n)x+ n(r − 1).

Suppose this quadratic has real zeroes at τ1 and τ2, with τ1 < τ2. Then for |T | ≤ τ1 and

|T | ≥ τ2, we must have Rr(S, T )−Qr(S, T ) ≥ 0. The discriminant D of f is given by

D = (n+ 2r − δ)2 − 4n(r − 1)

= (n+ 2r − δ)2 −
(

1 + 2(α + ε) + 2
√

2(α + ε)− 4

n

)
n2.

But

n+ 2r − δ =
(

1 + ε+
√

2(α + ε)
)
n, (2.5.14)

so

(n+ 2r − δ)2 =
(

1 + ε2 + 2(α + ε) + 2ε+ 2(1 + ε)
√

2(α + ε)
)
n2

and

D = ε
(
ε+ 2 + 2

√
2(α + ε)

)
n2 − 4n.

Hence 0 < D ≤ 5εn2. In particular, the quadratic does indeed have two real zeroes

τ1 < τ2, and from the quadratic formula we have

τ1 ≥
n+ 2r − δ − 3

√
εn

2
, τ2 ≤

n+ 2r − δ + 3
√
εn

2
.
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Since we are in Case 4, we therefore have either |T | ≤ τ1 or |T | ≥ τ2, and the result

follows.

Case 5: |T | = (n+ 2r − δ)/2± 3
√
εn and δ − r ≤ |S| ≤ (n− 2r + δ)/2− 3

√
εn.

(Note that our condition on |T | implies that we cannot have |S| > (n − 2r + δ)/2 +

3
√
εn.) Let x0 := (n+ 2r − δ)/2 + 3

√
εn ≥ |T |. We then have

Rr(S, T )
(2.5.13)

≥ (x0 − r)(δ − r − |S|) + r(δ − r).

Since x0 + |S| ≤ n, we may now argue exactly as in Case 4 (with x0 in place of |T |) to

show that Rr(S, T ) ≥ Qr(S, T ).

Case 6: |T | = (n+ 2r − δ)/2± 3
√
εn and |S| = (n− 2r + δ)/2± 3

√
εn.

In this case, we will use the fact that G is not η-extremal. From (2.5.14), we have

∣∣∣∣n+ 2r − δ
2

−
(

1

2
+

√
α+

2

)
n

∣∣∣∣ ≤ (ε2 +

√
ε

2

)
n.

Since ε� η, we may conclude that

∣∣∣∣|T | − (1

2
+

√
α+

2

)
n

∣∣∣∣ < ηn.

A similar argument shows that

∣∣∣∣|S| − (1

2
−
√
α+

2

)
n

∣∣∣∣ < ηn.

Since G is not η-extremal, this implies that either e(S, T ) ≤ (1− η)|S||T | or

e(T ) ≥ 1

2

(
α+ +

√
α+

2
+ η

)
n|T |.
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Case 6a: e(S, T ) ≤ (1− η)|S||T |.

Then we have

Rr(S, T )−Qr(S, T )
(2.5.8)

≥ (δ − r)|T | − (1− η)|S||T |+ r|S| − n

≥ (δ − r)|T | − (1− η)(n− |T |)|T |+ r(n− |T | − 6
√
εn)− n

= (1− η)|T |2 + (δ − 2r − (1− η)n)|T |+ (1− 6
√
ε)nr − n.

Write this quadratic as a|T |2 + b|T |+ c, and let the discriminant be D. We then have

b2 = ((1− η)n+ 2r − δ)2 (2.5.14)
=

(
1− η + ε+

√
2(α + ε)

)2
n2

=
(

(1− η)2 + ε2 + 2(α + ε) + 2(1− η)ε+ 2(1− η)
√

2(α + ε) + 2ε
√

2(α + ε)
)
n2

≤
(

(1− η)2 + 2α + 2(1− η)
√

2(α + ε) + ε
1
3

)
n2

and

4ac = 4(1− η)(1− 6
√
ε)nr − 4(1− η)n

≥ (1− η)(1− 6
√
ε)
(

1 + 2(α + ε) + 2
√

2(α + ε)
)
n2 − 4n

≥ (1− η)
(

1 + 2α + 2
√

2(α + ε)
)
n2 − ε

1
3n2.

Thus

D = b2 − 4ac ≤
(

(1− η)2 − (1− η) + 2ηα + 2ε
1
3

)
n2

=
(
−η (1− η − 2α) + 2ε

1
3

)
n2 < 0,

where the last line follows since ε� η � 1/2−α and α < 1/2. Hence this quadratic has

no real zeroes, and Rr(S, T )−Qr(S, T ) ≥ 0 as desired.
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Case 6b: e(T ) ≥ (α+ +
√
α+/2 + η)n|T |/2 and e(S, T ) ≥ (1− η)|S||T |.

Then we have

∑
v∈T

d(v) ≥ e(S, T ) + 2e(T )

≥
(

(1− η)|S|+
(
α+ +

√
α+

2
+ η

)
n

)
|T |

≥
(

(1− η)

(
n− 2r + δ

2
− 3
√
εn

)
+

(
α +

√
α+

2
+ η

)
n

)
|T |

(2.5.14)

≥

(
(1− η)

(
1

2
− ε

2
−
√
α + ε

2
− 3
√
ε

)
+ α +

√
α+

2
+ η

)
n|T |

≥

(
1

2
−
√
α + ε

2
− 4
√
ε− η

2
+ α +

√
α+

2
+ η

)
n|T |

≥
(

1

2
+
η

3
+ α

)
n|T |.

Hence

Rr(S, T )−Qr(S, T )
(2.5.8)

≥
∑
v∈T

d(v)− (n− |T |)|T |+ r(|S| − |T |)− n

≥
∑
v∈T

d(v) + |T |2 − n|T |+ r(n− |T | − 6
√
εn)− r|T | − n

=
∑
v∈T

d(v) + |T |2 − (n+ 2r)|T |+ (1− 6
√
ε)nr − n

≥ |T |2 −
((

1

2
− η

3
− α

)
n+ 2r

)
|T |+ (1− 6

√
ε)nr − n

≥ |T |2 −
(

1 + ε+
√

2(α + ε)− η

3

)
n|T |+ (1− 6

√
ε)nr − n

≥ |T |2 −
(

1 +
√

2(α + ε)− η

4

)
n|T |+ (1− 7

√
ε)nr.

Write this quadratic as |T |2 + b|T |+ c, and let the discriminant be D. We then have

b2 ≤
(

1 + 2α + 2ε+
η2

16
+ 2
√

2(α + ε)− η

2

)
n2 ≤

(
1 + 2α + 2

√
2(α + ε)− η

3

)
n2
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and

4c = 4(1− 7
√
ε)nr = (1− 7

√
ε)
(

1 + 2(α + ε) + 2
√

2(α + ε)
)
n2

≥
(

1 + 2α + 2
√

2(α + ε)
)
n2 − ε

1
3n2.

Thus

D = b2 − 4c ≤
(
ε

1
3 − η

3

)
n2 < 0

since ε � η. Hence this quadratic has no real zeroes, and Rr(S, T ) − Qr(S, T ) ≥ 0 as

desired. This completes the proof. �

It is now simple to prove that every non-extremal graph G whose minimum degree δ

is slightly larger than n/2 contains significantly more than regeven(n, δ)/2 edge-disjoint

Hamilton cycles.

Lemma 2.5.15 Suppose 0 < 1/n � c � η � α, 1/2 − α < 1/2. Let G be a graph on n

vertices with δ := δ(G) = (1/2 + α)n such that G is not η-extremal. Then G contains at

least regeven(n, δ)/2 + cn edge-disjoint Hamilton cycles.

Proof. Let τ0 := τ(1/4) be as defined in Theorem 2.3.2. Choose new constants

ε, ε′, ν, ν ′, τ such that

0 < 1/n� ν ′, c� ε, ε′ � η � ν � τ � α, 1/2− α, τ0.

Let

r :=

(
1

4
+
α + ε′

2
+

√
α + ε′

2

)
n.

By reducing ε′ and ε slightly if necessary we may assume that both r and εn are even

integers. By Lemmas 2.5.2 and 2.5.5, G contains an εn-factor H which is a robust (ν ′, τ)-

expander. Let G′ := G − H. By Lemma 2.5.6, G′ is not (η/2)-extremal. Since also
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δ(G′) = (1/2 +α− ε)n, we can apply Lemma 2.5.9 with ε+ ε′ and α− ε playing the roles

of ε and α to find an r-factor H ′ of G′.

SinceH is a robust (ν ′, τ)-expander (and thus also a robust (ν ′, τ0)-expander), the same

holds for H +H ′. Hence by Theorem 2.3.2, H +H ′ can be decomposed into d(H +H ′)/2

edge-disjoint Hamilton cycles. By Theorem 2.1.4 we have r ≥ regeven(n, δ), and so

1

2
d(H +H ′) ≥ 1

2
(regeven(n, δ) + εn) ≥ 1

2
regeven(n, δ) + cn

as desired. �

2.6 Proof of Theorems 2.1.3 and 2.1.6

We first combine Lemmas 2.4.6 and 2.5.15 to prove Theorem 2.1.3.

Proof of Theorem 2.1.3. Choose n0 ∈ N and an additional constant η such that

1/n0 � η � ε. Define α by δ(G) = (1/2+α)n. Recall from Section 2.1 that Theorem 2.1.3

was already proved in [59] for the case when δ(G) ≥ (2 −
√

2 + ε)n. So we may assume

that α ≤ 3/2 −
√

2 + ε and so η � α, 1/2 − α. Thus we can apply Lemma 2.4.6 (if G

is η-extremal) or Lemma 2.5.15 (if G is not η-extremal) to find regeven(n, δ(G))/2 edge-

disjoint Hamilton cycles in G. �

Let G be a graph on n vertices whose minimum degree is not much smaller than

n/2. Before we can prove Theorem 2.1.6, we must first show that either G is a robust

expander or it is close to either the complete bipartite graph Kn/2,n/2 or the disjoint union

Kn/2∪̇Kn/2 of two cliques. The former case corresponds to (i) of Theorem 2.1.6, and the

latter case corresponds to (ii).

Definition 2.6.1 We say that a graph G is ε-close to Kn/2,n/2 if there exists A ⊆ V (G)

with |A| = bn/2c and such that e(A) ≤ εn2. We say that G is ε-close to Kn/2∪̇Kn/2 if
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there exists A ⊆ V (G) with |A| = bn/2c and such that e(A,A) ≤ εn2.

Suppose that G is a graph of minimum degree roughly n/2. If G is ε-close to Kn/2,n/2

then the bipartite subgraph of G induced by A and A is almost complete. However, A

may also contain many edges. If G is ε-close to Kn/2∪̇Kn/2 then both G[A] and G[A] are

almost complete.

Lemma 2.6.2 Suppose 0 < 1/n� κ� ν � τ, ε < 1. Let G be a graph on n vertices of

minimum degree δ := δ(G) ≥ (1/2−κ)n. Then G satisfies one of the following properties:

(i) G is ε-close to Kn/2,n/2;

(ii) G is ε-close to Kn/2∪̇Kn/2;

(iii) G is a robust (ν, τ)-expander.

Proof. Suppose S ⊆ V (G) with τn ≤ |S| ≤ (1 − τ)n. Our aim is to show that either

RN := RNν(S) has size at least |S|+νn or that G is close to either Kn/2,n/2 or Kn/2∪̇Kn/2.

We will split the proof into cases depending on |S|.

Case 1: τn ≤ |S| ≤ (1/2−
√
ν)n.

In this case, we have

δ|S| ≤ e′(S, V (G)) = e′(S,RN) + e′(S,RN) ≤ |S||RN |+ νn2 ≤ |S||RN |+ νn
|S|
τ
,

and so |RN | ≥ (1/2− κ− ν/τ)n ≥ |S|+ νn as desired. (Recall that e′(A,B) denotes the

number of ordered pairs (a, b) with ab ∈ E(G), a ∈ A and b ∈ B.)

Case 2: (1/2 + 2ν)n ≤ |S| ≤ (1− τ)n.

In this case, we have RN = V (G) and so the result is immediate. Indeed, for all

v ∈ V (G), we have d(v) ≥ (1/2− κ)n and so |N(v) ∩ S| ≥ (2ν − κ)n ≥ νn.

Case 3: (1/2−
√
ν)n ≤ |S| ≤ (1/2 + 2ν)n.
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Suppose that |RN | < |S| + νn. We will first show that either |S \ RN | <
√
νn or G

is ε-close to Kn/2,n/2. Suppose |S \RN | ≥
√
νn. Then

|S \RN |(δ − νn) ≤ e(S \RN,S) = e(S \RN,S ∩RN) + e(S \RN,S \RN)

≤ |S \RN ||S ∩RN |+ νn2 ≤ |S \RN ||S ∩RN |+
√
νn|S \RN |,

and so |S∩RN | ≥ δ−2
√
νn. But then together with our assumption that |RN | < |S|+νn,

this implies |S ∩ RN | < 3
√
νn. Hence e(S) ≤ 3

√
νn2 + |S|νn < 4

√
νn2. By adding or

removing at most
√
νn arbitrary vertices to or from S, we can form a set A of bn/2c

vertices with

e(A) < 4
√
νn2 +

√
νn2 = 5

√
νn2 ≤ εn2.

Thus G is ε-close to Kn/2,n/2.

We may therefore assume that |S \RN | <
√
νn, from which it follows that |S∩RN | <

2
√
νn (by our initial assumption that |RN | < |S| + νn). We will now show that G is ε-

close to Kn/2∪̇Kn/2. We have e(S, S ∩RN) ≤ |S||S ∩RN | ≤ 2
√
νn2, and hence e(S, S) ≤

3
√
νn2. As before, by adding or removing at most

√
νn arbitrary vertices to or from S,

we can therefore form a set A of bn/2c vertices with e(A,A) ≤ e(S, S) +
√
νn2 ≤ εn2.

Hence G is ε-close to Kn/2∪̇Kn/2.

If G is not ε-close to either Kn/2,n/2 or Kn/2∪̇Kn/2, we must therefore have |RN | ≥

|S|+ νn for all S ⊆ V (G) with τn ≤ |S| ≤ (1− τ)n, so that G is a robust (ν, τ)-expander

as required. �

We now have all the tools we need to prove Theorem 2.1.6.

Proof of Theorem 2.1.6. Let τ := τ(1/4) be as defined in Theorem 2.3.2. Choose

n0 ∈ N and new constants ε′, ε′′, ν, ν ′ such that

0 < 1/n0 � ν ′ � ε� ε′, ε′′ � ν � τ, η.
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Consider any graph G on n ≥ n0 vertices as in Theorem 2.1.6. Let δ := δ(G) and define

α by δ = (1/2 + α)n. So −ε ≤ α ≤ ε. Let

r :=

(
1

4
+
α + ε′

2
+

√
α + ε′

2

)
n.

By reducing ε′ and ε′′ slightly if necessary we may assume that both r and ε′′n are even

integers.

Suppose that G does not satisfy (i), i.e. e(X) ≥ ηn2 for all X ⊆ V (G) with |X| =

bn/2c. We claim that G is not (η/4)-extremal. To show this, consider any set B ⊆ V (G)

with

|B| =
(

1

2
+

√
α+

2
± η

4

)
n.

By adding or removing at most ηn/2 arbitrary vertices to and from B, we obtain a set

B′ with |B′| = bn/2c and such that e(B′) ≤ e(B) + ηn2/2. Together with our assumption

that (i) does not hold, this implies that

e(B) ≥ ηn2

2
≥ 1

2

(
α+ +

√
α+

2
+
η

4

)
n|B|.

Hence G is not (η/4)-extremal.

Suppose moreover that (ii) does not hold, so that G fails to be η-close to Kn/2∪̇Kn/2.

By Lemma 2.6.2, it follows that G is a robust (ν, τ)-expander. By Lemma 2.5.5, G

therefore contains an ε′′n-factor H which is a robust (ν ′, τ)-expander. Let G′ := G−H.

By Lemma 2.5.6, G′ is not (η/8)-extremal. Since also δ(G′) = (1/2 + α − ε′′)n, we can

apply Lemma 2.5.9 with ε′+ ε′′ and α− ε′′ playing the roles of ε and α to find an r-factor

H ′ of G′.

Since H is a robust (ν ′, τ)-expander, the same holds for H + H ′. Hence by The-

orem 2.3.2, H + H ′ can be decomposed into d(H + H ′)/2 edge-disjoint Hamilton cy-
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cles. By Theorem 2.1.4 (and the fact that regeven(n, δ) = 0 if δ < n/2) we have

r ≥ max{regeven(n, δ), n/8}, and so

1

2
d(H +H ′) ≥ 1

2
(max{regeven(n, δ), n/8}+ ε′′n) ≥ 1

2
max{regeven(n, δ), n/8}+ εn,

as desired. �
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Chapter 3

Proof of a conjecture of

Thomassen on Hamilton cycles in

highly connected tournaments

3.1 Introduction

3.1.1 Main result

A tournament is an orientation of a complete graph and a Hamilton cycle in a tourna-

ment is a (consistently oriented) cycle which contains all the vertices of the tournament.

Hamilton cycles in tournaments have a long and rich history. For instance, one of the most

basic results about tournaments is Camion’s theorem, which states that every strongly

connected tournament has a Hamilton cycle [20]. This is strengthened by Moon’s theo-

rem [70], which implies that such a tournament is even pancyclic, i.e. contains cycles of all

possible lengths. Many related results have been proved; the monograph by Bang-Jensen

and Gutin [7] gives an overview which also includes many recent results.

In 1982, Thomassen [89] made a very natural conjecture on how to guarantee not just

one Hamilton cycle, but many edge-disjoint ones: he conjectured that for every k there

54



is an f(k) so that every strongly f(k)-connected tournament contains k edge-disjoint

Hamilton cycles (see also the recent surveys [6, 60]). This turned out to be surprisingly

difficult: not even the existence of f(2) was known so far. Our main result shows that

f(k) = O(k2 log2 k).

Theorem 3.1.1 There exists C > 0 such that for all k ∈ N with k ≥ 2 every strongly

Ck2 log2 k-connected tournament contains k edge-disjoint Hamilton cycles.

In Proposition 3.5.1, we describe an example which shows that f(k) ≥ (k− 1)2/4, i.e. our

bound on the connectivity is asymptotically close to best possible. Thomassen [89] ob-

served that f(2) > 2 and conjectured that f(2) = 3. He also observed that one cannot

weaken the assumption in Theorem 3.1.1 by replacing strong connectivity with strong

edge-connectivity; see Section 3.5.

To simplify the presentation, we have made no attempt to optimize the value of the

constant C. Our exposition shows that one can take C := 1012 for k ≥ 20. Rather than

proving Theorem 3.1.1 directly, we deduce it as an immediate consequence of two further

results, which are both of independent interest: we show that every sufficiently highly

connected tournament is highly linked (see Theorem 3.1.3) and show that every highly

linked tournament contains many edge-disjoint Hamilton cycles (see Theorem 2.1.3).

3.1.2 Linkedness in tournaments

Given sets A, B of size k in a strongly k-connected digraph D, Menger’s theorem implies

that D contains k vertex-disjoint paths from A to B. In a k-linked digraph, we can

even specify the initial and final vertex of each such path (see Section 3.2 for the precise

definition).

Theorem 3.1.2 There exists C ′ > 0 such that for all k ∈ N with k ≥ 2 every C ′k2 log k-

linked tournament contains k edge-disjoint Hamilton cycles.
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The bound in Theorem 3.1.2 is asymptotically close to best possible, as we shall discuss

below. We will show that C ′ := 107 works for all k ≥ 20. (As mentioned earlier, we have

made no attempt to optimise the value of this constant.)

It is not clear from the definition that every (very) highly connected tournament is

also highly linked. In fact, for general digraphs this is far from true: Thomassen [91]

showed that for all k there are strongly k-connected digraphs which are not even 2-linked.

On the other hand, he showed that there is an (exponential) function g(k) so that every

strongly g(k)-connected tournament is k-linked [90]. The next result shows that we can

take g(k) to be almost linear in k. Note that this result together with Proposition 3.5.1

shows that Theorem 3.1.2 is asymptotically best possible up to logarithmic terms.

Theorem 3.1.3 For all k ∈ N with k ≥ 2 every strongly 104k log k-connected tournament

is k-linked.

For small k, the constant 104 can easily be improved (see Theorem 3.4.5). The proof

of Theorem 3.1.3 is based on a fundamental result of Ajtai, Komlós and Szemerédi [1,

2] on the existence of asymptotically optimal sorting networks. Though their result is

asymptotically optimal, it is not clear whether this is the case for Theorem 3.1.3. In fact,

for the case of (undirected) graphs, a deep result of Bollobás and Thomason [17] states

that every 22k-connected graph is k-linked (this was improved to 10k by Thomas and

Wollan [87]). Thus one might believe that a similar relation also holds in the case of

tournaments:

Conjecture 3.1.4 There exists C > 0 such that for all k ∈ N every strongly Ck-

connected tournament is k-linked.

Similarly, we believe that the logarithmic terms can also be removed in Theorems 3.1.1

and 3.1.2:

Conjecture 3.1.5
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(i) There exists C ′ > 0 such that for all k ∈ N every C ′k2-linked tournament contains

k edge-disjoint Hamilton cycles.

(ii) There exists C ′′ > 0 such that for all k ∈ N every strongly C ′′k2-connected tourna-

ment contains k edge-disjoint Hamilton cycles.

Note that Conjectures 3.1.4 and 3.1.5(i) together imply Conjecture 3.1.5(ii). Both con-

jectures have now been proved in subsequent work by Pokrovskiy [75, 76].

3.1.3 Algorithmic aspects

Both Hamiltonicity and linkedness in tournaments have also been studied from an algo-

rithmic perspective. Camion’s theorem implies that the Hamilton cycle problem (though

NP-complete in general) is solvable in polynomial time for tournaments. Chudnovsky,

Scott and Seymour [22] solved a long-standing problem of Bang-Jensen and Thomassen [8]

by showing that the linkedness problem is also solvable in polynomial time for tourna-

ments. More precisely, for a given tournament on n vertices, one can determine in time

polynomial in n whether it is k-linked and if yes, one can produce a corresponding set

of k paths (also in polynomial time). Fortune, Hopcroft and Wyllie [34] showed that

for general digraphs, the problem is NP-complete even for k = 2. We can use the re-

sult in [22] to obtain an algorithmic version of Theorem 3.1.2. More precisely, given a

C ′k2 log k-linked tournament on n vertices, one can find k edge-disjoint Hamilton cycles

in time polynomial in n (where k is fixed). We discuss this in more detail in Section 3.9.

Note that this immediately results in an algorithmic version of Theorem 3.1.1.

3.1.4 Related results and spanning regular subgraphs

Proposition 3.5.1 actually suggests that the ‘bottleneck’ to finding k edge-disjoint Hamil-

ton cycles is the existence of a k-regular subdigraph: it states that if the connectivity of a

tournament T is significantly lower than in Theorem 3.1.1, then T may not even contain
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a spanning k-regular subdigraph. There are other results which exhibit this phenomenon:

if T is itself regular, then Kelly’s conjecture from 1968 states that T itself has a Hamilton

decomposition. Kelly’s conjecture was proved very recently (for large tournaments) by

Kühn and Osthus [61].

Erdős raised a ‘probabilistic’ version of Kelly’s conjecture: for a tournament T , let

δ0(T ) denote the minimum of the minimum out-degree and the minimum in-degree. He

conjectured that for almost all tournaments T , the maximum number of edge-disjoint

Hamilton cycles in T is exactly δ0(T ). In particular, this would imply that with high

probability, δ0(T ) is also the degree of a densest spanning regular subdigraph in a random

tournament T . This conjecture of Erdős was proved by Kühn and Osthus [59], based on

the main result in [61].

It would be interesting to obtain further conditions which relate the degree of the

densest spanning regular subdigraph of a tournament T to the number of edge-disjoint

Hamilton cycles in T . For undirected graphs, one such conjecture was made in [55]: it

states that for any graph G satisfying the conditions of Dirac’s theorem, the number of

edge-disjoint Hamilton cycles in G is exactly half the degree of a densest spanning even-

regular subgraph of G. An approximate version of this conjecture was proved by Ferber,

Krivelevich and Sudakov [33], see e.g. [55, 59] for some related results.

The methods used in the current chapter are quite different from those used e.g. in

the papers mentioned in Section 3.1.4. A crucial ingredient is the construction of highly

structured dominating sets (see Section 3.3 for an informal description). We believe

that this approach will have further applications. Indeed, Kühn, Osthus and Townsend

[62] have recently developed it to give an affirmative answer to the following question of

Thomassen (see [82]): given any positive integers k1, . . . , kt, does there exist an integer

f(k1, . . . , kt) such that every strongly f(k1, . . . , kt)-connected tournament T admits a

partition of its vertex set into vertex classes V1, . . . , Vt such that for all 1 ≤ i ≤ t the
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subtournament T [Vi] is strongly ki-connected? In fact [62] contains a stronger result,

which has further applications to a problem on cycle factors.

3.1.5 Organization of the chapter

In the next section, we introduce the notation that will be used for the remainder of the

chapter. In Section 3.3, we give an overview of the proof of Theorem 3.1.2. In Sections 3.4

and 3.5, we give the relatively short proofs of Theorem 3.1.3 and Proposition 3.5.1. In

Section 3.6, we show that given a ‘linked domination structure’ (as introduced in the

proof sketch), we can find a single Hamilton cycle (Lemma 3.6.7). In Section 3.7, we

show that given several suitable linked domination structures, we can repeatedly apply

Lemma 3.6.7 to find k edge-disjoint Hamilton cycles. In Section 3.8 we show that any

highly linked tournament contains such suitable linked domination structures. Finally,

Section 3.9 contains some concluding remarks.

3.2 Notation

The digraphs considered in this chapter do not have loops and we allow up to two edges

between any pair of x, y of distinct vertices, at most one in each direction. A digraph is

an oriented graph if there is at most one edge between any pair x, y of distinct vertices,

i.e. if it does not contain a cycle of length two.

Given a digraph D, we write V (D) for its vertex set, E(D) for its edge set, e(D) :=

|E(D)| for the number of its edges and |D| for its order, i.e. for the number of its vertices.

We write H ⊆ D to mean that H is a subdigraph of D, i.e. V (H) ⊆ V (D) and E(H) ⊆

E(D). Given X ⊆ V (D), we write D −X for the digraph obtained from D by deleting

all vertices in X, and D[X] for the subdigraph of D induced by X. Given F ⊆ E(D), we

write D− F for the digraph obtained from D by deleting all edges in F . We write V (F )

for the set of all endvertices of edges in F . If H is a subdigraph of D, we write D − H
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for D − E(H).

We write xy for an edge directed from x to y. Unless stated otherwise, when we refer

to paths and cycles in digraphs, we mean directed paths and cycles, i.e. the edges on these

paths and cycles are oriented consistently. Given a path P = x . . . y from x to y and a

vertex z outside P which sends an edge to x, we write zxP for the path obtained from

P by appending the edge zx. The length of a path or cycle is the number of its edges.

We call the terminal vertex of a path P the head of P and denote it by h(P ). Similarly,

we call the initial vertex of a path P the tail of P and denote it by t(P ). The interior

Int(P ) of a path P is the subpath obtained by deleting t(P ) and h(P ). Thus Int(P ) = ∅

if P has length at most one. Two paths P and P ′ are internally disjoint if P 6= P ′ and

V (Int(P ))∩ V (Int(P ′)) = ∅. A path system P is a collection of vertex-disjoint paths. We

write V (P) for the set of all vertices lying on paths in P and E(P) for the set of all edges

lying on paths in P . We write h(P) for the set consisting of the heads of all paths in P

and t(P) for the set consisting of the tails of all paths in P . If v ∈ V (P), we write v+ and

v− for the successor and predecessor of v on the path in P containing v. A path system

P is a path cover of a directed graph D if every path in P lies in D and together the

paths in P cover all the vertices of D. If X ⊆ V (D) and P is a path cover of D[X], we

sometimes also say that P is a path cover of X.

If x is a vertex of a digraph D, then N+
D (x) denotes the out-neighbourhood of x,

i.e. the set of all those vertices y for which xy ∈ E(D). Similarly, N−D (x) denotes the

in-neighbourhood of x, i.e. the set of all those vertices y for which yx ∈ E(D). We

write d+D(x) := |N+
D (x)| for the out-degree of x and d−D(x) := |N−D (x)| for its in-degree.

We denote the minimum out-degree of D by δ+(D) := min{d+D(x) : x ∈ V (D)} and the

maximum out-degree of D by ∆+(D) := max{d+D(x) : x ∈ V (D)}. We define the minimum

in-degree δ−(D) and the maximum in-degree ∆−(D) similarly. The minimum degree of

D is defined by δ(D) := min{d+D(x) + d−D(x) : x ∈ V (D)} and its minimum semi-degree
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by δ0(D) := min{δ+(D), δ−(D)}. Whenever X, Y ⊆ V (D) are disjoint, we write eD(X)

for the number of edges of D having both endvertices in X, and eD(X, Y ) for the number

of edges of D with tail in X and head in Y . We write N+
D (X) :=

⋃
x∈X N

+
D (x) and define

N−D (X) similarly. In all these definitions we often omit the subscript D if the digraph D

is clear from the context.

A digraph D is strongly connected if for all x, y ∈ V (D), there is a directed path in

D from x to y. Given k ∈ N, we say a digraph is strongly k-connected if |D| > k and for

every S ⊆ V (D) of size at most k − 1, D − S is strongly connected. We say a digraph

D is k-linked if |D| ≥ 2k and whenever x1, . . . , xk, y1, . . . , yk are 2k distinct vertices of D,

there exist vertex-disjoint paths P1, . . . , Pk such that Pi is a path from xi to yi.

Given a digraph D and sets X, Y ⊆ V (D), we say that X in-dominates Y if each vertex

in Y is an in-neighbour of some vertex in X. Similarly, we say that X out-dominates Y

if each vertex in Y is an out-neighbour of some vertex in X.

A tournament T is transitive if there exists an ordering v1, . . . , vn of its vertices such

that vivj ∈ E(T ) if and only if i < j. In this case, we often say that v1 is the tail of T

and vn is the head of T .

Given k ∈ N, we write [k] := {1, . . . , k}. We write log for the binary logarithm and

log2 n := (log n)2.

3.3 Sketch of the proof of Theorem 3.1.2

In this section, we give an outline of the proof of Theorem 3.1.2. An important idea is

the notion of a ‘covering edge’. Given a small (pre-determined) set S of vertices in a

tournament T , this will mean that it will suffice to find a cycle covering all vertices of

T − S. More precisely, let T be a tournament, let x ∈ V (T ), and suppose C is a cycle

in T covering T − x. If yz ∈ E(C) and yx, xz ∈ E(T ), then we can replace yz by yxz

in C to turn C into a Hamilton cycle. We call yz a covering edge for x. More generally,
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if S ⊆ V (T ) and C is a cycle in T spanning V (T ) − S such that C contains a covering

edge for each x ∈ S, then we can turn C into a Hamilton cycle by using all these covering

edges. Note that this idea still works if C covers some part of S. On the other hand,

note that S needs to be fixed at the beginning – this is different than in the recently

popularized ‘absorbing method’ (see e.g. [53, 84]).

Another important tool will be the following consequence of the Gallai-Milgram the-

orem: suppose that G is an oriented graph on n vertices with δ(G) ≥ n − `. Then the

vertices of G can be covered with ` vertex-disjoint paths. We use this as follows: suppose

we are given a highly linked tournament T and have already found i edge-disjoint Hamil-

ton cycles in T . Then the Gallai-Milgram theorem implies that we can cover the vertices

of the remaining oriented graph by a set of 2i vertex-disjoint paths. Very roughly, the

aim is to link together these paths using the high linkedness of the original tournament

T .

To achieve this aim, we introduce and use the idea of ‘transitive dominating sets’.

Here a transitive out-dominating set A` has the following properties:

• A` out-dominates V (T )\A`, i.e. every vertex of V (T )\A` receives an edge from A`.

• A` induces a transitive tournament in T .

Transitive in-dominating sets B` are defined similarly.

Now suppose that we have already found i edge-disjoint Hamilton cycles in a highly

linked tournament T . Let T ′ be the oriented subgraph of T obtained by removing the

edges of these Hamilton cycles. Suppose that we also have the following ‘linked dominating

structure’ in T ′, which consists of:

• small disjoint transitive out-dominating sets A1, . . . , At, where t := 2i+ 1;

• small disjoint transitive in-dominating sets B1, . . . , Bt;
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• a set of short vertex-disjoint paths P1, . . . , Pt, where each P` is a path from the head

b` of B` to the tail a′` of A`.

Recall that the head of a transitive tournament is the vertex of out-degree zero and the

tail is defined analogously. The paths P` are found at the outset of the proof, using the

assumption that the original tournament T is highly linked. (Note that T ′ need not be

highly linked.)

Let A∗ denote the union of the Ai and let B∗ denote the union of the Bi. Note that

δ(T ′−A∗ ∪B∗) ≥ |T ′− (A∗ ∪B∗)| − 1− 2i = |T ′− (A∗ ∪B∗)| − t. So the Gallai-Milgram

theorem implies that we can cover the vertices of T ′ − A∗ ∪ B∗ with t vertex-disjoint

paths Q1, . . . , Qt. Now we can link up successive paths using the above dominating sets

as follows. The final vertex of Q1 sends an edge to some vertex b in B2 (since B2 is

in-dominating). Either b is equal to the head b2 of B2 or there is an edge in T ′[B2] from b

to b2 (since T ′[B2] is a transitive tournament). Now follow the path P2 from b2 to the tail

a′2 of A2. Using the fact that T ′[A2] is transitive and that A2 is out-dominating, we can

similarly find a path of length at most two from a′2 to the initial vertex of Q2. Continuing

in this way, we can link up all the paths Q` and P` into a single cycle C which covers all

vertices outside A∗ ∪B∗ (and some of the vertices inside A∗ ∪B∗). The idea is illustrated

in Figure 3.1.

In our construction, we will ensure that the paths P` contain a set of covering edges

for A∗ ∪ B∗. So C also contains covering edges for A∗ ∪ B∗, and so we can transform C

into a Hamilton cycle as discussed earlier.

A major obstacle to the above strategy is that in order to guarantee the P` in T ′−A∗∪

B∗, we would need the linkedness of T to be significantly larger than |A∗ ∪B∗| (and thus

larger than |A`|). However, there are many tournaments where any in- or out-dominating

set contains Ω(log n) vertices (consider a random tournament). This leads to a linkage

requirement on T which depends on n (and not just on k, as required in Theorem 3.1.2).
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Figure 3.1: Illustrating the paths Qi and Pi as well as the edges linking them up via the linked
domination structure.

We overcome this problem by considering ‘almost dominating sets’: instead of out-

dominating all vertices outside A`, the A` will out-dominate almost all vertices outside

A`. (Analogous comments apply to the in-dominating sets B`.) This means that we have

a small ‘exceptional set’ E of vertices which are not out-dominated by all of the A`. The

problem with allowing an exceptional set is that if the tail of a path Q` in our cover is

in the exceptional set E, we cannot extend it directly into the out-dominating set A` as

in the above description. However, if we make sure that the A` include the vertices of

smallest in-degree of T , we can deal with this issue. Indeed, in this case we can show that

every vertex v ∈ E has in-degree d−(v) > 2|E| say, so we can always extend the tail of a

path out of the exceptional set if necessary (and then into an almost out-dominating set

A` as before). Unfortunately, we may ‘break’ one of the paths P` in the process. However,

if we are careful about the place where we break it and construct some ‘spare’ paths at

the outset, it turns out that the above strategy can be made to work.
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Figure 3.2: Illustrating our construction of a digraph D which corresponds to a sorting network for
k = 4. D is used to link xi to yi. In the notation of the proof of Theorem 3.1.3, we have π(3) = 1.

3.4 Connectivity and linkedness in tournaments

In this section we give the proof of Theorem 3.1.3. We will also collect some simple

properties of highly linked directed graphs which we will use later on. The proof of

Theorem 3.1.3 is based on an important result of Ajtai, Komlós and Szemerédi [1, 2]

on sorting networks. Roughly speaking, the proof idea of Theorem 3.1.3 is as follows.

Suppose that we are given a highly connected tournament T and we want to link an

ordered set X of k vertices to a set Y of the same size. Then we construct the equivalent

of a sorting network D inside T −Y with ‘initial vertices’ in X and ‘final vertices’ in a set

Z. The high connectivity of T guarantees an ‘unsorted’ set of k ZY -paths which avoid

the vertices in D−Z. One can then extend these paths via D to the appropriate vertices

in X. In this way, we obtain paths linking the vertices in X to the appropriate ones in

Y . An example is shown in Figure 3.2.

We now introduce the necessary background on non-adaptive sorting algorithms and

sorting networks; see [52] for a more detailed treatment. In a sorting problem, we are

given k registers R1, . . . , Rk, and each register Ri is assigned a distinct element from [k],

which we call the value of Ri; thus there is some permutation π of [k] such that value i

has been assigned to register Rπ(i). Our task is to sort the values into their corresponding

registers (so that value i is assigned to Ri) by making a sequence of comparisons: a

comparison entails taking two registers and reassigning their values so that the higher
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value is assigned to the higher register and the lower value to the lower register. A non-

adaptive sorting algorithm is a sequence of comparisons specified in advance such that

for any initial assignment of k values to k registers, applying the prescribed sequence of

comparisons results in every value being assigned to its corresponding register.

Ajtai, Komlós and Szemerédi [1, 2] proved, via the construction of sorting networks,

that there exists an absolute constant C ′ and a non-adaptive sorting algorithm (for k

registers and values) that requires C ′k log k comparisons, and this is asymptotically best

possible. It is known that we can take C ′ := 3050 [74] (results of this type are often stated

in terms of the depth of a sorting network rather than the number of comparisons).

The next theorem is a consequence of the above. Before we can state it, we first need

to introduce some notation. A comparison c, which is part of some non-adaptive sorting

algorithm for k registers, will be denoted by c = (s; t), where 1 ≤ s < t ≤ k, to indicate

that c is a comparison in which the values of registers Rs and Rt are compared (and sorted

so the higher value is assigned to the higher register).

Theorem 3.4.1 (see [1, 2, 74]) Let C ′ := 3050 and k ∈ N be such that k ≥ 2. Then

there exist r ≤ C ′k log k and a sequence of comparisons c1, . . . , cr satisfying the following

property: for any initial assignment of k values to k registers, applying the comparisons

in sequence results in register Ri being assigned the value i for all i ∈ [k].

We now show how to obtain a structure within a highly connected tournament that

simulates the function of a non-adaptive sorting algorithm. Each comparison in the sorting

algorithm will be simulated by a ‘switch’, which we now define. An (a1, a2)-switch is a di-

graph D on 5 distinct vertices a1, a2, b, b1, b2, where either E(D) = {a1b, bb1, bb2, a2b1, a2b2}

or E(D) = {a2b, bb1, bb2, a1b1, a1b2}. We call b1 and b2 the terminal vertices of the (a1, a2)-

switch. Note that for any permutation π of {1, 2}, there exist vertex-disjoint paths P1, P2

of D such that Pi joins ai to bπ(i) for i = 1, 2.
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Proposition 3.4.2 Let T be a tournament. Given distinct vertices a1, a2 ∈ V (T ), if

d+T (a1), d
+
T (a2) ≥ 7, then T contains an (a1, a2)-switch.

Proof. We may choose disjoint sets A1 ⊆ N+
T (a1) \ {a2} and A2 ⊆ N+

T (a2) \ {a1} with

|A1| = |A2| = 3. Consider the bipartite digraph H induced by T between A1 and A2.

It is easy to check that there exists b ∈ A1 ∪ A2 with d+H(b) ≥ 2. Let b1 and b2 be two

out-neighbours of b in H. Now the vertices a1, a2, b, b1, b2 with suitably chosen edges from

T form an (a1, a2)-switch (with terminal vertices b1 and b2). �

Given k ∈ N, we write Sk for the set of permutations of [k] and idk for the identity

permutation of [k]. The following structural lemma for tournaments is at the heart of the

proof of Theorem 3.1.3. It constructs the equivalent of a sorting network in a tournament

of high minimum outdegree.

Lemma 3.4.3 Let C ′ := 3050 and k ∈ N be such that k ≥ 2. Let T be a tournament with

δ+(T ) ≥ (3C ′+ 5)k log k, and let x1, . . . , xk ∈ V (T ) be distinct vertices. Then there exists

a digraph D ⊆ T and distinct vertices z1, . . . , zk ∈ V (D) with the following properties:

(i) x1, . . . , xk ∈ V (D).

(ii) |D| ≤ (3C ′ + 1)k log k.

(iii) For any π ∈ Sk, we can find vertex-disjoint paths P1, . . . , Pk such that Pi joins xπ(i)

to zi for all i ∈ [k].

Proof. Consider the sorting problem for k registers, and apply Theorem 3.4.1 to obtain

a sequence c1, . . . , cr of r ≤ C ′k log k comparisons such that for any π ∈ Sk, if value i

is initially assigned to register Rπ(i), then applying the comparisons c1, . . . , cr results in

every value being assigned to its corresponding register. Given π ∈ Sk, we write πq ∈ Sk

for the permutation such that after applying the first q comparisons c1, . . . , cq, value i is

assigned to register Rπq(i) for all i; thus πr = idk.
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Let D0 be the digraph with vertex set {x1, . . . , xk} and empty edge set. We inductively

construct digraphs D0 ⊆ D1 ⊆ · · · ⊆ Dr ⊆ T and for each Dq we maintain a set

Zq = {zq1, . . . , z
q
k} of k distinct final vertices such that the following holds:

(a) |Dq| = 3q + k.

(b) Whenever π ∈ Sk is a permutation, there exist vertex-disjoint paths P q
1 , . . . , P

q
k in

Dq such that P q
i joins xπ(i) to zqπq(i) for all i ∈ [k].

Assuming the above statement holds for q = 0, . . . , r, then taking D := Dr with zi :=

zri for all i ∈ [k] proves the lemma. Indeed |Dr| = 3r+k ≤ 3C ′k log k+k ≤ (3C ′+1)k log k

and πr = idk.

Having already defined D0, let us describe the inductive step of our construction.

Suppose that for some q ∈ [r] we have constructed Dq−1 ⊆ T and a corresponding set

Zq−1 = {zq−11 , . . . , zq−1k } of final vertices. Let s, t ∈ [k] with s < t be such that cq = (s; t).

Define the tournament T ′ := T − (V (Dq−1) \ {zq−1s , zq−1t }). Then T ′ has minimum out-

degree at least

(3C ′ + 5)k log k − |Dq−1| ≥ (3C ′ + 5)k log k − 3r − k ≥ 5k log k − k ≥ 7,

and so in particular d+T ′(z
q−1
s ), d+T ′(z

q−1
t ) ≥ 7. Thus we may apply Proposition 3.4.2 to

obtain a (zq−1s , zq−1t )-switch σ in T ′. Write b1, b2 for the terminal vertices of σ. Now Dq is

constructed from Dq−1 by adding the vertices and edges of σ to Dq−1; note that zq−1s and

zq−1t are precisely the common vertices of Dq−1 and σ. We define the set Zq = {zq1, . . . , z
q
k}

by setting zqi := zq−1i for all i 6= s, t and zqs := b1 as well as zqt := b2. Note that zq1, . . . , z
q
k

are distinct.

Finally we check that conditions (a) and (b) hold for Dq. Condition (a) holds since Dq

has exactly 3 more vertices than Dq−1. For (b), by induction we may assume that there
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are vertex-disjoint paths P q−1
1 , . . . , P q−1

k in Dq−1 such that P q−1
i joins xπ(i) to zq−1πq−1(i)

for

all i ∈ [k]. Choose vertex-disjoint paths Qs and Qt in σ such that

• if cq swaps values in registers Rs and Rt, then Qs joins zq−1s to zqt and Qt joins zq−1t

to zqs ;

• if cq does not swap values in registers Rs and Rt, then Qs joins zq−1s to zqs and Qt

joins zq−1t to zqt .

Now exactly two of the paths from P q−1
1 , . . . , P q−1

k end at zq−1s and zq−1t , namely those

indexed by π−1q−1(s) and π−1q−1(t). We extend these two paths using Qs and Qt, and leave

all others unchanged to obtain paths P q
1 , . . . , P

q
k . It is straightforward to check that these

paths are vertex-disjoint and that Pi joins xπ(i) to zqπq(i) for all i ∈ [k]. �

It is now an easy step to prove Theorem 3.1.3. We will use the following directed

version of Menger’s Theorem.

Theorem 3.4.4 (Menger’s Theorem) Suppose D is a strongly k-connected digraph

with A,B ⊆ V (D) and |A|, |B| ≥ k. Then there exist k vertex-disjoint paths in D each

starting in A and ending in B.

Proof of Theorem 3.1.3. Set C ′ := 3050 and C := 3C ′ + 6 < 104. We must show

that, given a strongly Ck log k-connected tournament T and distinct vertices x1, . . . , xk,

y1, . . . , yk ∈ V (T ), we can find vertex-disjoint paths R1, . . . , Rk such that Ri joins xi to yi

for all i ∈ [k].

Let X := {x1, . . . , xk}, Y := {y1, . . . , yk} and T ′ := T − Y . Note that T ′ is strongly

(3C ′+5)k log k-connected, and in particular δ+(T ′′) ≥ (3C ′+5)k log k. Thus we can apply

Lemma 3.4.3 to T ′ and x1, . . . , xk to obtain a digraph D ⊆ T ′ and vertices z1, . . . , zk ∈

V (D) satisfying properties (i)–(iii) of Lemma 3.4.3. Let Z := {z1, . . . , zk}. Since |D| ≤

(3C ′+1)k log k, the tournament T ′′ := T −(V (D)\Z) is strongly k-connected. Therefore,
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by Theorem 3.4.4, there exist k vertex-disjoint paths, with each path starting in Z and

ending in Y . For each i ∈ [k], let us assume that Pπ(i) is the path that joins zi to yπ(i),

where π is some permutation of [k]. By Lemma 3.4.3, we can find vertex-disjoint paths

Q1, . . . , Qk in D such that Qi joins xπ(i) to zi. Then the path Ri := Qπ−1(i)Pπ−1(i) joins xi

to yi and these paths are vertex-disjoint. �

Batcher [9] (see also [52]) gave a construction of sorting networks which is asymptot-

ically not optimal but which gives better values for small k. More precisely, it uses at

most 2k log2 k comparisons for k ≥ 3. If we use these as a building block in the proof

of Lemma 3.4.3 instead of the asymptotically optimal ones leading to Theorem 3.4.1, we

immediately obtain the following result which improves Theorem 3.1.3 for small values

of k.

Theorem 3.4.5 For all k ∈ N with k ≥ 3, every strongly 12k log2 k-connected tourna-

ment is k-linked.

For k = 2, the best bound is obtained by a result of Bang-Jensen [5], who showed that

every strongly 5-connected semi-complete digraph is 2-linked, which is best possible even

for tournaments.

We will now collect some simple properties of highly linked directed graphs which we

will use later on. The first two follow straightforwardly from the definition of linkedness.

Proposition 3.4.6 Let k ∈ N. Then a digraph D is k-linked if and only if |D| ≥ 2k and

whenever (x1, y1), . . . , (xk, yk) are ordered pairs of (not necessarily distinct) vertices of D,

there exist internally disjoint paths P1, . . . , Pk such that Pi joins xi to yi.

Proposition 3.4.7 Let k, ` ∈ N with ` < k, and let D be a k-linked digraph. Let X ⊆

V (D) and F ⊆ E(D) be such that |X|+ 2|F | ≤ 2`. Then D −X − F is (k − `)-linked.

The next lemma shows that in a sufficiently highly linked digraph we can link given

pairs of vertices by vertex-disjoint paths which together do not contain too many vertices.
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Lemma 3.4.8 Let k, s ∈ N, and let D be a 2ks-linked digraph. Let (x1, y1), . . . , (xk, yk) be

ordered pairs of (not necessarily distinct) vertices in D. Then there exist internally disjoint

paths P1, . . . , Pk such that Pi joins xi to yi for all i ∈ [k] and |P1 ∪ · · · ∪ Pk| ≤ |D|/s.

Proof. By Proposition 3.4.6 there exist internally disjoint paths P 1
1 , . . . , P

2s
k such that

P j
i joins xi to yi for all i ∈ [k] and all j ∈ [2s]. For any j, the interiors of P j

1 , . . . , P
j
k

contain at least |P j
1 ∪ · · · ∪P

j
k | − 2k vertices. So the disjointness of the paths implies that

there is a j ∈ [2s] with |P j
1 ∪ · · · ∪ P

j
k | − 2k ≤ |D|/2s. The result now follows by setting

Pi := P j
i and noting that 2k ≤ |D|/2s. �

3.5 Nearly extremal example

The aim of this section is to prove the following proposition, which shows that the bound

on the connectivity in Theorem 3.1.1 is close to best possible.

Proposition 3.5.1 Fix n, k ∈ N with k ≥ 2 and n > k2 + k + 2. There exists a strongly

bk2/4c-connected tournament T of order n such that if D ⊆ T is a spanning r-regular

subdigraph, then r ≤ k. In particular, T contains at most k edge-disjoint Hamilton cycles.

It is easy to see that the above tournament T is also Ω(k2)-linked. This shows that

the bound in Theorem 3.1.2 has to be at least quadratic in k.

Proof. Let ` ∈ N. We will first describe a tournament T` = (V`, E`) of order 2`+1 which

is strongly `-connected. We then use T` as a building block to construct a tournament as

desired in the proposition.

Let V` := {v0, . . . , v2`} and let E` consist of the edges vivi+t for all i = 0, . . . , 2` and

all t ∈ [`], where indices are understood to be modulo 2`+ 1. One may think of T` as the

tournament with vertices v0, . . . , v2` placed in order, clockwise, around a circle, where the

out-neighbours of each vi are the ` closest vertices to vi in the clockwise direction, and

the in-neighbours are the ` closest vertices in the anticlockwise direction. Note that T` is
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regular. Note also that, for any distinct x, y ∈ V`, we can find a path in T` from x to y

by traversing vertices from x to y in clockwise order; this remains true even if we delete

any `− 1 vertices from T`.

Next we construct a tournament Tm,` = (Vm,`, Em,`) as follows. We take Vm,` to be

the disjoint union of sets A` := {a0, . . . , a2`}, B` := {b0, . . . , b2`}, and Cm := {c1, . . . , cm}.

The edges of Tm,` are defined as follows: Tm,`[A`] and Tm,`[B`] are isomorphic to T` (with

the natural labelling of vertices), and T [Cm] is a transitive tournament which respects the

given order of the vertices in Cm (i.e. cicj is an edge if and only if i < j). Each vertex in

A` is an in-neighbour of all vertices in Cm, and each vertex in B` is an out-neighbour of

all vertices in Cm. Finally, a vertex ai ∈ A` is an in-neighbour of a vertex bj ∈ B` if and

only if i 6= j. Note that |Tm,`| = m+ 4`+ 2.

Claim 1. The tournament Tm,` is strongly `-connected.

To see that Tm,` is strongly `-connected, we check that if S ⊆ Vm,` with |S| ≤ `− 1, then

Tm,`−S is strongly connected. Write A′`, B
′
` and C ′m respectively for A`\S, B`\S, and Cm\

S. Note that there is at least one edge of Tm,`−S from B′` to A′`, which we may assume by

symmetry to be b0a0. Ordering the vertices of Tm,` as a0, . . . , a2`, c1, . . . , cm, b1, . . . , b2`, b0

and removing the vertices of S from this ordering gives a Hamilton cycle in Tm,` − S.

Thus Tm,` − S must be strongly connected. This completes the proof of Claim 1.

Claim 2. Let m, ` ∈ N be such that m >
√

4`. Then for every r-regular spanning

subdigraph D ⊆ Tm,` we have r ≤
√

4`.

Suppose for a contradiction that D ⊆ Tm,` is an r-regular spanning subdigraph with

r := b
√

4`c + 1 >
√

4`. Since D is regular, we have eD(A`, Ā`) = eD(Ā`, A`), where

Ā` := V (D) \ A`. Noting that r ≤ m, consider the first r vertices c1, . . . , cr of Cm. Since

N−D (ci) ⊆ N−Tm,`
(ci) = A`∪{c1, . . . , ci−1} and |N−D (ci)| = r, we have |N−D (ci)∩A`| ≥ r−i+1,
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so that eD(A`, {ci}) ≥ r − i+ 1. Thus

eD(Ā`, A`) = eD(A`, Ā`) ≥ e(A`, {c1, . . . , cr}) ≥ r + · · ·+ 1 =

(
r + 1

2

)
.

But eD(Ā`, A`) ≤ eTm,`
(Ā`, A`) = 2`+1, so

(
r+1
2

)
≤ 2`+1. This is easily seen to contradict

r >
√

4` for all ` ∈ N. This completes the proof of Claim 2.

To prove the proposition, we set ` := bk2/4c and m := n− 4`− 2, and take T to be Tm,`.

Thus |T | = |Tm,`| = m + 4` + 2 = n. By Claim 1, T is strongly bk2/4c-connected. Since

n > k2 +k+2 ≥ 4`+
√

4`+2, we have m >
√

4`, so Claim 2 implies that if D ⊆ T = Tm,`

is a spanning r-regular subdigraph, then r ≤
√

4` ≤ k. �

As mentioned in the introduction, Thomassen [89] observed that no lower bound on

the strong edge-connectivity of a tournament can guarantee two edge-disjoint Hamilton

cycles. (Recall that a digraph D is strongly k-edge-connected if |D| ≥ 2 and if for every

S ⊆ E(D) of size at most k− 1, T −S is strongly connected.) Here, for completeness, we

provide an explicit example for Thomassen’s observation.

Let T = (V,E) be a tournament where V is the disjoint union of three sets, A, B, and

C = {x1, x2}, and where x is a distinguished vertex of B. We choose T [A] and T [B] to

be any strongly k-edge-connected tournament and let x1x2 ∈ E(T ). All edges between A

and C are directed from A to C; all edges between B and C are directed from C to B;

and all edges between A and B are directed from A to B except edges between A and x,

which are directed from x to A.

It is easy to check that T is strongly k-edge-connected and that all Hamilton cycles

in T use the edge x1x2. Hence there are tournaments with arbitrarily high strong edge-

connectivity but with no two edge-disjoint Hamilton cycles.
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3.6 Finding a single Hamilton cycle in suitable ori-

ented graphs

We first state two simple, well-known facts concerning the degree sequences of tourna-

ments.

Proposition 3.6.1 Let T be a tournament on n vertices. Then T contains at least one

vertex of in-degree at most n/2, and at least one vertex of out-degree at most n/2.

Proposition 3.6.2 Let T be a tournament on n vertices and let d ≥ 0. Then T has at

most 2d + 1 vertices of in-degree at most d, and at most 2d + 1 vertices of out-degree at

most d.

We will also use the following well-known result due to Gallai and Milgram (see for

example [18]). (The independence number of a digraph T is the maximal size of a set

X ⊆ V (T ) such that T [X] contains no edges.)

Theorem 3.6.3 Let T be a digraph with independence number at most k. Then T has a

path cover consisting of at most k paths.

The following corollary is an immediate consequence of Theorem 3.6.3.

Corollary 3.6.4 Let T be an oriented graph on n vertices with δ(T ) ≥ n − k. Then T

has a path cover consisting of at most k paths.

Given a digraph T , we define a covering edge for a vertex v to be an edge xy of T

such that xv, vy ∈ E(T ). We call xv and vy the activating edges of xy. Note that if xy

is a covering edge for v and C is a cycle in T containing xy but not v, we can form a

new cycle C ′ with V (C ′) = V (C) ∪ {v} by replacing xy with xvy in C. We will see in

Section 3.8 that covering edges are easy to find in strongly 2-connected tournaments.
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Recall that, given a path system P , we write h(P) for the set of heads of paths in P

and t(P) for the set of tails of paths in P . If v ∈ V (P), we write v+ and v− respectively

for the successor and predecessor of v on the path in P containing v.

The following lemma allows us to take a path cover P of a digraph and modify it

into a path cover P ′ with no heads in some “bad” set I, without adding any heads or

tails in I ∪ J for some other “bad” set J . Moreover, we can do this without losing any

edges in some “good” set F ⊆ E(P), and without altering too many paths in P . In our

applications, F will consist of covering edges. We require that every vertex in I has high

out-degree.

Lemma 3.6.5 Let T be a digraph. Let I, J ⊆ V (T ) be disjoint. Let P = P1∪̇P2 be a path

cover of T satisfying h(P2) ∩ I = ∅. Let F ⊆ E(P). Suppose d+(v) > 3(|I|+ |J |) + 2|F |

for all v ∈ I. Then there exists a path cover P ′ of T satisfying the following properties:

(i) h(P ′) ∩ I = ∅.

(ii) h(P ′) ∩ J = h(P) ∩ J .

(iii) t(P ′) ∩ (I ∪ J) = t(P) ∩ (I ∪ J).

(iv) F ⊆ E(P ′).

(v) |P ′| ≤ |P|+ |P1|.

(vi) |P ′ ∩ P2| ≥ |P2| − |P1|.

If in addition d+(v) > 3(|I|+ |J |) + 2|F |+ |V (P2)| for all v ∈ I, then we may strengthen

(vi) to P2 ⊆ P ′.

Proof. We will use the degree condition on the vertices in I in the hypothesis to

repeatedly extend paths with heads in I out of I, breaking other paths in P as a result.

We must ensure that we do not create new paths with endpoints in I ∪ J in the process.
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Let r := |P1| and P0 := P . We shall find path covers P1, . . . ,Pr of T such that the

following properties hold for all 0 ≤ i ≤ r:

(P1) |h(P i) ∩ I| ≤ r − i.

(P2) h(P i) ∩ J = h(P) ∩ J .

(P3) t(P i) ∩ (I ∪ J) = t(P) ∩ (I ∪ J).

(P4) F ⊆ E(P i).

(P5) |P i| ≤ |P|+ i.

(P6) |P i ∩ P2| ≥ |P2| − i.

If this is possible, we may then take P ′ := Pr.

By hypothesis, P0 satisfies (P1)–(P6). So suppose we have found P0, . . . ,P i−1 for some

i ∈ [r]. We then form P i as follows. If |h(P i−1) ∩ I| ≤ r − i, we simply let P i := P i−1.

Otherwise, let P ∈ P i−1 be a path with head v ∈ I. We will form P i by extending the

head v of P and breaking the path in P i−1 which P now intersects into two subpaths.

Define

X := {x ∈ V (T ) : {x+, x, x−} ∩ (I ∪ J) 6= ∅}.

We have

d+(v) > 3(|I|+ |J |) + 2|F | ≥ |X|+ |V (F )| ≥ |X ∪ V (F )|,

and so there exists w ∈ N+(v)\(X∪V (F )). Let Q be the path in P i−1 containing w (note

that we may have Q = P ). Split Q into (at most) two paths and an isolated vertex by

removing any of the edges w−w,ww+ that exist, and let P∗ be the set of paths obtained

from P i−1 in this way. Let P ∗ be the path in P∗ containing v. (Note that P ∗ = P unless

w ∈ V (P ).) We then form P i by replacing P ∗ by P ∗vw in P∗.
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First suppose w ∈ Int(Q). Then P i is a path cover of T such that

h(P i) = (h(P i−1) \ {v}) ∪ {w,w−} and t(P i) = t(P i) ∪ {w+}.

Since w /∈ X, we have w,w− /∈ I and hence

|h(P i) ∩ I| = |h(P i−1) ∩ I| − 1 ≤ r − i.

Thus (P1) holds. Similarly,

h(P i) ∩ J = h(P i−1) ∩ J = h(P) ∩ J,

t(P i) ∩ (I ∪ J) = t(P i−1) ∩ (I ∪ J) = t(P) ∩ (I ∪ J),

and so (P2) and (P3) hold. By similar arguments, (P1)–(P3) also hold if w is an endpoint

of Q. Since w /∈ V (F ) and F ⊆ E(P i−1) we have F ⊆ E(P i) and (P4) holds. (P5) holds

too since |P i| ≤ |P i−1| + 1. Finally, we have altered at most two paths in P i−1. One of

these had its head in I, so we have altered at most one path in P i−1 ∩ P2. Thus (P6)

holds.

If in addition we have

d+(v) > 3(|I|+ |J |) + 2|F |+ |V (P2)|,

then we may use almost exactly the same argument to prove the strengthened version of

the result. Instead of choosing w ∈ N+(v) \ (X ∪ V (F )), we may choose w ∈ N+(v) \

(X ∪ V (F ) ∪ V (P2)). We also strengthen (P6) to the requirement that P2 ⊆ P i. The

strengthened (P6) must hold in each step since we now have that w /∈ V (P2). �
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The following analogue of Lemma 3.6.5 for tails can be obtained by reversing the

orientation of each edge of T .

Lemma 3.6.6 Let T be a digraph. Let I, J ⊆ V (T ) be disjoint. Let P = P1∪̇P2 be a path

cover of T satisfying t(P2) ∩ I = ∅. Let F ⊆ E(P). Suppose d−(v) > 3(|I| + |J |) + 2|F |

for all v ∈ I. Then there exists a path cover P ′ of T satisfying the following properties:

(i) t(P ′) ∩ I = ∅.

(ii) t(P ′) ∩ J = t(P) ∩ J .

(iii) h(P ′) ∩ (I ∪ J) = h(P) ∩ (I ∪ J).

(iv) F ⊆ E(P ′).

(v) |P ′| ≤ |P|+ |P1|.

(vi) |P ′ ∩ P2| ≥ |P2| − |P1|.

If in addition d−(v) > 3(|I|+ |J |) + 2|F |+ |V (P2)| for all v ∈ I, then we may strengthen

(vi) to P2 ⊆ P ′.

The following lemma is the main building block of the proof of Theorem 3.1.2. It

will be applied repeatedly to find the required edge-disjoint Hamilton cycles. Roughly

speaking, the lemma guarantees a Hamilton cycle provided that we have well-chosen

disjoint (almost) dominating sets Ai and Bi which are linked by short paths containing

covering edges for all vertices in these dominating sets. (This is the linked dominating

structure described in Sections 3.1 and 3.3.) An additional assumption is that we have

not removed too many edges of our tournament T already. In general, the statement and

proof roughly follow the sketch in Section 3.3, with the addition of a set X ⊆ V (T ).

The role of X is as follows. The sets Ai and Bi in the lemma dominate only almost

all vertices of T , so we have some small exceptional sets EA and EB of vertices which
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are not dominated. We will use Lemmas 3.6.5 and 3.6.6 to extend a certain path system

out of these exceptional sets EA and EB. For this we need that the vertices in EA ∪ EB

have relatively high in- and out-degree. But T may have vertices which do not satisfy

this degree condition. When we apply Lemma 3.6.7, these problematic vertices will be

the elements of X.

Lemma 3.6.7 Let C := 106, k ≥ 20, t := 164k, and c := dlog 50t + 1e. Suppose

that T is an oriented graph of order n satisfying δ(T ) > n − 4k and δ0(T ) ≥ Ck2.

Suppose moreover that T contains disjoint sets of vertices A1, . . . , At, B1, . . . , Bt and X,

a matching F , and vertex-disjoint paths P1, . . . , Pt such that the following conditions hold,

where A∗ := A1 ∪ · · · ∪ At and B∗ := B1 ∪ · · · ∪Bt:

(i) 2 ≤ |Ai| ≤ c for all i ∈ [t]. Moreover, T [Ai] is a transitive tournament whose head

has out-degree at least n/3 in T .

(ii) There exists a set EA ⊆ V (T ) \ (A∗ ∪B∗), such that each Ai out-dominates V (T ) \

(A∗ ∪B∗ ∪ EA). Moreover, |EA| ≤ d−/40, where d− := min{d−T (v) : v ∈ EA \X}.

(iii) 2 ≤ |Bi| ≤ c for all i ∈ [t]. Moreover, T [Bi] is a transitive tournament whose tail

has in-degree at least n/3 in T .

(iv) There exists a set EB ⊆ V (T ) \ (A∗ ∪ B∗), such that each Bi in-dominates V (T ) \

(A∗ ∪B∗ ∪ EB). Moreover, |EB| ≤ d+/40, where d+ := min{d+T (v) : v ∈ EB \X}.

(v) For all i ∈ [t], Pi is a path from the head of T [Bi] to the tail of T [Ai] which is

internally disjoint from A∗ ∪B∗. Moreover, |P1 ∪ · · · ∪ Pt| ≤ n/20.

(vi) F ⊆ E(P1∪ · · · ∪Pt) and V (F )∩ (A∗∪B∗) = ∅. Moreover, F = {ev : v ∈ A∗∪B∗},

where ev is a covering edge for v and ev 6= ev′ whenever v 6= v′. In particular,

|F | = |A∗ ∪B∗| ≤ 2ct.
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Figure 3.3: Our linked domination structure and path cover at the beginning of the proof of
Lemma 3.7.2.

(vii) We have X ⊆ V (P1 ∪ · · · ∪ Pt), X ∩ (A∗ ∪B∗) = ∅ and |X| ≤ 2kt.

Then T contains a Hamilton cycle.

Proof. Without loss of generality, suppose that d− ≤ d+. (Otherwise, reverse the

orientation of every edge in T .) Write ai for the head of T [Ai] and a′i for its tail. Similarly,

write bi for the head of T [Bi] and b′i for its tail. Let

A := {a1, . . . , at}, A′ := {a′1, . . . , a′t}, B := {b1, . . . , bt} and B′ := {b′1, . . . , b′t}.

Thus the sets A,A′, B,B′ are disjoint, and by condition (v) the paths Pi join B to A′.

Let

N := V (T ) \ (A∗ ∪B∗), T ′ := T [N ∪ A′ ∪B], and P2 := {P1, . . . , Pt}.

By Corollary 3.6.4, there exists a path cover P1 of N \ V (P2) with |P1| ≤ 4k. Then

Q1 := P1∪̇P2 is a path cover of T ′. The situation is illustrated in Figure 3.3.
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Claim. There exists an oriented graph T ′′ with T ′ ⊆ T ′′ ⊆ T [V (T ′) ∪A ∪B′] and a path

cover Q of T ′′ such that the following properties hold:

(Q1) F ⊆ E(Q).

(Q2) t(Q) ∩ EA = ∅.

(Q3) h(Q) ∩ EB = ∅.

(Q4) |Q ∩ P2| ≥ |Q1| − 20k.

(Q5) If ai or b′i is in V (Q), then Pi /∈ Q.

(Q6) |Q| ≤ |Q1|+ 124k.

(Q7) No paths in Q \ P2 have endpoints in A∗ ∪B∗.

We will prove the claim by applying Lemmas 3.6.5 and 3.6.6 repeatedly to improve

our current path cover. More precisely, we will construct path covers Q2, . . . ,Q6 such

that eventually Q6 satisfies (Q1)–(Q7). So we can take Q := Q6.

In order to be able to apply Lemmas 3.6.5 and 3.6.6, we must first bound the degrees

of the vertices in T ′ from below. For all v ∈ V (T ′), we have

d+T ′(v) ≥ d+T (v)− |A∗ ∪B∗|
(i),(iii)

≥ d+T (v)− 2ct ≥ d+T (v)− δ0(T )

5
≥ 4

5
d+T (v). (3.6.8)

Similarly,

d−T ′(v) ≥ 4

5
d−T (v) (3.6.9)

for all v ∈ V (T ′).

We will first extend the tails of paths in Q1 out of EA. We do this by applying

Lemma 3.6.6 to T ′ and Q1 = P1∪̇P2 with I := EA \X, J := X ∪ A′ ∪ B to form a new
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path cover Q2 of T ′ which will satisfy (Q1) and (Q2). By conditions (ii) and (v), no paths

in P2 have endpoints in I. By condition (vi), F ⊆ E(Q1). Moreover,

3(|I|+ |J |) + 2|F | ≤ 3|EA|+ 3|X|+ 3|A′|+ 3|B|+ 2|F |
(ii),(vii),(vi)

≤ 3

40
d− + 6kt+ 6t+ 4ct <

4

5
d−. (3.6.10)

In the final inequality we used the fact that d− ≥ δ0(T ) ≥ Ck2. Thus for all v ∈ I we

have

d−T ′(v)
(3.6.9)

≥ 4

5
d−T (v)

(ii)

≥ 4

5
d−

(3.6.10)
> 3(|I|+ |J |) + 2|F |.

Thus the requirements of Lemma 3.6.6 are satisfied, and we can apply the lemma to

obtain a path cover Q2 of T ′.

Lemma 3.6.6(iv) implies that Q2 satisfies (Q1). Moreover, Lemma 3.6.6(v),(vi) imply

that

|Q2| ≤ |Q1|+ 4k as well as |Q2 ∩ P2| ≥ |P2| − 4k ≥ |Q1| − 8k, (3.6.11)

and thus |Q2 \ P2| ≤ 12k,

where we have used that |Q1| = |P1| + |P2| ≤ |P2| + 4k for the second inequality above.

Recall from condition (vii) that X ⊆ V (P2) and X ∩ (A∗ ∪B∗) = ∅. Thus no paths in Q1

have endpoints in X. Moreover, since t(P2) = B and h(P2) = A′, no paths in Q1 have

tails in A′ or heads in B. Together with Lemma 3.6.6(i)–(iii) this implies that Q2 satisfies

(Q2) and

(a1) t(Q2) ∩ A′ = h(Q2) ∩B = ∅.

(a2) h(Q2) ∩X = ∅.
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We will now extend the heads of paths in Q2 out of EB. We do this by applying

Lemma 3.6.5 to T ′, (Q2 \ P2)∪̇(Q2 ∩P2) with I := EB \X, J := (EA \EB)∪X ∪A′ ∪B

to form a new path cover Q3 of T ′ which will satisfy (Q1)–(Q4). As before, no paths in

P2 ⊇ Q2 ∩ P2 have endpoints in I, and F ⊆ E(Q2) by (Q1) for Q2. Moreover, similarly

as in (3.6.10) we obtain

3(|I|+ |J |) + 2|F | ≤ 3|EB|+ 3|EA|+ 3|X|+ 3|A′|+ 3|B|+ 2|F |

≤ 3

40
d+ +

3

40
d− + 6kt+ 6t+ 4ct <

4

5
d+.

(In the final inequality we used our assumption that d− ≤ d+.) Together with (3.6.8) this

implies that d+T ′(v) ≥ 4d+/5 > 3(|I|+ |J |) + 2|F | for all v ∈ I. Thus the requirements of

Lemma 3.6.5 are satisfied, and we can apply the lemma to obtain a path cover Q3 of T ′.

By Lemma 3.6.5(iv), Q3 satisfies (Q1). Lemma 3.6.5(v) implies that

|Q3| ≤ |Q2|+ |Q2 \ P2|
(3.6.11)

≤ |Q2|+ 12k
(3.6.11)

≤ |Q1|+ 16k. (3.6.12)

Similarly, Lemma 3.6.5(vi) implies that

|Q3 ∩ P2| ≥ |Q2 ∩ P2| − |Q2 \ P2|
(3.6.11)

≥ |Q1| − 20k. (3.6.13)

So Q3 satisfies (Q4). Lemma 3.6.5(iii) and (Q2) for Q2 together imply that Q3 satisfies

(Q2). Moreover, (a2) and Lemma 3.6.5(i),(ii) together imply that no path in Q3 has its

head in (EB\X)∪X ⊇ EB and so Q3 satisfies (Q3). Finally, (a1) and Lemma 3.6.5(ii),(iii)

together imply that

(b1) no paths in Q3 have tails in A′ or heads in B.

We will now extend the paths in Q3 \ P2 so that their endpoints lie in A ∪ B′ rather

than A′ ∪B. More precisely, if P ∈ Q3 \P2 has head a′i ∈ A′, then we replace P by Pa′iai
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(recall that a′iai ∈ E(T ) by condition (i) and ai ∈ A ⊆ V (T ) \ V (Q3) by the definition

of N). If P ∈ Q3 \ P2 has tail bi ∈ B, we replace P by b′ibiP (recall that b′ibi ∈ E(T ) by

condition (iii) and b′i ∈ B′ ⊆ V (T ) \ V (Q3)). Let Q4 be the path system thus obtained

from Q3. Let T ′′ := T [V (Q4)]. Then

T ′ ⊆ T ′′ ⊆ T [V (T ′) ∪ A ∪B′].

and Q4 is a path cover of T ′′ satisfying (Q1)–(Q4) and such that

|Q4| = |Q3| and Q4 ∩ P2 = Q3 ∩ P2. (3.6.14)

Moreover, h(Q4 \ P2) ∩ A′ = ∅ and t(Q4 \ P2) ∩ B = ∅. Together with (b1) this implies

that

(c1) no paths in Q4 \ P2 have endpoints in A′ ∪B.

Moreover, by construction of Q4, every vertex ai ∈ V (Q4) ∩ A is a head of some path

P ∈ Q4 \ P2 and this path P also contains a′i (so in particular Pi /∈ Q4 ∩ P2). Similarly,

every vertex in b′i ∈ V (Q4) ∩ B′ is a tail of some path P ∈ Q4 \ P2 and this path P also

contains bi (in particular Pi /∈ Q4∩P2). Thus (Q5) as well as the following assertion hold:

(c2) no paths in Q4 have heads in B′ or tails in A.

We will now extend the tails of paths in Q4 \ P2 out of A∗ ∪ B∗. We do this by

applying the strengthened form of Lemma 3.6.6 to T ′′, (Q4 \P2)∪̇(Q4 ∩P2) with I := B′,

J := EA ∪EB ∪A′ ∪A ∪B to form a new path cover Q5 of T ′′ which still satisfies (Q1)–

(Q5), and such that no path in Q5 \ P2 has endpoints in A′ ∪ B′ ∪ B. Clearly no paths

in P2 ⊇ Q4 ∩ P2 have tails in I, and F ⊆ E(Q4) by (Q1). By condition (iii) we have

d−T (v) ≥ n/3 for all v ∈ I. Together with (3.6.9) this implies that d−T ′′(v) ≥ d−T ′(v) ≥ n/4
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for all v ∈ I. Note also that |V (P2)| ≤ n/20 by condition (v). So similarly as in (3.6.10),

it follows that

3(|I|+ |J |) + 2|F |+ |V (Q4 ∩ P2)|

≤ 3(|A′|+ |A|+ |B′|+ |B|+ |EA|+ |EB|) + 2|F |+ |V (P2)|

≤ 12t+
3

20
d+ + 4ct+

n

20
<
n

4
≤ d−T ′′(v)

for all v ∈ I. Thus the requirements of the strengthened form of Lemma 3.6.6 are satisfied,

and we can apply the lemma to obtain a path cover Q5 of T ′′ such that Q5∩P2 ⊇ Q4∩P2.

Note that Lemma 3.6.6(ii),(iii) imply that the endpoints of Q5 \ (P2 ∩ Q4) in J are the

same as those of Q4 \ P2. Together with (c1) this implies that no paths in Q5 \ (P2 ∩Q4)

have endpoints in A′ ∪B. In particular, this means that Q5 ∩ P2 = Q4 ∩ P2 and so

(d1) no paths in Q5 \ P2 have endpoints in A′ ∪B.

Thus (Q5) for Q4 implies that Q5 satisfies (Q5) as well. Lemma 3.6.6(ii)–(iv), (vi)

(strengthened) and (Q1)–(Q4) for Q4 together imply that Q5 satisfies (Q1)–(Q4). More-

over, Lemma 3.6.6(v) implies that

|Q5| ≤ |Q4|+ |Q4 \ P2|
(3.6.14)

= |Q3|+ |Q3 \ P2| = 2|Q3| − |Q3 ∩ P2|
(3.6.12),(3.6.13)

≤ |Q1|+ 52k. (3.6.15)

By Lemma 3.6.6(i),(ii) and (c2), we can also strengthen (d1) to

(d2) no paths in Q5 \ P2 have endpoints in A′ ∪ B′ ∪ B and no paths in Q5 have tails

in A.

Finally, we will extend the heads of paths in Q5 \ P2 out of A∗ ∪ B∗. We do this by

applying the strengthened form of Lemma 3.6.5 to T ′′, (Q5 \ P2)∪̇(Q5 ∩P2) with I := A,
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J := EA∪EB∪A′∪B′∪B to form a new path cover Q6 of T ′′ which will satisfy (Q1)–(Q7).

Clearly no paths in P2 ⊇ Q5 ∩P2 have heads in I, and F ⊆ E(Q5) by (Q1). Similarly as

before, condition (i) and (3.6.8) together imply that

3(|I|+ |J |) + 2|F |+ |V (Q5) ∩ P2| <
n

4
≤ d+T ′′(v)

for all v ∈ I. Thus the requirements of the strengthened form of Lemma 3.6.5 are satisfied,

and we can apply the lemma to obtain a path cover Q6 of T ′′ such that Q6∩P2 = Q5∩P2.

(The fact that we have equality follows using a similar argument as in (d1) above.)

Thus (Q5) for Q5 implies that Q6 satisfies (Q5) as well. Lemma 3.6.5(ii)–(iv), (vi)

(strengthened) and (Q1)–(Q4) for Q5 together imply that Q6 satisfies (Q1)–(Q4). Also,

by Lemma 3.6.5(v) we have

|Q6| ≤ |Q5|+ |Q5 \ P2| = 2|Q5| − |Q5 ∩ P2|
(Q4),(3.6.15)

≤ |Q1|+ 124k.

So (Q6) holds. Moreover, by Lemma 3.6.5(i)–(iii), (d2) and the fact that Q6 ∩ P2 =

Q5 ∩ P2, no paths in Q6 \ P2 have endpoints in A′ ∪ A ∪ B′ ∪ B. Since no vertex in

(A∗ ∪ B∗) \ (A′ ∪ A ∪ B′ ∪ B) lies in V (T ′′) = V (Q6), this in turn implies (Q7). So the

path system Q := Q6 is as required in the claim.

We will now use the fact that each Ai and each Bi is an almost dominating set in order

to extend the paths in Q \ P2 into those Ai and Bi which contain the endpoints of paths

in Q∩P2. We then use the paths in Q∩P2 to join these extended paths into a long cycle

C covering (at least) N , and with F ⊆ E(C). Finally, we will deploy whatever covering

edges we need from F in order to absorb any vertices in A∗ ∪B∗ not already covered into

C.

Let R := Q \ P2 and S := Q ∩ P2. In order to carry out the steps above, we would

like to have |R| = |S| to avoid having any paths in S left over. So we first split the paths
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in R until we have exactly |S| of them. In this process, we wish to preserve (Q1)–(Q3),

(Q5) and (Q7). To show that this can be done, first note that by (Q4) and (Q6), we have

|R| = |Q \ P2| ≤ 144k = t− 20k ≤ |Q1| − 20k ≤ |Q ∩ P2| = |S|.

The number of edges in R which are incident to vertices in EA ∪EB ∪A∗ ∪B∗, or which

belong to F , is bounded above by

2(|EA|+ |EB|+ |A∗|+ |B∗|) + |F | ≤ d+

10
+ 6ct ≤ n

4
.

On the other hand,

|E(R)| = |V (R)| − |R| ≥ (n− |A∗ ∪B∗| − |V (P2)|)− 144k

≥ n− 2ct− n

20
− 144k ≥ n

2
.

Hence

|E(R)| − 2(|EA|+ |EB|+ |A∗|+ |B∗|)− |F | ≥
n

4
> t ≥ |S|.

We may therefore form a path cover R′ of T [V (R)] with |R′| = |S| by greedily removing

edges of paths in R which are neither incident to A∗ ∪ B∗ ∪ EA ∪ EB nor elements of F .

Then R′ ∪ S satisfies (Q1)–(Q3), (Q5) and (Q7).

Next, we extend the paths inR′ into A∗∪B∗ and join them with the paths in S to form

a long cycle C. By relabeling the Pi if necessary, we may assume that S = {P1, . . . , P`}.

Let R1, . . . , R` denote the paths in R′ and for each j ∈ [`] let xj be the tail of Rj and yj

the head of Rj. Recall from (Q2) and (Q7) that xj /∈ A∗ ∪ B∗ ∪ EA. Hence by condition

(ii) there exists x′j ∈ Aj−1 with x′jxj ∈ E(T ), where the indices are understood to be

modulo `. Similarly yj /∈ A∗∪B∗∪EB by (Q3) and (Q7), so by condition (iv) there exists

y′j ∈ Bj with yjy
′
j ∈ E(T ). Let R′j := x′jxjRjyjy

′
j. If x′j 6= a′j−1, then we extend R′j by
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adding the edge a′j−1x
′
j. Similarly, if y′j 6= bj we extend R′j by adding the edge y′jbj. In all

cases, we still denote the resulting path from a′j−1 to bj by R′j.

Recall that Pj is a path from bj to a′j for all j ∈ [`]. Moreover, we have x′j, y
′
j /∈

V (Q \ P2) = V (R′) for all j ∈ [`]. (Indeed, if x′j 6= aj this follows since for the oriented

graph T ′′ defined in the claim we have V (T ′′) ∩ Ai ⊆ {ai, a′i}. If x′j = aj, this follows

since Pj ∈ Q and so (Q5) implies that aj /∈ V (Q). The argument for y′j is similar.) Thus

R′1, . . . , R
′
` are pairwise vertex-disjoint and internally disjoint from the paths in S. So we

can define a cycle C by

C := R′1P1R
′
2P2 . . . P`−1R

′
`P`.

Note that N ⊆ V (C) since R′ ∪ S is a path cover of T ′′, and F ⊆ E(C) by (Q1). Recall

from condition (vi) that F consists of covering edges ev for all v ∈ A∗∪B∗ and that these

ev are pairwise distinct. Thus each ev lies on C and so neither of the two activating edges

of ev can lie on C. Writing ev = xvyv, it follows from these observations that we may

form a new cycle C ′ by replacing xvyv by xvvyv in C for all v ∈ (A∗ ∪ B∗) \ V (C). Then

C ′ is a Hamilton cycle of T , as desired. �

3.7 Finding many edge-disjoint Hamilton cycles in a

good tournament

In the proof of Theorem 3.1.2, we will find the edge-disjoint Hamilton cycles in a given

highly-linked tournament by repeatedly applying Lemma 3.6.7. In each application, we

will need to set up all the dominating sets and paths required by Lemma 3.6.7. The

following definition encapsulates this idea. (Recall that Int(P ) denotes the interior of a

path P .)

Definition 3.7.1 We say that a tournament T is (C, k, t, c)-good if it contains vertex

sets A1
1, . . . , A

t
k, B

1
1 , . . . , B

t
k, EA,1, . . . , EA,k, EB,1, . . . , EB,k, edge sets F1, . . . , Fk, and paths
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P 1
1 , . . . , P

t
k such that the following statements hold, where A∗i := A1

i ∪ · · · ∪ Ati, A∗ :=

A∗1 ∪ · · · ∪ A∗k, B∗i := B1
i ∪ · · · ∪Bt

i , and B∗ := B∗1 ∪ · · · ∪B∗k:

(G1) The sets A1
1, . . . , A

t
k are disjoint and 2 ≤ |A`i | ≤ c for all i ∈ [k] and ` ∈ [t]. Moreover,

each T [A`i ] is a transitive tournament whose head has out-degree at least 2n/5 in

T . Write A := {h(T [A`i ]) : i ∈ [k], ` ∈ [t]}.

(G2) The sets B1
1 , . . . , B

t
k are disjoint from each other and from A∗, and 2 ≤ |B`

i | ≤ c for

all i ∈ [k] and ` ∈ [t]. Moreover, each T [B`
i ] is a transitive tournament whose tail

has in-degree at least 2n/5 in T . Write B′ := {t(T [B`
i ]) : i ∈ [k], ` ∈ [t]}.

(G3) Write d− := min{d−(v) : v ∈ V (T )\ (A∪B′)}. Each A`i out-dominates V (T )\ (A∗∪

B∗ ∪ EA,i). Moreover, |EA,i| ≤ d−/50 and EA,i ∩ (A∗i ∪B∗i ) = ∅ for all i ∈ [k].

(G4) Write d+ := min{d+(v) : v ∈ V (T ) \ (A∪B′)}. Each B`
i in-dominates V (T ) \ (A∗ ∪

B∗ ∪ EB,i). Moreover, |EB,i| ≤ d+/50 and EB,i ∩ (A∗i ∪B∗i ) = ∅ for all i ∈ [k].

(G5) Each P `
i is a path from the head of T [B`

i ] to the tail of T [A`i ]. For each i ∈ [k], the

paths P 1
i , . . . , P

t
i are vertex-disjoint and |P 1

1 ∪ · · · ∪ P t
k| ≤ n/20. For all i 6= j and

all `,m ∈ [t], P `
i and Pm

j are edge-disjoint and

V (Int(P `
i )) ∩ (A∗ ∪B∗) ⊆ (A ∪B′) \ (A∗i ∪B∗i ).

(G6) Fi ⊆ E(P t
i ) and (A ∪B′) \ (A∗i ∪B∗i ) ⊆ V (P t

i ) for all i ∈ [k].

(G7) The set F1 ∪ · · · ∪ Fk is a matching in T − (A∗ ∪ B∗). For all i ∈ [k] we have Fi =

{ev : v ∈ A∗i ∪ B∗i }, where ev is a covering edge for v and ev 6= ev′ whenever v 6= v′.

Moreover, for each i ∈ [k], let F act
i be the set of activating edges corresponding to

the covering edges in Fi. Then F act
i ∩ E(P `

j ) = ∅ for all i, j ∈ [k] and all ` ∈ [t].

(G8) We have δ0(T ) ≥ Ck2 log k.
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For convenience, we collect the various disjointness conditions of Definition 3.7.1 into a

single statement.

(G9) • The sets A1
1, . . . , A

t
k, B

1
1 , . . . , B

t
k are disjoint.

• (EA,i ∪ EB,i) ∩ (A∗i ∪B∗i ) = ∅ for all i ∈ [k].

• F1 ∪ · · · ∪ Fk is a matching in T − (A∗ ∪B∗).

• For each i ∈ [k], the paths P 1
i , . . . , P

t
i are vertex-disjoint.

• For all i 6= j and all `,m ∈ [t], P `
i and Pm

j are edge-disjoint and V (Int(P `
i )) ∩

(A∗∪B∗) ⊆ (A∪B′)\(A∗i ∪B∗i ). In particular, P 1
i , . . . , P

t
i are internally disjoint

from A∗i ∪B∗i .

The next lemma shows that for suitable parameters C, t = t(k) and c = c(k), every

(C, k, t, c)-good tournament contains k edge-disjoint Hamilton cycles. In the next section

we then show that there exists a constant C ′ > 0 such that any C ′k2 log k-linked tourna-

ment is (C, k, t, c)-good (see Lemma 3.8.9). These two results together immediately imply

Theorem 3.1.2.

As mentioned at the beginning of this section, in order to prove Lemma 3.7.2 we will

apply Lemma 3.6.7 k times. In the notation for Definition 3.7.1, our convention is that

the sets with subscript i will be used in the ith application of Lemma 3.6.7 to find the

ith Hamilton cycle.

Lemma 3.7.2 Let C := 107, k ≥ 20, t := 164k, c := dlog 50t+ 1e. Then any (C, k, t, c)-

good tournament contains k edge-disjoint Hamilton cycles.

Proof. Let T be a (C, k, t, c)-good tournament, and let n := |T |. Let A1
1, . . . , A

t
k,

B1
1 , . . . , B

t
k, EA,1, . . . , EA,k, EB,1, . . . , EB,k, F1, . . . , Fk, P

1
1 , . . . , P

t
k, d− and d+ be as in

Definition 3.7.1. (Note that this also implicitly defines sets A∗1, . . . , A
∗
k, A

∗, A, B∗1 , . . . , B
∗
k,

B∗, B′, and F act
1 , . . . , F act

k as in Definition 3.7.1.) Our aim is to apply Lemma 3.6.7
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repeatedly to find k edge-disjoint Hamilton cycles. So suppose that for some i ∈ [k]

we have already found edge-disjoint Hamilton cycles C1, . . . , Ci−1 such that the following

conditions hold:

(a) C1, . . . , Ci−1 are edge-disjoint from T [A`j], T [B`
j ] and P `

j for all i ≤ j ≤ k and all

` ∈ [t].

(b) E(C1 ∪ · · · ∪ Ci−1) ∩ F act
j = ∅ for all i ≤ j ≤ k.

Intuitively, these conditions guarantee that none of the edges we will need in order to

find Ci, . . . , Ck are contained in C1, . . . , Ci−1. We have to show that T − C1 − · · · − Ci−1

contains a Hamilton cycle Ci which satisfies (a) and (b) (with i replaced by i+ 1).

Define

Ti := T −

(⋃
j<i

Cj ∪
⋃
j>i

F act
j

)
−

⋃
j>i, `∈[t]

(P `
j ∪ T [A`j] ∪ T [B`

j ]),

E ′A,i := EA,i ∪

⋃
j<i

N+
Cj

(A∗i ) ∪
⋃

j>i, `∈[t]

N+
P `
j
(A∗i ) ∪ A∗ ∪B∗

 \ (A∗i ∪B∗i )

 ,

E ′B,i := EB,i ∪

⋃
j<i

N−Cj
(B∗i ) ∪

⋃
j>i, `∈[t]

N−
P `
j
(B∗i ) ∪ A∗ ∪B∗

 \ (A∗i ∪B∗i )

 ,

Xi := (A ∪B′) \ (A∗i ∪B∗i ).

Then it suffices to find a Hamilton cycle Ci of Ti. We will do so by applying Lemma 3.6.7

to Ti, A
1
i , . . . , A

t
i, B

1
i , . . . , B

t
i , P

1
i , . . . , P

t
i , E

′
A,i, E

′
B,i, Fi and Xi. It therefore suffices to

verify that the conditions of Lemma 3.6.7 hold.

We claim that for each v ∈ V (Ti), we have

d+Ti(v) ≥ d+T (v)− (i− 1)− (k − i)− 1− c > d+T (v)− 2k. (3.7.3)
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Indeed, it is immediate that d+C1∪···∪Ci−1
(v) = i−1. Since by (G9) for each j > i the paths

P 1
j , . . . , P

t
j are vertex-disjoint, v is covered by at most k− i of the paths P 1

i+1, . . . , P
t
k and

hence d+
P 1
i+1∪···∪P t

k
(v) ≤ k − i. Recall from (G7) that F1 ∪ · · · ∪ Fk consists of one covering

edge ev for each v ∈ A∗ ∪ B∗. Moreover, by (G9) the set F1 ∪ · · · ∪ Fk is a matching in

T − (A∗ ∪ B∗) and A1
1, . . . , A

t
k, B

1
1 , . . . , B

t
k are all disjoint. Thus the digraph with edge

set F act
1 ∪ · · · ∪ F act

k is a disjoint union of directed paths of length two and therefore has

maximum out-degree one. Finally, since A1
1, . . . , A

t
k, B

1
1 , . . . , B

t
k are disjoint, v belongs to

at most one of T [A1
1], . . . , T [Atk], T [B1

1 ], . . . , T [Bt
k]. Moreover, ∆+(T [A`j]),∆

+(T [B`
j ]) ≤ c

for all j > i and all ` ∈ [t] by (G1) and (G2). So (3.7.3) follows. Similarly, we have

d−Ti(v) > d−T (v)− 2k. (3.7.4)

In particular, δ(Ti) > n− 4k, as required by Lemma 3.6.7.

We have δ0(T ) > Ck2 by (G8), and hence δ0(Ti) > 106k2 as required by Lemma 3.6.7.

The disjointness conditions of Lemma 3.6.7 are satisfied by (G9) and the definition of

Xi. Since V (Ti) = V (T ), it is immediate that A1
i , . . . , A

t
i, B

1
i , . . . , B

t
i , Xi ⊆ V (Ti). We

claim that P 1
i , . . . , P

t
i ⊆ Ti. Indeed, by (a) and (G5), each P `

i is edge-disjoint from

C1∪· · ·∪Ci−1 and from Pm
j for all j > i and all m ∈ [t]. By (G7), each P `

i is edge-disjoint

from F act
1 ∪ · · · ∪ F act

k . Moreover, by (G5), each P `
i is edge-disjoint from T [Amj ] ∪ T [Bm

j ]

for all j > i and all m ∈ [t]. Altogether this implies that P 1
i , . . . , P

t
i ⊆ Ti. We have

Fi ⊆ E(P t
i ) ⊆ E(Ti) by (G6). It therefore suffices to prove that conditions (i)–(vii) of

Lemma 3.6.7 hold.

Condition (v) follows from (G5). Condition (vi) follows from (G6) and (G7). (Note

that (G7) implies that F act
i ∩ F act

j = ∅ for all i 6= j. So (G7), (b) and the definition of

Ti imply that F act
i ⊆ Ti.) By (G6) we have Xi ⊆ V (P t

i ) and by (G1) and (G2) we have

|Xi| ≤ |A ∪B′| = 2kt, so condition (vii) holds too.
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It therefore remains to verify conditions (i)–(iv). We first check (i). We have 2 ≤

|A`i | ≤ c by (G1). Moreover, we claim that Ti[A
`
i ] = T [A`i ] for all ` ∈ [t]. Indeed, to see

this, note that C1, . . . , Ci−1 are edge-disjoint from T [A`i ] by (a); by (G9) for all j > i and

all m ∈ [t] each path Pm
j and each T [Amj ], T [Bm

j ] is edge-disjoint from T [A`i ]; by (G7) all

edges in F act
j for j > i are incident to a vertex in A∗j ∪ B∗j , and hence by (G9) none of

these edges belongs to T [A`i ]. Thus Ti[A
`
i ] = T [A`i ] is a transitive tournament by (G1).

Finally, by (G1) the head of each T [A`i ] has out-degree at least 2n/5 in T , and so by

(3.7.3) out-degree at least n/3 in Ti. Hence condition (i) of Lemma 3.6.7 is satisfied. A

similar argument shows that condition (iii) of Lemma 3.6.7 is also satisfied.

We will next verify that condition (ii) of Lemma 3.6.7 holds too. (G9) and the defini-

tion of E ′A,i together imply that E ′A,i ∩ (A∗i ∪ B∗i ) = ∅. By (G3), each A`i out-dominates

V (T )\(A∗∪B∗∪EA,i) in T , and hence out-dominates V (Ti)\(A∗∪B∗∪EA,i∪N+
T−Ti(A

∗
i ))

in Ti. However, it follows from (G9) that for all j > i and all `,m ∈ [t], no edge in F act
j

has an endpoint in A`i and that A`i ∩ Amj = A`i ∩Bm
j = ∅. Hence by (G9) we have that

N+
T−Ti(A

∗
i ) =

⋃
j<i

N+
Cj

(A∗i ) ∪
⋃

j>i, `∈[t]

N+
P `
j
(A∗i ).

It therefore follows from the definitions of E ′A,i and Ti that A`i out-dominates V (Ti)\(A∗i ∪

B∗i ∪ E ′A,i) in Ti for all ` ∈ [t].

So in order to check that condition (ii) of Lemma 3.6.7 holds, it remains only to bound

|E ′A,i| from above. To do this, first note that by (G9), each vertex in A∗i is contained in

at most k − i of the paths P 1
i+1, . . . , P

t
k. Moreover, |EA,i| ≤ d−/50 by (G3). It therefore
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follows from the definition of E ′A,i, (G1) and (G2) that

|E ′A,i| ≤ |EA,i|+

∣∣∣∣∣⋃
j<i

N+
Ci

(A∗i )

∣∣∣∣∣+

∣∣∣∣∣∣
⋃

j>i, `∈[t]

N+
P `
j
(A∗i )

∣∣∣∣∣∣+ |A∗|+ |B∗|

≤ d−
50

+ (i− 1)|A∗i |+ (k − i)|A∗i |+ 2kct ≤ d−
50

+ kct+ 2kct ≤ d−
45
.

The last inequality follows since d− ≥ δ0(T ) ≥ Ck2 log k by (G8). Since E ′A,i is disjoint

from A∗i ∪B∗i , we have E ′A,i \Xi = E ′A,i \ (A ∪B′). Hence for all v ∈ E ′A,i \Xi we have

d−Ti(v)
(3.7.4)

≥ d−T (v)− 2k
(G3)

≥ d− − 2k ≥ 19

20
d−

and so

|E ′A,i| ≤
d−
45
≤ 1

40
min{d−Ti(v) : v ∈ E ′A,i \Xi}.

This shows that condition (ii) of Lemma 3.6.7 is satisfied. The argument that (iv) holds

is similar. We may therefore apply Lemma 3.6.7 to find a Hamilton cycle Ci in Ti as

desired. �

3.8 Highly-linked tournaments are good

The aim of this section is to prove that any sufficiently highly-linked tournament is

(C, k, t, c)-good. We first show that it is very easy to find covering edges for any given ver-

tex – we will use the following lemma to find matchings F1, . . . , Fk consisting of covering

edges as in Definition 3.7.1.

Lemma 3.8.1 Suppose that T is a strongly 2-connected tournament, and v ∈ V (T ).

Then there exists a covering edge for v.

Proof. Since T is strongly connected and |T | > 1, we have N+(v), N−(v) 6= ∅. Since

T − v is strongly connected, there is an edge xy from N−(v) to N+(v). But then xv, vy ∈
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E(T ), so xy is a covering edge for v, as desired. �

The next lemma will be used to obtain paths P 1
1 , . . . , P

t
k as in Definition 3.7.1. Recall

that we require Fi ⊆ E(P t
i ) and (A ∪ B′) \ (A∗i ∪ B∗i ) ⊆ V (P t

i ) for all i ∈ [k]. We will

ensure the latter requirement by first covering (A ∪ B′) \ (A∗i ∪ B∗i ) with few paths and

then linking these paths together – hence the form of the lemma.

Lemma 3.8.2 Let s ∈ N, and let T be a digraph. Let x1, . . . , xk, y1, . . . , yk be distinct ver-

tices of T , and let Q1, . . . ,Qk be (possibly empty) path systems in T−{x1, . . . , xk, y1, . . . , yk}

with E(Qi) ∩ E(Qj) = ∅ whenever i 6= j. Write

m := k +
k∑
i=1

|Qi|+

∣∣∣∣∣
k⋃
i=1

V (Qi)

∣∣∣∣∣ , (3.8.3)

and suppose that T is 2sm-linked. Then there exist edge-disjoint paths P1, . . . , Pk ⊆ T

satisfying the following properties:

(i) Pi is a path from xi to yi for all i ∈ [k].

(ii) Q ⊆ Pi for all Q ∈ Qi and all i ∈ [k].

(iii) V (Pi) ∩ V (Pj) ⊆ V (Qi) ∩ V (Qj) for all i 6= j.

(iv) |P1 ∪ · · · ∪ Pk| ≤ |T |/s+ |V (Q1) ∪ · · · ∪ V (Qk)|.

Proof. For all i ∈ [k], let a1i . . . b
1
i , . . . , a

ti
i . . . b

ti
i denote the paths in Qi. Let F ⊆ E(T )

denote the set of all those edges which form a path of length one in Q1 ∪ · · · ∪ Qk. Let

T ′ := T

[(
V (T ) \

k⋃
i=1

V (Qi)
)
∪

k⋃
i=1

ti⋃
j=1

{aji , b
j
i}
]
− F.
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Note that E(T ′) ∩ (E(Q1) ∪ · · · ∪E(Qk)) = ∅. Define sets X1, . . . , Xk of ordered pairs of

vertices of T ′ by

Xi :=


{(xi, a1i ), (b1i , a2i ), . . . , (b

ti−1
i , atii ), (btii , yi)}, if Qi 6= ∅,

{(xi, yi)} if Qi = ∅,

and let X := X1 ∪ · · · ∪ Xk. Let ` := 2sm − 2s|X|. Since |V (T ) \ V (T ′)| + |F | ≤

|V (Q1) ∪ · · · ∪ V (Qk)| and |X| = k +
∑k

i=1 |Qi|, it follows that

2` = 4s(m− |X|) (3.8.3)
= 4s

∣∣∣∣∣
k⋃
i=1

V (Qi)

∣∣∣∣∣ ≥ |V (T ) \ V (T ′)|+ 2|F |.

Thus by Proposition 3.4.7, T ′ is 2s|X|-linked. We may therefore apply Lemma 3.4.8 to

X in order to obtain, for each i ∈ [k], a path system Pi whose paths link the pairs in Xi

and such that whenever i 6= j, we have E(Pi) ∩ E(Pj) = ∅ and V (Pi) ∩ V (Pj) consists

of exactly the vertices that lie in a pair in both Xi and Xj. Let Pi be the path obtained

from the union of all paths in Pi and all paths in Qi. Then P1, . . . , Pk are edge-disjoint

paths satisfying (i)–(iv). �

The next lemma shows that given a vertex v in a tournament T , we can find a small

transitive subtournament whose head is v and which out-dominates almost all vertices of

T .

Lemma 3.8.4 Let T be a tournament on n vertices, let v ∈ V (T ), and suppose that

c ∈ N satisfies 2 ≤ c ≤ log d−(v) − 1. Then there exist disjoint sets A,E ⊆ V (T ) such

that the following properties hold:

(i) 2 ≤ |A| ≤ c and T [A] is a transitive tournament with head v.

(ii) A out-dominates V (T ) \ (A ∪ E).
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(iii) |E| ≤ (1/2)c−1d−(v).

The fact that the bound in (iii) depends on d−(v) is crucial: for instance, we can apply

Lemma 3.8.4 with v being the vertex of lowest in-degree. Then (iii) implies that the

‘exceptional set’ |E| is much smaller than d−(v) ≤ d−(w) for any w ∈ E. So while w is

not dominated by A directly, it is dominated by many vertices outside E. This will make

it possible to cover E by paths whose endpoints lie outside E. (More formally, the lemma

is used to ensure (G3), which in turn is used for (Q2) in the proof of Lemma 3.6.7).

Proof. Let v1 := v. We will find A by repeatedly choosing vertices v1, . . . , vi such

that the size of their common in-neighbourhood (i.e. the intersection of their individual

in-neighbourhoods) is minimised at each step. More precisely, let A1 := {v1}. Suppose

that for some i < c we have already found a set Ai = {v1, . . . , vi} such that T [Ai] is a

transitive tournament with head v1, and such that the common in-neighbourhood Ei of

v1, . . . , vi satisfies

|Ei| ≤
1

2i−1
d−(v).

Note that these conditions are satisfied for i = 1. Moreover, note that Ei is the set of all

those vertices in T − Ai which are not out-dominated by Ai. If |Ei| < 4, then we have

|Ei| < 4 =
1

2log d−(v)−2d
−(v) ≤ 1

2c−1
d−(v), (3.8.5)

and so Ai satisfies (i)–(iii). (Note that |Ai| ≥ 2 since the assumptions imply that d−(v) ≥

8.) Thus in this case we can take A := Ai and E := Ei.

So suppose next that |Ei| ≥ 4. In this case we will extend Ai to Ai+1 by adding a

suitable vertex vi+1. By Proposition 3.6.1, Ei contains a vertex vi+1 of in-degree at most

|Ei|/2 in T [Ei]. Let Ai+1 := {v1, . . . , vi+1} and let Ei+1 be the common in-neighbourhood
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of v1, . . . , vi+1. Then T [Ai+1] is a transitive tournament with head v1 and

|Ei+1| ≤
1

2
|Ei| ≤

1

2i
d−(v).

By repeating this construction, either we will find |Ei| < 4 for some i < c (and therefore

take A := Ai and E := Ei) or we will obtain sets Ac and Ec satisfying (i)–(iii). �

We will also need the following analogue of Lemma 3.8.4 for in-dominating sets. It

immediately follows from Lemma 3.8.4 by reversing the orientations of all edges.

Lemma 3.8.6 Let T be a tournament on n vertices, let v ∈ V (T ), and suppose that

c ∈ N satisfies 2 ≤ c ≤ log d+(v) − 1. Then there exist disjoint sets B,E ⊆ V (T ) such

that the following properties hold:

(i) 2 ≤ |B| ≤ c and T [B] is a transitive tournament with tail v.

(ii) B in-dominates V (T ) \ (B ∪ E).

(iii) |E| ≤ (1/2)c−1d+(v).

We will now apply Lemma 3.8.4 repeatedly to obtain many pairwise disjoint small

almost-out-dominating sets. We will also prove an analogue for in-dominating sets. These

lemmas will be used in order to obtain sets A1
1, . . . , A

t
k, B

1
1 , . . . , B

t
k, EA,1, . . . , EA,k and

EB,1, . . . , EB,k as in Definition 3.7.1.

Lemma 3.8.7 Let T be a tournament on n vertices, U ⊆ V (T ) and c ∈ N with c ≥ 2.

Suppose that δ−(T ) ≥ 2c+1+c|U |. Then there exist families {Av : v ∈ U} and {Ev : v ∈ U}

of subsets of V (T ) such that the following properties hold:

(i) Av out-dominates V (T ) \ (Ev ∪
⋃
u∈U Au) for all v ∈ U .

(ii) T [Av] is a transitive tournament with head v for all v ∈ U .
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(iii) |Ev| ≤ (1/2)c−1d−(v) for all v ∈ U .

(iv) 2 ≤ |Av| ≤ c for all v ∈ U .

(v) Au ∩ Ev = ∅ for all u, v ∈ U .

(vi) Au ∩ Av = ∅ for all u 6= v.

Proof. We repeatedly apply Lemma 3.8.4. Suppose that for some U ′ ⊆ U with U ′ 6= U

we have already found {Au : u ∈ U ′} and {E ′u : u ∈ U ′} satisfying (ii)–(vi) (with U ′

playing the role of U and E ′u playing the role of Eu) such that

(a) Av out-dominates V (T ) \ (
⋃
u∈U ′ Au ∪ E ′v ∪ U) for all v ∈ U ′;

(b) (
⋃
u∈U ′ Au) ∩ U = U ′.

Pick v ∈ U \ U ′. Our aim is to apply Lemma 3.8.4 to v and

T ′ := T −

(⋃
u∈U ′

Au ∪ (U \ {v})

)
.

Note that v ∈ V (T ′) by (b). Moreover,

d−T ′(v) ≥ δ−(T ′)
(iv)

≥ δ−(T )− c|U ′| − |U \ U ′| ≥ δ−(T )− c|U | ≥ 2c+1,

where the final inequality holds by hypothesis, and so c ≤ log d−T ′(v) − 1. Hence we

can apply Lemma 3.8.4 to obtain disjoint sets Av, Ev ⊆ V (T ′) as described there. For all

u ∈ U ′, let Eu := E ′u\Av. Then the collections {Au : u ∈ U ′∪{v}} and {Eu : u ∈ U ′∪{v}}

satisfy (v) and (vi) (with U ′ ∪ {v} playing the role of U). Moreover, (b) holds too (with

U ′ ∪ {v} playing the role of U ′). Conditions (i)–(iii) of Lemma 3.8.4 imply that (a) holds

(with U ′ ∪ {v}, Eu playing the roles of U ′, E ′u) and that (ii)–(iv) hold (with U ′ ∪ {v}

playing the role of U).
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We continue in this way to obtain sets {Au : u ∈ U} and {Eu : u ∈ U} which satisfy

(ii)–(vi) as well as (a) (with U , Eu playing the roles of U ′, E ′u). But (a) implies (i) since⋃
u∈U Au ∪ U =

⋃
u∈U Au (as u ∈ Au by (ii)). �

The next lemma is an analogue of Lemma 3.8.7 for in-dominating sets. The proof is

similar to that of Lemma 3.8.7.

Lemma 3.8.8 Let T be a tournament on n vertices, U ⊆ V (T ) and c ∈ N with c ≥ 2.

Suppose that δ+(T ) ≥ 2c+1+c|U |. Then there exist families {Bv : v ∈ U} and {Ev : v ∈ U}

of subsets of V (T ) such that the following properties hold:

(i) Bv in-dominates V (T ) \ (Ev ∪
⋃
u∈U Bu) for all v ∈ U .

(ii) T [Bv] is a transitive tournament with tail v for all v ∈ U .

(iii) |Ev| ≤ (1/2)c−1d+(v) for all v ∈ U .

(iv) 2 ≤ |Bv| ≤ c for all v ∈ U .

(v) Bu ∩ Ev = ∅ for all u, v ∈ U .

(vi) Bu ∩Bv = ∅ for all u 6= v.

We will now combine the previous results in order to prove that any sufficiently highly-

linked tournament is (C, k, t, c)-good. Note that Lemmas 3.7.2 and 3.8.9 together imply

Theorem 3.1.2.

Lemma 3.8.9 Let C := 107, k ≥ 20, t := 164k and c := dlog 50t + 1e. Then any

Ck2 log k-linked tournament is (C, k, t, c)-good.

Proof. Let T be a Ck2 log k-linked tournament, and let n := |T |. Note in particular that

δ0(T ) ≥ Ck2 log k by Proposition 3.4.6, so (G8) is satisfied. We have to choose A1
1, . . . , A

t
k,
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B1
1 , . . . , B

t
k, EA,1, . . . , EA,k, EB,1, . . . , EB,k, F1, . . . , Fk and P 1

1 , . . . , P
t
k satisfying (G1)–(G7)

of Definition 3.7.1.

Construct a set A ⊆ V (T ) by greedily choosing kt vertices of least possible in-degree

in T , and likewise construct a set B′ ⊆ V (T ) by greedily choosing kt vertices of least

possible out-degree in T . Note that by choosing the vertices in A and B′ suitably, we may

assume that A ∩B′ = ∅. (Since n ≥ δ0(T ) ≥ 2kt, this is indeed possible.) Define

d− := min{d−(v) : v ∈ V (T ) \ (A ∪B′)},

d+ := min{d+(v) : v ∈ V (T ) \ (A ∪B′)}.

Note that d−(a) ≤ d− for all a ∈ A and d+(b) ≤ d+ for all b ∈ B′.

Our first aim is to choose the sets A1
1, . . . , A

t
k using Lemma 3.8.7. Partition A arbitrar-

ily into sets A1, . . . , Ak of size t, and write Ai =: {a1i , . . . , ati}. Since |B′| = kt ≤ δ0(T )/2,

we have

2c+1 + c|A| ≤ 400t+ ckt ≤ C

2
k2 log k ≤ δ−(T )− |B′| ≤ δ−(T −B′).

Thus we can apply Lemma 3.8.7 to T − B′, A and c in order to obtain almost out-

dominating sets A`i 3 a`i and corresponding exceptional sets E`
A,i as in the statement of

Lemma 3.8.7 (for all i ∈ [k] and all ` ∈ [t]). WriteA∗i := A1
i∪· · ·∪Ati andA∗ := A∗1∪· · ·∪A∗k.

Let us now verify (G1). By Lemma 3.8.7(ii), (iv) and (vi), each T [A`i ] is a transitive

tournament with head a`i , 2 ≤ |A`i | ≤ c, and the sets A1
1, . . . , A

t
k are all disjoint. In

particular, A = {h(A`i) : i ∈ [k], ` ∈ [t]}. We claim in addition that d+(a`i) ≥ 2n/5.

Indeed, Proposition 3.6.2 implies that T has at most 4n/5 + 1 vertices of out-degree at

most 2n/5, and hence at least n/5− 1 vertices of out-degree at least 2n/5. Moreover,

|A| = kt ≤ Ck2 log k

5
− 1 ≤ n

5
− 1.
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So since the vertices of A were chosen to have minimal in-degree in T , it follows that

d+(a`i) ≥ 2n/5 for all i ∈ [k] and all ` ∈ [t]. Thus (G1) holds.

We will next apply Lemma 3.8.8 in order to obtain the sets B1
1 , . . . , B

t
k. To do this, we

first partition B′ arbitrarily into sets B′1, . . . , B
′
k of size t, and write B′i =: {b′1i , . . . , b′ti }.

Since |A∗| ≤ ktc ≤ δ0(T )/2, we have

2c+1 + c|B| ≤ 400t+ ckt ≤ C

2
k2 log k ≤ δ+(T )− |A∗| ≤ δ+(T − A∗).

Thus we can apply Lemma 3.8.8 to T − A∗, B′ and c in order to obtain almost in-

dominating sets B`
i 3 b′`i and corresponding exceptional sets E`

B,i as in the statement of

Lemma 3.8.8 (for all i ∈ [k] and all ` ∈ [t]). Write B∗i := B1
i ∪ · · · ∪ Bt

i and B∗ :=

B∗1 ∪ · · · ∪B∗k. Similarly as before one can show that (G2) holds.

We now define the exceptional sets EA,i and EB,i. For all i ∈ [k], let

EA,i := (E1
A,i ∪ · · · ∪ Et

A,i) \B∗ and EB,i := (E1
B,i ∪ · · · ∪ Et

B,i).

Recall from Lemmas 3.8.7(v) and 3.8.8(v) that E`
A,i∩A∗ = ∅ and E`

B,i∩ (A∗∪B∗) = ∅ for

all i ∈ [k] and all ` ∈ [t]. Thus EA,i∩(A∗i ∪B∗i ) = ∅ and EB,i∩(A∗i ∪B∗i ) = ∅ for all i ∈ [k].

By Lemma 3.8.7(i), each A`i out-dominates V (T ) \ (A∗∪B∗∪EA,i). Lemma 3.8.7(iii) and

the fact that a`i ∈ A together imply that

|EA,i| ≤
t∑

`=1

|E`
A,i| ≤

t∑
`=1

1

2c−1
d−(a`i) ≤

t

2c−1
d− ≤

d−
50
, (3.8.10)

so (G3) holds. Similarly, by Lemma 3.8.8(i), each B`
i in-dominates V (T )\(A∗∪B∗∪EB,i),

and as in (3.8.10) one can show that |EB,i| ≤ d+/50. Thus (G4) holds.

We now use Lemma 3.8.1 in order to define the sets F1, . . . , Fk of covering edges.

Recall from (G7) that we require F1∪· · ·∪Fk to be a matching in T − (A∗∪B∗). Suppose
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that for some (possibly empty) subset V ′ ( A∗ ∪ B∗ we have defined a set {ev : v ∈ V ′}

of independent edges in T − (A∗ ∪ B∗) such that ev is a covering edge for v and ev 6= ev′

whenever v 6= v′. Pick any vertex v ∈ (A∗ ∪ B∗) \ V ′. We will next define ev. Let T ′ be

the tournament obtained from T by deleting (A∗ ∪B∗) \ {v} as well as the endvertices of

the covering edges ev′ for all v′ ∈ V ′. Then

|V (T ) \ V (T ′)| ≤ |A∗ ∪B∗|+ 2|A∗ ∪B∗| ≤ 3ktc ≤ C

2
k2 log k,

so by Proposition 3.4.7, T ′ is still (Ck2 log k/2)-linked and hence strongly 2-connected.

We may therefore apply Lemma 3.8.1 to find a covering edge ev for v in T ′. Continue in

this way until we have chosen ev for each v ∈ A∗ ∪ B∗ and let Fi := {ev : v ∈ A∗i ∪ B∗i }.

Then the first part of (G7) holds.

It remains to choose the paths P 1
1 , . . . , P

t
k. Recall from (G6) that we need to ensure

that (A ∪B′) \ (A∗i ∪B∗i ) ⊆ V (P t
i ) for all i ∈ [k]. We could achieve this by incorporating

each of these vertices using the high linkedness of T . However, since |A ∪ B′| = 2kt, a

direct application of linkedness would require T to be Θ(k3)-linked. For each i ∈ [k], we

will therefore first choose a path cover Qi of T [(A∪B′)\(A∗i ∪B∗i )] consisting of few paths

and then use Lemma 3.8.2 (and thereby the high linkedness of T ) to incorporate these

paths into P t
i . This has the advantage that we will only need T to be Θ(k2 log k)-linked.

Let us first choose the path covers Qi of T [(A∪B′)\(A∗i ∪B∗i )]. Suppose that for some

j ∈ [k] we have already found path systems Q1, . . . ,Qj−1 such that, for each i < j, Qi is

a path cover of T [(A∪B′) \ (A∗i ∪B∗i )] with |Qi| ≤ 2k, and such that for all i < i′ < j the

paths in Qi are edge-disjoint from paths in Qi′ . To choose Qj, apply Corollary 3.6.4 to

the oriented graph T ′′ obtained from T [(A ∪ B′) \ (A∗j ∪ B∗j )] by deleting the edges of all

the paths in Q1, . . . ,Qj−1. Since δ(T ′′) ≥ |T ′′| − 1− 2(j − 1) ≥ |T ′′| − 2k, Corollary 3.6.4

ensures that |Qj| ≤ 2k.

103



We will now choose P 1
1 , . . . , P

t
k. For each i ∈ [k] and each ` ∈ [t], let a′`i denote the

tail of T [A`i ] and b`i the head of T [B`
i ]. Let

A′ := {a′`i : i ∈ [k], ` ∈ [t]} and B := {b`i : i ∈ [k], ` ∈ [t]}.

For all i ∈ [k] and all ` ∈ [t − 1] let Q`i := ∅. For all i ∈ [k] let Qti be the path system

consisting of all the edges in Fi (each viewed as a path of length one) and all the paths

in Qi. Let T ′′′ := T − ((A∗ ∪B∗) \ (A ∪A′ ∪B ∪B′)). Our aim is to apply Lemma 3.8.2

with s := 30 to T ′′′, the vertices b11, . . . , b
t
k, a

′1
1 , . . . , a

′t
k , and the path systems Q1

1, . . . ,Qtk.

To verify that T ′′′ is sufficiently highly linked, let m be as defined in (3.8.3) and note that

m = kt+ 3
k∑
i=1

|Fi|+
k∑
i=1

|Qi|+

∣∣∣∣∣
k⋃
i=1

V (Qi)

∣∣∣∣∣ ≤ kt+ 6ckt+ 2k2 + |A ∪B′|

≤ 5kt+ 6ckt ≤ C

70
k2 log k.

Together with the fact that |T | − |T ′′′| ≤ 2ckt and Proposition 3.4.7 this implies that T ′′′

is 2 · 30m-linked. So we can indeed apply Lemma 3.8.2 to find edge-disjoint paths P `
i in

T ′′′ (for all i ∈ [k] and all ` ∈ [t]) satisfying the following properties:

(i) P `
i is a path from b`i to a′`i .

(ii) Q ⊆ P `
i for all Q ∈ Q`i .

(iii) V (P `
i ) ∩ V (Pm

j ) ⊆ V (Q`i) ∩ V (Qmj ) for all (i, `) 6= (j,m).

(iv) We have that

|P 1
1 ∪ · · · ∪ P t

k| ≤
n

30
+ 2

k∑
i=1

|Fi|+

∣∣∣∣∣
k⋃
i=1

V (Qi)

∣∣∣∣∣ =
n

30
+ 2|A∗ ∪B∗|+ |A ∪B′|

≤ n

30
+ 4ckt+ 2kt ≤ n

20
.
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Condition (ii) implies that Fi ⊆ P t
i and (A ∪ B′) \ (A∗i ∪ B∗i ) = V (Qi) ⊆ V (Qti) ⊆ V (P t

i )

for all i ∈ [k]. Thus (G6) holds.

We now prove that (G5) holds. From (iii) and the fact that that V (Q`i)∩ V (Qmi ) = ∅

for all i ∈ [k], ` 6= m, it follows that P 1
i , . . . , P

t
i are vertex-disjoint for all i ∈ [k]. Together

with (i) and (iv) this implies that in order to check (G5), it remains to show that

V (Int(P `
i )) ∩ (A∗ ∪B∗) ⊆ (A ∪B′) \ (A∗i ∪B∗i ) for all i ∈ [k], ` ∈ [t]. (3.8.11)

Clearly,

V (P `
i ) ∩ (A∗ ∪B∗) ⊆ V (T ′′′) ∩ (A∗ ∪B∗) (3.8.12)

= A ∪ A′ ∪B ∪B′ for all i ∈ [k], ` ∈ [t].

By definition, we have (A′ ∪ B) ∩ V (Qmj ) = ∅ for all j ∈ [k],m ∈ [t]. It therefore follows

from (iii) that each vertex in A′∪B may appear in at most one path Pm
j . However, by (i)

each vertex in A′ ∪B is an endpoint of Pm
j for some j ∈ [k],m ∈ [t]. Hence

V (Int(P `
i )) ∩ (A′ ∪B) = ∅ for all i ∈ [k], ` ∈ [t]. (3.8.13)

Fix i ∈ [k], ` ∈ [t] and take j ∈ [k] \ {i}. We have (A ∪B′) ∩ (A∗i ∪B∗i ) ∩ V (Q`i) = ∅, and

by (G6) we have (A ∪B′) ∩ (A∗i ∪B∗i ) ⊆ (A ∪B′) \ (A∗j ∪B∗j ) ⊆ V (P t
j ). Applying (iii) to

P `
i and P t

j , it therefore follows that

V (P `
i ) ∩ (A ∪B′) ∩ (A∗i ∪B∗i ) = ∅ for all i ∈ [k], ` ∈ [t]. (3.8.14)

(3.8.12)–(3.8.14) now imply (3.8.11). Thus (G5) holds.
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So it remains to check that the last part of (G7) holds too, i.e. that F act
i ∩E(P `

j ) = ∅

for all i, j ∈ [k] and all ` ∈ [t]. Consider any covering edge ev = xvyv ∈ Fi. Then (G6)

implies that xv and yv are contained in P t
i . Moreover, (iii) implies that V (P t

i )∩ V (P `
j ) ⊆

V (Qti) ∩ V (Q`j) ⊆ A ∪ B′ whenever (i, t) 6= (j, `). Since xv, yv /∈ A ∪ B′, this shows

that xvv, vyv /∈ E(P `
j ) whenever (i, t) 6= (j, `). But since ev ∈ E(P t

i ), we also have

xvv, vyv /∈ E(P t
i ). This completes the proof that T is (C, k, t, c)-good. �

3.9 Concluding remarks

3.9.1 Eliminating the logarithmic factor

A natural approach to improve the bound in Theorem 3.1.2 would be to reduce the

parameter c, i.e. to consider smaller ‘almost dominating’ sets. In particular, if we could

choose c independent of k, then we would obtain the (conjectured) optimal bound of

Θ(k2) for the linkedness. The obstacle to this in our argument is given by (3.8.10), which

requires that c has a logarithmic dependence on k.

3.9.2 Algorithmic aspects

As remarked in the introduction, the proof of Theorem 3.1.2 is algorithmic. Indeed, when

we apply the assumption of high linkedness to find appropriate paths in the proof of

Lemma 3.8.9 (via Lemma 3.8.2), we can make use of the main result of [22] that these

can be found in polynomial time. Moreover, the proof of the Gallai-Milgram theorem

(Theorem 3.6.3) is also algorithmic (see [18]). These are the only tools we need in the

proof, and the proof itself immediately translates into a polynomial time algorithm.
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Chapter 4

Optimal covers with Hamilton

cycles in random graphs

4.1 Introduction

Given graphs H and G, an H-decomposition of G is a set of edge-disjoint copies of H in

G which cover all edges of G. The study of such decompositions forms an important area

of Combinatorics but it is notoriously difficult. Often an H-decomposition does not exist

(or it may be out of reach of current methods). In this case, the natural approach is to

study the packing and covering versions of the problem. Here an H-packing is a set of

edge-disjoint copies of H in G and an H-covering is a set of (not necessarily edge-disjoint)

copies of H covering all the edges of G. An H-packing is optimal if it has the largest

possible size and an H-covering is optimal if it has the smallest possible size. The two

problems of finding (nearly) optimal packings and coverings may be viewed as ‘dual’ to

each other.

By far the most famous problem of this kind is the Erdős-Hanani problem on pack-

ing and covering a complete r-uniform hypergraph with k-cliques, which was solved by

Rödl [83]. In this case, it turns out that the (asymptotic) covering and packing versions of
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the problem are trivially equivalent and the solutions have approximately the same value.

Packings of Hamilton cycles in random graphs Gn,p were first studied by Bollobás and

Frieze [16]. (Here Gn,p denotes the binomial random graph on n vertices with edge prob-

ability p.) Recently, the problem of finding optimal packings of edge-disjoint Hamilton

cycles in a random graph has received a large amount of attention, leading to its complete

solution in a series of papers by several authors (see below for more details on the history

of the problem). The size of a packing of Hamilton cycles in a graph G is obviously at

most bδ(G)/2c, and this trivial bound turns out to be tight in the case of Gn,p for any p.

The covering version of the problem was first investigated by Glebov, Krivelevich

and Szabó [39]. Note that the trivial bound on the size an optimal covering of a graph

G with Hamilton cycles is d∆(G)/2e. They showed that for p ≥ n−1+ε, this bound is

a.a.s. approximately tight, i.e. in this range, a.a.s. the edges of Gn,p can be covered with

(1 + o(1))∆(Gn,p)/2 Hamilton cycles. Here we say that a property A holds a.a.s. (asymp-

totically almost surely), if the probability that A holds tends to 1 as n tends to infinity.

The authors of [39] also conjectured that their approximate bound could be extended

to any p = ω(log n/n). We are able to go further and prove the corresponding exact

bound, unless p tends to 0 or 1 rather quickly.

Theorem 4.1.1 Suppose that G ∼ Gn,p, where log117 n
n
≤ p ≤ 1 − n−1/8. Then a.a.s. the

edges of G can be covered by d∆(G)/2e Hamilton cycles.

Note that the exact bound fails when p is sufficiently large. Indeed, let n ≥ 5 be odd and

take p = 1− n−2. Then with Ω(1) probability, G ∼ Gn,p is the complete graph with one

edge uv removed. We claim that in this case, G cannot be covered by (n− 1)/2 Hamilton

cycles. Suppose such a cover exists. Then exactly one edge is contained in more than

one Hamilton cycle in the cover. But u and v both have odd degrees, and hence are both

incident to an edge contained in more than one Hamilton cycle. Since uv /∈ E(G), these

edges must be distinct and we have a contradiction.
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Note also that even though our result does not hold for p > 1− n−1/8, it still implies

the conjecture of [39] in this range. Indeed, if G ∼ Gn,p with p > 1−n−1/8, we may simply

partition G into two edge-disjoint graphs uniformly at random and apply Theorem 4.1.1

to each one to a.a.s. cover G with (1 + o(1))n/2 Hamilton cycles.

Unlike the situation with the Erdős-Hanani problem, the packing and covering prob-

lems are not equivalent in the case of Hamilton cycles. However, they do turn out to

be closely related, so we now summarize the known results leading to the solution of the

packing problem for Hamilton cycles in random graphs. Here ‘exact’ refers to a bound of

bδ(Gn,p)/2c, and ε is a positive constant.

authors range of p

Ajtai, Komlós & Szemerédi [3] δ(Gn,p) = 2 exact

Bollobás & Frieze [16] δ(Gn,p) bounded exact

Frieze & Krivelevich [36] p constant approx.

Frieze & Krivelevich [37] p = (1+o(1)) logn
n

exact

Knox, Kühn & Osthus [50] p ≥ C logn
n

, C large approx.

Ben-Shimon, Krivelevich & Sudakov [13] (1+o(1)) logn
n

≤ p ≤ 1.02 logn
n

exact

Knox, Kühn & Osthus [51] log50 n
n
≤ p ≤ 1− n−1/5 exact

Krivelevich & Samotij [54] logn
n
≤ p ≤ n−1+ε exact

Kühn & Osthus [59] p ≥ 2/3 exact

In particular, the results in [16, 51, 54, 59] (of which [51, 54] cover the main range)

together show that for any p, a.a.s. the size of an optimal packing of Hamilton cycles in

Gn,p is bδ(Gn,p)/2c. This confirms a conjecture of Frieze and Krivelevich [37] (a stronger

conjecture was made in [36]).

The result in [59] is based on a recent result of Kühn and Osthus [61] which guarantees

the existence of a Hamilton decomposition in every regular ‘robustly expanding’ digraph.
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The main application of the latter was the proof (for large tournaments) of a conjecture

of Kelly that every regular tournament has a Hamilton decomposition. But as discussed

in [61, 59], the result in [61] also has a number of further applications to packings of

Hamilton cycles in dense graphs and (quasi-)random graphs.

Recall that the above results imply an optimal packing result for any p. However, for

the covering version, we need p to be large enough to ensure the existence of at least one

Hamilton cycle before we can find any covering at all. This is the reason for the restriction

p = ω(log n/n) in the conjecture of Glebov, Krivelevich and Szabó [39] mentioned above.

However, they asked the intriguing question whether this might extend to p which is

closer to the threshold log n/n for the appearance of a Hamilton cycle in a random graph.

In fact, it would be interesting to know whether a ‘hitting time’ result holds. For this,

consider the well-known ‘evolutionary’ random graph process Gn,t: Let Gn,0 be the empty

graph on n vertices. Consider a random ordering of the edges of Kn. Let Gn,t be obtained

from Gn,t−1 by adding the tth edge in the ordering. Given a property P , let t(P) denote

the hitting time of P , i.e. the smallest t so that Gn,t has P .

Question 4.1.2 Let C denote the property that an optimal covering of a graph G with

Hamilton cycles has size d∆(G)/2e. Let H denote the property that a graph G has a

Hamilton cycle. Is it true that a.a.s. t(C) = t(H)?

Note that C is not monotone. In fact, it is not even the case that for all t > t(C), Gn,t

a.a.s. has C. Taking n ≥ 5 odd and t =
(
n
2

)
− 1, Gn,t is the complete graph with one edge

removed – which, as noted above, may not be covered by (n − 1)/2 Hamilton cycles. It

would be interesting to determine (approximately) the ranges of t such that a.a.s. Gn,t

has C.

The approximate covering result of Glebov, Krivelevich and Szabó [39] uses the ap-

proximate packing result in [50] as a tool. More precisely, their proof applies the result

in [50] to obtain an almost optimal packing. Then the strategy is to add a comparatively
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small number of Hamilton cycles which cover the remaining edges. Instead, our proof of

Theorem 4.1.1 is based on the main technical lemma (Lemma 47) of the exact packing re-

sult in [51]. This is stated as Lemma 4.4.1 in the current chapter and (roughly) states the

following: Suppose we are given a regular graph H which is close to being pseudorandom

and a pseudorandom graph G1, where G1 is allowed to be surprisingly sparse compared

to H. Then we can find a set of edge-disjoint Hamilton cycles in G1 ∪ H covering all

edges of H. Our proof involves several successive applications of this result, where we

eventually cover all edges of Gn,p. In addition, our proof crucially relies on the fact that in

the range of p we consider, there is a small but significant gap between the degree of the

unique vertex x0 of maximum degree and the other vertex degrees (and the same holds

for the vertex of minimum degree). This means that for all vertices x 6= x0, we can afford

to cover a few edges incident to x more than once. The analogous observation for the

minimum degree was exploited in [51] as well.

The result in [39] also holds for quasi-random graphs of edge density at least n−1+ε,

provided that they have an almost optimal packing of Hamilton cycles. It would be

interesting to obtain such results for sparser quasi-random graphs too. In fact, the result

in [51] does apply in a quasi-random setting (see Theorem 48 in [51]), but the assumptions

are quite restrictive and it is not clear to which extent they can be used to prove results

for (n, d, λ)-graphs, say. Note that even if the assumptions of [51] could be weakened, our

results would still not immediately generalise to (n, d, λ)-graphs.

This chapter is organized as follows: In the next section, we collect several results

and definitions regarding pseudorandom graphs, mainly from [51]. In Section 4.3, we

apply Tutte’s Theorem to give results which enable us to add a small number of edges to

certain almost-regular graphs in order to turn them into regular graphs (without increasing

the maximum degree). Finally, in Section 4.4 we put together all these tools to prove

Theorem 4.1.1.
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4.2 Pseudorandom graphs

The purpose of this section is to collect all the properties of Gn,p that we need for our

proof of Theorem 4.1.1. Throughout the rest of the chapter, we always assume that n is

sufficiently large for our estimates to hold. In particular, some of our lemmas only hold

for sufficiently large n, but we do not state this explicitly. We write log for the natural

logarithm and loga n for (log n)a. Given functions f, g : N → R, we write f = ω(g) if

f/g →∞ as n→∞. We denote the average degree of a graph G by d(G).

We will need the following Chernoff bound (see e.g. Theorem 2.1 in [46]).

Lemma 4.2.1 Suppose that X ∼ Bin(n, p). For any 0 < a < 1 we have

P(X ≤ (1− a)EX) ≤ e−
a2

3
EX .

The following notion was first introduced by Thomason [88].

Definition 4.2.2 Let p, β ≥ 0 with p ≤ 1. A graph G is (p, β)-jumbled if for all non-

empty S ⊆ V (G) we have ∣∣∣∣eG(S)− p
(
|S|
2

)∣∣∣∣ < β|S|.

We will also use the following immediate consequence of Definition 4.2.2. Suppose that

G is a (p, β)-jumbled graph and X, Y ⊆ V (G) are disjoint. Then

|e(X, Y )− p|X||Y || ≤ 2β(|X|+ |Y |). (4.2.3)

To see this, note that e(X, Y ) = e(X ∪ Y ) − e(X) − e(Y ). Now (4.2.3) follows from

Definition 4.2.2 by applying the triangle inequality.

The following notion was introduced in [51].
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Definition 4.2.4 Let G be a graph on n vertices. For a set T ⊆ V (G), let dG(T ) :=

1
|T |
∑

t∈T dG(t) be the average degree of the vertices of T in G. Then G is strongly 2-

jumping if for all non-empty T ⊆ V (G) we have

dG(T ) ≥ δ(G) + min{|T | − 1, log2 n}.

Note that a strongly 2-jumping graph G is ‘2-jumping’, i.e. it has a unique vertex of

minimum degree and all other vertices have degree at least δ(G) + 2.

The next definition collects (most of) the pseudorandomness properties that we need.

Definition 4.2.5 A graph G on n vertices is p-pseudorandom if all of the following hold:

(P1) G is (p, 2
√
np(1− p))-jumbled.

(P2) For any disjoint S, T ⊆ V (G),

(i) if
(

1
|S| + 1

|T |

)
logn
p
≥ 7

2
, then eG(S, T ) ≤ 2(|S|+ |T |) log n,

(ii) if
(

1
|S| + 1

|T |

)
logn
p
≤ 7

2
, then eG(S, T ) ≤ 7|S||T |p.

(P3) For any S ⊆ V (G),

(i) if logn
|S|p ≥

7
4
, then e(S) ≤ 2|S| log n,

(ii) if logn
|S|p ≤

7
4
, then e(S) ≤ 7

2
|S|2p.

(P4) We have np− 2
√
np log n ≤ δ(G) ≤ np− 200

√
np(1− p).

(P5) We have ∆(G) ≤ np+ 2
√
np log n.

(P6) G is strongly 2-jumping.

The following definition is essentially the same, except that some of the bounds are more

restrictive.
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Definition 4.2.6 A graph G on n vertices is strongly p-pseudorandom if all of the fol-

lowing hold:

(SP1) G is (p, 3
2

√
np(1− p))-jumbled.

(SP2) For any disjoint S, T ⊆ V (G),

(i) if
(

1
|S| + 1

|T |

)
logn
p
≥ 7

2
, then eG(S, T ) ≤ 3

2
(|S|+ |T |) log n,

(ii) if
(

1
|S| + 1

|T |

)
logn
p
≤ 7

2
, then eG(S, T ) ≤ 6|S||T |p.

(SP3) For any S ⊆ V (G),

(i) if logn
|S|p ≥

7
4
, then e(S) ≤ 3

2
|S| log n,

(ii) if logn
|S|p ≤

7
4
, then e(S) ≤ 3|S|2p.

(SP4) We have np− 2
√
np log n ≤ δ(G) ≤ np− 200

√
np(1− p).

(SP5) We have ∆(G) ≤ np+ 15
8

√
np log n.

(SP6) G is strongly 2-jumping.

The following lemma is an immediate consequence of Lemmas 9–11, 13 and 14 from

[51].

Lemma 4.2.7 Let G ∼ Gn,p, where 482 log7 n/n ≤ p ≤ 1 − 36 log
7
2 n/
√
n. Then G is

strongly p-pseudorandom with probability at least 1− 11/ log n.

The next observation shows that if we add a few edges at some vertex x0 of a strongly

pseudorandom graph such that none of these edges is incident to the unique vertex of

minimum degree, then we obtain a graph which is still pseudorandom.

Lemma 4.2.8 Suppose that G is a strongly p-pseudorandom graph with p, 1−p = ω (1/n).

Let y1 be the (unique) vertex of minimum degree in G and let x0 6= y1 be any other vertex.
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Let F be a collection of edges of Kn not contained in G which are incident to x0 but not

to y1 and such that |F | ≤
√
np log n/8. Then the graph G+ F is p-pseudorandom.

Proof. Let G′ := G+F . Clearly, (SP4) and (SP6) are not affected by adding the edges

of F , so G′ satisfies (P4) and (P6). The bound on |F | together with (SP5) immediately

imply that G′ satisfies (P5).

We now show that G′ satisfies (P1). Indeed, for any S ⊆ V (G′), (SP1) implies that

∣∣∣∣eG′(S)− p
(
|S|
2

)∣∣∣∣ ≤ |eG′(S)− eG(S)|+
∣∣∣∣eG(S)− p

(
|S|
2

)∣∣∣∣
≤ |S|+ 3

2

√
np(1− p)|S| ≤ 2

√
np(1− p)|S|.

To check (P2), suppose that S, T ⊆ V (G′) are disjoint. Without loss of generality we

may assume that |S| ≤ |T |. First suppose
(

1
|S| + 1

|T |

)
logn
p
≥ 7

2
. Then (i) of (SP2) implies

that

eG′(S, T ) ≤ eG(S, T ) + |T | ≤ 3

2
(|S|+ |T |) log n+ |T | ≤ 2 (|S|+ |T |) log n,

as required. Now suppose that
(

1
|S| + 1

|T |

)
logn
p
≤ 7

2
. Then (ii) of (SP2) implies that

eG′(S, T ) ≤ eG(S, T ) + |T | ≤ |T | (6p|S|+ 1) ≤ 7|S||T |p.

So (ii) of (P2) holds. The proof that (P3) holds is essentially the same. �

We say that a graph G on n vertices is u-downjumping if it has a unique vertex x0 of

maximum degree, and d(x0) ≥ d(x) + u for all x 6= x0. The following result follows from

Lemma 17 in [51] by considering complements. The latter lemma in turn follows easily

from Theorem 3.15 in [14].

Lemma 4.2.9 Let G ∼ Gn,p with p, 1 − p = ω (log n/n). Then a.a.s. G is 5

√
np(1−p)
logn

-
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downjumping.

The next result is intuitively obvious, but due to possible correlations between vertex

degrees, it does merit some justification.

Lemma 4.2.10 Suppose that log2 n/n < p′ ≤ p ≤ 1 − log2 n/n, that p′ ≤ 1/2 and that

G ∼ Gn,p. Let H be a random subgraph of G obtained by including each edge of G into H

with probability p′/p. Then a.a.s. G contains a unique vertex x0 of maximum degree and

x0 does not have minimum degree in H.

Proof. Fix any ε > 0. Let A be the event that G contains a unique vertex x0 of maximum

degree and that dH(x0) = δ(H). Let f := np′ −
√
np′ log log n. Let B be the event that

δ(H) ≤ f . Note that H ∼ Gn,p′ . So Corollary 3.13 of [15] implies that P(B) ≤ ε. Let C

be the event that G contains a unique vertex x0 of maximum degree and that dH(x0) ≤ f

and note that A ∩ B ⊆ C. Note also that P(A) ≤ P(A ∩ B) + P(B) ≤ P(C) + ε. We

say that a graph F on n vertices is typical if ∆(F ) ≥ np and there is a unique vertex of

degree ∆(F ). Now let D be the event that G is typical. Then Corollary 3.13 of [15] and

Lemma 4.2.9 together imply that P(D) ≤ ε. For any fixed graph F on n vertices, let EF

denote the event that G = F . Then P(C) ≤ ε +
∑

F : F typical P(C | EF )P(EF ). Suppose

that EF holds, where F is typical. Let N := dG(x0) (note that EF determines N and x0).

Whether the event C holds is now determined by a sequence of N Bernoulli trials, each

with success probability p′/p. So let X ∼ Bin(N, p′/p). Then E(X) = N(p′/p) ≥ p′n,

which implies that f ≤ E(X)(1−
√

log log n/E(X)). Then an application of Lemma 4.2.1

gives us

P(C | EF ) = P(X ≤ f) ≤ e− log logn/3 ≤ ε.

So P(C) ≤ 2ε, which in turn implies that P(A) ≤ 3ε. Since ε was arbitrary, this implies

the result. �
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Hefetz, Krivelevich and Szabó [44] proved a criterion for Hamiltonicity which requires

only a rather weak quasirandomness notion. We will use a special case of their Theorem 1.2

in [44]. In that theorem, given a set S of vertices in a graph G, we let N(S) denote the

external neighbourhood of S, i.e. the set of all those vertices x /∈ S for which there is

some vertex y ∈ S with xy ∈ E(G). Also, we say that G is Hamilton-connected if for any

pair x, y of distinct vertices there is a Hamilton path with endpoints x and y.

Theorem 4.2.11 Suppose that G is a graph on n vertices which satisfies the following:

(HP1) For every S ⊆ V (G) with |S| ≤ n/
√

log n, we have |N(S)| ≥ 20|S|.

(HP2) G contains at least one edge between any two disjoint subsets A,B ⊆ V (G) with

|A|, |B| ≥ n/ log n.

Then G is Hamilton-connected.

Theorem 4.2.12 Let G ∼ Gn,p with log8 n/n ≤ p ≤ 1− n−1/3, and let x0 be a vertex of

maximum degree in G. Then a.a.s. G− x0 is Hamilton-connected.

Proof. It suffices to check that G − x0 satisfies (HP1) and (HP2). For p in the above

range, these properties are well known to hold a.a.s. for G with room to spare and so

also hold for G− x0. For completeness we point out explicit references. To check (HP1),

first note that Lemma 4.2.7 implies that G is p-pseudorandom. So Corollary 37 of [51]

applied with Ax := NG(x)\{x0} now implies that (HP1) holds. (HP2) is a special case of

Theorem 2.11 in [15] – the latter guarantees a.a.s. the existence of many edges between

A and B. �

4.3 Extending graphs into regular graphs

The aim of this section is to show that whenever H is a graph which satisfies certain

conditions and G is a p-pseudorandom graph on the same vertex set which is edge-disjoint
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from H, then G contains a spanning subgraph H ′ whose degree sequence complements

that of H, i.e. such that H ∪H ′ is ∆(H)-regular. The conditions on H that we need are

the following:

• H has even maximum degree.

• H is
√
np-downjumping.

• H satisfies ∆(H)− δ(H) ≤ (np log n)5/7.

In order to show this we will use Tutte’s f -factor theorem, for which we need to introduce

the following notation. Given a graph G = (V,E) and a function f : V → N ∪ {0},

an f -factor of G is a subgraph G′ of G such that dG′(v) = f(v) for all v ∈ V . Our

approach will then be to set f(v) := ∆(H) − dH(v) and attempt to find an f -factor in

the pseudorandom graph G. The following result of Tutte [92, 93] gives a necessary and

sufficient condition for a graph to contain an f -factor.

Theorem 4.3.1 A graph G = (V,E) has an f -factor if and only if for every two disjoint

subsets X, Y ⊆ V , there are at most

∑
x∈X

f(x) +
∑
y∈Y

(d(y)− f(y))− e(X, Y )

connected components K of G−X − Y such that

∑
x∈K

f(x) + e(K,Y )

is odd.

When applying this result, we will often bound the number of components K of G−X−Y

for which
∑

x∈K f(x) + e(K,Y ) is odd by the total number of components of G−X − Y .
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The next lemma (which is a special case of Lemma 20 in [51]) implies that there are at

most |X|+ |Y | such components.

Lemma 4.3.2 Let G = (V,E) be a p-pseudorandom graph on n vertices with pn ≥ log n.

Then for any nonempty B ⊆ V , the number of components of G[V \ B] is at most |B|.

In particular, G is connected.

The following lemma guarantees an f -factor in a pseudorandom graph, as long as∑
v∈V f(v) is even, f(v) is not too large and for all but at most one vertex f(v) is not too

small either. (Clearly, the requirement that
∑

v∈V f(v) is even is necessary.)

Lemma 4.3.3 Let G = (V,E) be a p-pseudorandom graph on n vertices with pn ≥

log21 n, and let f : V → N∪ {0} be a function such that
∑

v∈V f(v) is even. Suppose that

G contains a vertex x0 such that f(x0) is even and such that

f(x0) ≤ (np log n)
5
7 and

√
np ≤ f(v) ≤ (np log n)

5
7 for all v ∈ V \ {x0}.

Then G has an f -factor.

Proof. Given two disjoint sets X, Y ⊆ V , we define αf (X, Y ) to be the number of

connected components K of G−X − Y such that

∑
x∈K

f(x) + e(K,Y )

is odd. We also define

βf (X, Y ) :=
∑
x∈X

f(x) +
∑
y∈Y

(d(y)− f(y))− e(X, Y ).

By Theorem 4.3.1, it then suffices to prove that αf (X, Y ) ≤ βf (X, Y ).
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We will first show that αf (X, Y ) ≤ |X| + |Y |. If either X or Y is nonempty, this

follows immediately from Lemma 4.3.2. If both X and Y are empty, then we must show

that αf (∅, ∅) = 0. But this holds since G is connected by Lemma 4.3.2, and
∑

x∈V f(x)

is even by hypothesis. Hence αf (X, Y ) ≤ |X|+ |Y | in all cases.

Hence if

βf (X, Y ) ≥ |X|+ |Y | (4.3.4)

holds, then we have αf (X, Y ) ≤ βf (X, Y ) and we are done. If X = Y = ∅, (4.3.4) holds.

So it remains to consider the following cases.

Case 1. |X| = 1.

Let x denote the unique vertex in X. Suppose first that Y = ∅. In this case

Lemma 4.3.2 implies that G − x = G − X − Y is connected. If x = x0 then∑
v∈V \{x} f(v) =

∑
v∈V f(v) − f(x) is even. Thus αf (X, Y ) = 0 and so βf (X, Y ) ≥

αf (X, Y ), as desired. If x 6= x0 then βf (X, Y ) = f(x) ≥ √np ≥ 1 ≥ αf (X, Y ), as

desired.

Thus we may assume that Y 6= ∅. Then

βf (X, Y ) ≥
∑
y∈Y

(d(y)− f(y))− |X||Y |

(P4)

≥
(
np− 2

√
np log n− (np log n)

5
7

)
|Y | − |Y |

≥ np

2
|Y | ≥ |X|+ |Y |

and so (4.3.4) holds.

Case 2. |X| > 1 and |Y | ≤ 1
4
|X|(np)− 3

14 log−
5
7 n.
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Since
∑

y∈Y d(y) ≥ e(X, Y ) it follows that in this case we have

βf (X, Y ) ≥
∑
x∈X

f(x)−
∑
y∈Y

f(y) ≥ (|X| − 1)
√
np− |Y |(np log n)

5
7

≥
√
np

2
|X| −

√
np

4
|X| ≥ 2|X| ≥ |X|+ |Y |,

and so (4.3.4) holds.

Case 3. 1 < |X| ≤ n
2

and |Y | > 1
4
|X|(np)− 3

14 log−
5
7 n.

It follows by (P1) and (4.2.3) that

e(X, Y ) ≤ p|X||Y |+ 4
√
np(|X|+ |Y |).

Thus

βf (X, Y )− αf (X, Y ) ≥
∑
y∈Y

(d(y)− f(y))− e(X, Y )− |X| − |Y |

(P4)

≥
(
np− 2

√
np log n− (np log n)

5
7

)
|Y | − p|X||Y |

−5
√
np(|X|+ |Y |)

≥
(
p(n− |X|)− 2(np log n)

5
7

)
|Y | − 5

√
np|X| (4.3.5)

≥
(np

2
− 2(np log n)

5
7

)
|Y | − 5

√
np|X|

≥ 1

4

(
(np)

11
14

2 log
5
7 n
− 22
√
np

)
|X| ≥ 0,

as desired.

Case 4. |X| > n
2

and |Y | > 1
4
|X|(np)− 3

14 log−
5
7 n.
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In this case we have

n− |X| ≥ |Y | ≥ |X|
4(np)

3
14 log

5
7 n
≥ n

11
14

8p
3
14 log

5
7 n

.

But as in the previous case, one can show that (4.3.5) still holds and so

βf (X, Y )− αf (X, Y ) ≥
(
p(n− |X|)− 2(np log n)

5
7

)
|Y | − 5

√
np|X|

≥

(
(np)

11
14

8 log
5
7 n
− 2(np log n)

5
7

)
|Y | − 5

√
np|X|

≥ (np)
11
14

9 log
5
7 n
|Y | − 5

√
np|X|

≥

(
(np)

4
7

36 log
10
7 n
− 5
√
np

)
|X| ≥ 0,

as desired.

This completes the proof of the lemma. �

Corollary 4.3.6 Let G be a p-pseudorandom graph on n vertices, where pn ≥ log21 n.

Suppose that H is a graph on V (G) which satisfies the following conditions:

• H is
√
np-downjumping.

• If x0 is the unique vertex of maximum degree in H then H − x0 and G − x0 are

edge-disjoint.

• ∆(H) is even.

• ∆(H)− δ(H) ≤ (np log n)
5
7 .

Then there exists a ∆(H)-regular graph H ′ such that H ⊆ H ′ ⊆ G ∪H.
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Proof. Define f(v) := ∆(H)− dH(v) for all v ∈ V (G). Then

∑
v∈V

f(v) = n∆(H)−
∑
v∈V

dH(v),

which is even. Moreover f(x0) = 0 and our assumptions on H imply that

√
np ≤ f(v) ≤ ∆(H)− δ(H) ≤ (np log n)

5
7

for all v ∈ V \ {x0}. We may therefore apply Lemma 4.3.3 to find an f -factor G′ in G.

Then H ′ := H ∪G′ is a ∆(H)-regular graph as desired. �

4.4 Proof of Theorem 4.1.1

The main tool for our proof of Theorem 4.1.1 is the following result from [51, Lemma 47].

Roughly speaking, it asserts that given a regular graph H0 which is contained in a pseu-

dorandom graph G and given a pseudorandom subgraph G0 of G which is allowed to

be quite sparse compared to H0, we can find a set of edge-disjoint Hamilton cycles in

H0 ∪G0 which cover all edges of H0. For technical reasons, instead of a single pseudoran-

dom graph G0, in its proof we actually need to consider a union of several edge-disjoint

pseudorandom graphs G1, . . . , G2m+1, where m is close to log n.

Lemma 4.4.1 Suppose that p0 ≥ log14 n
n

and p1 ≥ (np0)
3
4 log

5
2 n

n
. Let m := log(n2p1)

log logn
, and

for all i ∈ [2m + 1] set pi := p1 if i is odd, and pi := 1010p1 if i is even. Let G be

a p0-pseudorandom graph on n vertices. Suppose that G1, . . . , G2m+1 are pairwise edge-

disjoint spanning subgraphs of G such that each Gi is pi-pseudorandom. Moreover, for all

i ∈ [2m+ 1], let Hi be an even-regular spanning subgraph of Gi with δ(Gi)− 1 ≤ d(Hi) ≤

δ(Gi). Suppose that H0 is an even-regular spanning subgraph of G which is edge-disjoint

from
⋃2m+1
i=1 Hi. Then there exists a collection HC of edge-disjoint Hamilton cycles such
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that the union HC :=
⋃
HC of all these Hamilton cycles satisfies H0 ⊆ HC ⊆

⋃2m+1
i=0 Hi.

The following lemma is a special case of Lemma 22(ii) of [51]. Given pi-pseudorandom

graphs Gi as in Lemma 4.4.1, it allows us to find the even-regular spanning subgraphs Hi

required by Lemma 4.4.1.

Lemma 4.4.2 Let G be a p-pseudorandom graph on n vertices such that p, 1 − p =

ω
(
log2 n/n

)
. Then G has an even-regular spanning subgraph H with δ(G)− 1 ≤ d(H) ≤

δ(G).

The next lemma ensures that G ∼ Gn,p contains a collection of Hamilton cycles which

cover all edges of G except for some edges at the vertex x0 of maximum degree and

such that every edge at x0 is covered at most once. Theorem 4.1.1 will then be an easy

consequence of this lemma and Theorem 4.2.12.

Lemma 4.4.3 Let G ∼ Gn,p, where log117 n
n
≤ p ≤ 1 − n− 1

8 . Then a.a.s. G has a unique

vertex x0 of degree ∆(G) and there exist a collection HC of Hamilton cycles in G and a

collection F of edges incident to x0 such that

(i) every edge of G− F is covered by some Hamilton cycle in HC;

(ii) no edge in F is covered by a Hamilton cycle in HC;

(iii) no edge incident to x0 is covered by more than one Hamilton cycle in HC.

Note that in Lemma 4.4.3, we have |HC| = (∆(G)− |F |)/2.

The strategy of our proof of Lemma 4.4.3 is as follows. We split G ∼ Gn,p into three

edge-disjoint random graphs G1, G2 and R such that the density of G1 is almost p and

both G2 and R are much sparser. It turns out we may assume that the vertex x0 of

maximum degree in G also has maximum degree in G1. We then apply Corollary 4.3.6 in

order to extend G1 into a ∆(G1)-regular graph by using some edges of R. Next we apply
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Lemma 4.4.1 in order to cover this regular graph with edge-disjoint Hamilton cycles, using

some edges of G2.

Let H2 be the subgraph of R ∪ G2 which is not covered by these Hamilton cycles.

Again, we can make sure that x0 is still the vertex of maximum degree in H2. We now

apply Corollary 4.3.6 again in order to extend H2 into a ∆(H2)-regular graph H ′2 by

using edges of a random subgraph R′ of G1 (i.e. edges which we have already covered

by Hamilton cycles). Finally, we would like to apply Lemma 4.4.1 in order to cover this

regular graph by edge-disjoint Hamilton cycles, using edges of another sparse random

subgraph G′ of G1. However, this means that in the last step we might use edges of

G′ at x0, i.e. edges which have already been covered with edge-disjoint Hamilton cycles.

Clearly, this would violate condition (iii) of the lemma.

We overcome this problem as follows: at the beginning, we delete all those edges at x0

from G1 which lie in G′, and then we regularize and cover the graph H1 thus obtained from

G1 as before, instead of G1 itself. However, we have to ensure that x0 is still the vertex of

maximum degree in H1. This forces us to make G′ quite sparse: the average degree of G′

needs to be significantly smaller than the gap between dG(x0) = ∆(G) and the degree of

the next vertex, i.e. significantly smaller than
√
np(1− p)/ log n. Unfortunately it turns

out that such a choice would make G′ too sparse to apply Lemma 4.4.1 in order to cover

H2. Thus the above two ‘iterations’ are not sufficient to prove the lemma (where each

iteration consists of an application of Corollary 4.3.6 to regularize and then an application

of Lemma 4.4.1 to cover). But with three iterations, the above approach can be made to

work.

Proof of Lemma 4.4.3. Lemmas 4.2.7 and 4.2.9 imply that a.a.s. G satisfies the following

two conditions:

(a) G is p-pseudorandom.
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(b) G is 5u-downjumping, where u :=

√
np(1−p)
logn

.

Note that

(np)
27
64 log

259
32 n =

√
np(1− p)
log n

· log
291
32 n

(np)
5
64
√

1− p
≤ u

2
. (4.4.4)

Indeed, to see the last inequality note that either 1 − p ≥ 1/2 and (np)
5
64 ≥ log

292
32 n or

(np)
5
64 ≥ (n/2)

5
64 and

√
1− p ≥ n−

1
16 . So here we use the bounds on p in the lemma.

Define

p2 :=
(np)

3
4 log

7
2 n

n
≥ log91 n

n
,

p3 :=
(np2)

3
4 log

7
2 n

n
=

(np)
9
16 log

49
8 n

n
≥ log71 n

n
,

p′3 := 1600p3,

p4 :=
(np3)

3
4 log

7
2 n

n
=

(np)
27
64 log

259
32 n

n
≥ log57 n

n
,

p1 := p− 2p2 − p3,

mi :=
log(n2pi)

log log n
for all 2 ≤ i ≤ 4,

p(i,j) :=


pi

(1010+1)mi+1
if 2 ≤ i ≤ 4 and if j ∈ [2mi + 1] is odd,

1010pi
(1010+1)mi+1

if 2 ≤ i ≤ 4 and if j ∈ [2mi + 1] is even.

Now form random subgraphs of G as follows. First partition G into edge-disjoint random

graphs G1, G2, G3 and R2 such that Gi ∼ Gn,pi for i = 1, 2, 3 and R2 ∼ Gn,p2 . (This

can be done by randomly including each edge e of G into precisely one of G1, G2, G3

and R2, where the probability that e is included into Gi is pi/p and the probability that

e is included into R2 is p2/p, independently of all other edges of G.) We then choose

edge-disjoint random subgraphs R′2, R4 and G4 of G1 with R′2 ∼ Gn,p2 , R4 ∼ Gn,p4 , and

G4 ∼ Gn,p4 . (Since p1 ≥ p2 + 2p4 this can be done similarly to before.) Next we choose

a random subgraph G′3 of G2 such that G′3 ∼ Gn,p′3
. To summarize, we thus have the
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following containments, where ∪̇ denotes the edge-disjoint union of graphs:

G = G1 ∪̇ G2 ∪̇ G3 ∪̇ R2 and G1 ⊇ R′2 ∪̇ R4 ∪̇ G4 and G2 ⊇ G′3.

Finally, for each i ∈ {2, 3, 4}, we partition Gi into edge-disjoint random subgraphs

G(i,1), . . . , G(i,2mi+1) with G(i,j) ∼ Gn,p(i,j) . Lemma 4.2.7 and a union bound implies that

a.a.s. the following conditions hold:

(c) Gi is pi-pseudorandom for all i = 1, . . . , 4.

(d) G(i,j) is p(i,j)-pseudorandom for all i = 2, 3, 4 and all j ∈ [2mi + 1].

(e) R2 and R′2 are p2-pseudorandom, and R4 is p4-pseudorandom.

(f) R2 ∪ G2 ∪ R′2 ∪ G3 is strongly (3p2 + p3)-pseudorandom and G′3 ∪ G3 ∪ R4 ∪ G4 is

strongly (p′3 + p3 + 2p4)-pseudorandom.

Since R2 ∪G2 ∪R′2 ∪G3 ∼ Gn,3p2+p3 and G′3 ∪G3 ∪R4 ∪G4 ∼ Gn,p′3+p3+2p4 , Lemma 4.2.10

implies that a.a.s. the following condition holds:

(g) Let x0 be the unique vertex of maximum degree of G. Then x0 is not the vertex of

minimum degree in R2 ∪G2 ∪R′2 ∪G3 or G′3 ∪G3 ∪R4 ∪G4.

It follows that a.a.s. conditions (a)–(g) are all satisfied; in the remainder of the proof

we will thus assume that they are. We can apply Lemma 4.4.2 for each i = 2, 3, 4 and

each j ∈ [2mi + 1] to obtain an even-regular spanning subgraph H(i,j) of G(i,j) with

δ(G(i,j))− 1 ≤ d(H(i,j)) ≤ δ(G(i,j)).

As indicated earlier, our strategy consists of the following three iterations. The purpose

of the first iteration is to cover all the edges of G1. To do this, we will apply Corollary 4.3.6

in order to extend G1 into a regular graph H ′1, using some edges of R2. (Actually we will

first set aside a set F1 of edges of G1 at x0, but this will still leave x0 the vertex of
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maximum degree in H1 := G1 − F1. In particular, F1 will contain the set F ∗ of all edges

of G4 at x0.) We will then apply Lemma 4.4.1 to cover H ′1 with edge-disjoint Hamilton

cycles, using some edges of G2.

The purpose of the second iteration is to cover all the edges of G2 ∪ R2 not already

covered in the first iteration – we denote this remainder by H2. It turns out that x0 will

still be the vertex of maximum degree in H2. If ∆(H2) is odd, then we will add one edge

from F1 \F ∗ to H2 to obtain a graph H ′2 of even maximum degree. Otherwise, we simply

let H ′2 := H2. We extend H ′2 into a regular graph H ′′2 using Corollary 4.3.6 and some

edges of R′2, then cover H ′′2 with edge-disjoint Hamilton cycles using Lemma 4.4.1 and

some edges of G3.

The purpose of the third iteration is to cover all the edges of G3 not already covered in

the second iteration – we denote this remainder by H3. We first add some (so far unused)

edges from F1 \ F ∗ to H3 in order to make x0 the unique vertex of maximum degree.

Let H ′3 denote the resulting graph. We then extend H ′3 into a regular graph H ′′3 using

Corollary 4.3.6 and some edges of R4, and finally cover H ′′3 with edge-disjoint Hamilton

cycles using Lemma 4.4.1 and some edges of G4.

It is in this iteration that we make use of G′3, for technical reasons. It turns out that

G3 ∪ G4 ∪ R4 is so sparse that adding the required edges from F1 \ F ∗ may destroy its

pseudorandomness, rendering it unsuitable as a choice of G in Lemma 4.4.1. Since the

only role of G in Lemma 4.4.1 is that of a ‘container’ for the other graphs, this issue is

easy to solve by adding a slightly denser random graph to G3 ∪G4 ∪R4, namely G′3.

Note that we did not use any edges of R′2 at x0 when turning H ′2 into H ′′2 since x0 is

a vertex of maximum degree in H ′2. Similarly, we did not use any edges of R4 at x0 when

turning H ′3 into H ′′3 . Moreover, F ∗ was the set of all edges of G4 at x0 and no edge in F ∗

was covered in the first two iterations. Altogether this means that we do not cover any

edge at x0 more than once.
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Note that in the second and third iterations, the graphs R′2 and R4 we use for regu-

larising consist of edges we have already covered. In the second iteration, this turns out

to be a convenient way of controlling the difference between the maximum and minimum

degree of H3 (which might have been about ∆(G)−δ(G) if we had used uncovered edges).

In the third iteration, there are simply no more uncovered edges available.

After outlining our strategy, let us now return to the actual proof. We claim that x0

is the unique vertex of maximum degree in G1 and that G1 is 4u-downjumping. Indeed,

for all x 6= x0 we have

dG1(x) = dG(x)− dG2∪G3∪R2(x)
(b)

≤ dG(x0)− 5u− dG2∪G3∪R2(x)

= dG1(x0) + dG2∪G3∪R2(x0)− 5u− dG2∪G3∪R2(x)

≤ dG1(x0) + ∆(G2) + ∆(G3) + ∆(R2)− 5u− δ(G2)− δ(G3)− δ(R2)

≤ dG1(x0)−
(

5u− 12
√
np2 log n

)
,

where the last inequality follows from the facts that both G2 and R2 are p2-pseudorandom,

G3 is p3-pseudorandom, p3 ≤ p2 as well as from (P4) and (P5). But

√
np2 log n = (np)

3
8 log

9
4 n

(4.4.4)

≤ u

2
· (np)−

3
64 ≤ u

log n
. (4.4.5)

Altogether this shows that dG1(x) ≤ dG1(x0) − 4u for all x 6= x0. Thus G1 is 4u-

downjumping and x0 is the unique vertex of maximum degree in G1, as desired. Note

that

∆(G4) ≤ 2np4 = 2(np)
27
64 log

259
32 n

(4.4.4)

≤ u. (4.4.6)
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Let F ∗ be the set of all edges of G4 which are incident to x0. Thus |F ∗| ≤ u by (4.4.6).

Choose a set F1 of edges incident to x0 in G1 such that F ∗ ⊆ F1,

3u− 1 ≤ |F1| ≤ 3u, (4.4.7)

and such that ∆(G1 − F1) is even. Note that we used (4.4.6) and thus the full strength

of (4.4.4) (in the sense that it would no longer hold if we replace 117 by 116 in the lower

bound on p stated in Lemma 4.4.3) in order to be able to guarantee that F ∗ ⊆ F1. So

this is the point where we need the bounds on p in the lemma. Let H1 := G1 − F1. Thus

H1 is still u-downjumping.

Our next aim is to apply Corollary 4.3.6 in order to extend H1 into a ∆(H1)-regular

graph H ′1, using some of the edges of R2. So we need to check that the conditions in

Corollary 4.3.6 are satisfied. But since G1 is p1-pseudorandom we have

∆(H1)− δ(H1) ≤ ∆(G1)− δ(G1)
(P4),(P5)

≤ 4
√
np1 log n

≤ 4
√
np log n = 4(np2)

2
3 log−

11
6 n ≤ (np2 log n)

5
7 . (4.4.8)

Moreover p2 ≥ log21 n/n and H1 is u-downjumping and so
√
np2-downjumping by (4.4.5).

Since R2 is p2-pseudorandom we may therefore apply Corollary 4.3.6 to find a regular

graph H ′1 of degree ∆(H1) with H1 ⊆ H ′1 ⊆ H1 ∪R2.

Next, we wish to apply Lemma 4.4.1 in order to cover H ′1 with edge-disjoint Hamilton

cycles. Note that for every 1 ≤ j ≤ 2m2 + 1

np(2,j) ≥
np2

(1010 + 1)m2 + 1
≥ (np)

3
4 log

7
2 n log log n

1011 log n
≥ (np)

3
4 log

5
2 n. (4.4.9)

So we can apply Lemma 4.4.1 with G, H ′1, G(2,1), . . . , G(2,2m2+1) and H(2,1), . . . , H(2,2m2+1)

playing the roles of G, H0, G1, . . . , G2m+1 and H1, . . . , H2m+1 to obtain a collection HC1
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of edge-disjoint Hamilton cycles such that the union HC1 :=
⋃
HC1 of these Hamilton

cycles satisfies

H ′1 ⊆ HC1 ⊆ H ′1 ∪
2m2+1⋃
j=1

H(2,j) ⊆ H ′1 ∪G2.

Write H2 := (G2 ∪R2) \ E(HC1) for the uncovered remainder of G2 ∪R2. Note that

(HC1) no edge of G incident to x0 is covered more than once in HC1;

(HC1′) HC1 contains no edges from F1.

Our next aim is to extend H2 into a regular graph H ′2 using some of the edges of R′2.

We will then use some of the edges of G3 in order to find edge-disjoint Hamilton cycles

which cover H ′2. Note that

dH2(x) = dH1(x) + dR2∪G2(x)− 2|HC1| (4.4.10)

for all x ∈ V (G). Together with the fact that H1 is u-downjumping this implies that for

all x 6= x0 we have

dH2(x0)− dH2(x) = (dH1(x0)− dH1(x)) + (dR2∪G2(x0)− dR2∪G2(x))

≥ u− (∆(R2) + ∆(G2)− (δ(R2) + δ(G2)))

≥ u− 8
√
np2 log n

(4.4.5)

≥ √
np2.

(For the second inequality we used the fact that both R2 and G2 are p2-pseudorandom

together with (P4) and (P5).) Thus x0 is the unique vertex of maximum degree in H2 and

H2 is
√
np2-downjumping. If ∆(H2) is odd, let H ′2 be obtained from H2 by adding some

edge from F1 \F ∗. Condition (g) ensures that we can choose this edge in such a way that

it is not incident to the unique vertex of minimum degree in the (3p2 +p3)-pseudorandom

graph R2 ∪ G2 ∪ R′2 ∪ G3. Let F ′1 be the set consisting of this edge. If ∆(H2) is even,
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let H ′2 := H2 and F ′1 := ∅. In both cases, let F2 := F1 \ F ′1 and note that H ′2 is still

√
np2-downjumping. Moreover,

∆(H ′2)− δ(H ′2) ≤ ∆(H2)− δ(H2) + 1

(4.4.10)

≤ ∆(H1) + ∆(G2) + ∆(R2)− δ(H1)− δ(G2)− δ(R2) + 1

≤ ∆(G1) + ∆(G2) + ∆(R2)− δ(G1)− δ(G2)− δ(R2) + 1

≤ 4
√
np1 log n+ 8

√
np2 log n+ 1 ≤ 5

√
np log n

≤ (np2 log n)
5
7 .

(For the fourth inequality we used the facts that G1 is p1-pseudorandom and both R2

and G2 are p2-pseudorandom together with (P4) and (P5). The final inequality follows

similarly to (4.4.8).) Furthermore, note that E(H ′2) ∩ E(R′2) ⊆ F ′1 and so H ′2 − x0 and

R′2 − x0 are edge-disjoint. Thus we may apply Corollary 4.3.6 to find a regular graph H ′′2

of degree ∆(H ′2) with H ′2 ⊆ H ′′2 ⊆ H ′2 ∪ R′2. Since x0 is of maximum degree in H ′2, we

have the following:

No edge from R′2 incident to x0 was added to H ′2 in order to obtain H ′′2 . (4.4.11)

Let G∗2 := (R2∪G2∪R′2∪G3)+F ′1. Our choice of F ′1 and condition (f) together ensure

that we can apply Lemma 4.2.8 with R2∪G2∪R′2∪G3 and F ′1 playing the roles of G and

F to see that G∗2 is (3p2 + p3)-pseudorandom. Note that for every 1 ≤ j ≤ 2m3 + 1

np(3,j) ≥ (4np2)
3
4 log

5
2 n ≥ (n(3p2 + p3))

3
4 log

5
2 n,

where the first inequality follows similarly to (4.4.9). Hence we may apply Lemma 4.4.1

with G∗2, H
′′
2 , G(3,1), . . . , G(3,2m3+1) and H(3,1), . . . , H(3,2m3+1) playing the roles of G, H0,

G1, . . . , G2m+1 and H1, . . . , H2m+1 to obtain a collection HC2 of edge-disjoint Hamilton

132



cycles such that the union HC2 :=
⋃
HC2 of these Hamilton cycles satisfies

H ′′2 ⊆ HC2 ⊆ H ′′2 ∪
2m3+1⋃
j=1

H(3,j) ⊆ H ′′2 ∪G3.

We now have the following properties:

(HC2) no edge of G incident to x0 is covered more than once in HC1 ∪HC2;

(HC2′) HC1 ∪HC2 contains no edges from F2;

(HC2′′) HC1 ∪HC2 covers all edges in (G1 − F2) ∪G2 ∪R2.

Indeed, to see (HC2), first note that (4.4.11) implies that all edges incident to x0 in HC2

are contained in H ′2 ∪ G3 and thus in (H2 + F ′1) ∪ G3, which is edge-disjoint from HC1.

Now (HC2) follows from (HC1) together with the fact that the Hamilton cycles in HC2

are pairwise edge-disjoint.

Write H3 := G3\E(HC2) for the subgraph of G3 which is not covered by the Hamilton

cycles in HC2. Our final aim is to extend H3 into a regular graph H ′3 using some of the

edges of R4. We will then use the edges of G4 in order to find edge-disjoint Hamilton

cycles which cover H ′3 (and thus the edges of G3 not covered so far). Note that for all

x ∈ V (G)

dH3(x) = d(H ′′2 ) + dG3(x)− 2|HC2|.

Together with the fact that G3 is p3-pseudorandom this implies that

∆(H3)− δ(H3) = ∆(G3)− δ(G3)
(P4),(P5)

≤ 4
√
np3 log n. (4.4.12)

Thus we can add a set F ′2 ⊆ F2 \ F ∗ of edges at x0 to H3 to ensure that x0 is the

unique vertex of maximum degree in the graph H ′3 thus obtained from H3, that H ′3 is
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√
np4-downjumping, ∆(H ′3) is even and such that

|F ′2| ≤ 4
√
np3 log n+

√
np4 + 1 ≤ 5

√
np3 log n ≤

√
np2 log n

(4.4.5)

≤ u

log n
. (4.4.13)

Note that |F2 \ F ∗| = |F1 \ (F ′1 ∪ F ∗)| ≥ 2u− 2 by (4.4.7) and since |F ∗| ≤ u by (4.4.6).

So we can indeed choose such a set F ′2. Moreover, condition (g) ensures that we can

choose F ′2 in such a way that it contains no edge which is incident to the unique vertex

of minimum degree in the (p′3 + p3 + 2p4)-pseudorandom graph G′3 ∪ G3 ∪ R4 ∪ G4. Let

F3 := F2 \ F ′2 and note that

∆(H ′3)− δ(H ′3) ≤ ∆(H3)− δ(H3) +
√
np4 + 1

(4.4.12)

≤ 5
√
np3 log n = 5(np4)

2
3 log−

11
6 n

≤ (np4 log n)
5
7 .

Furthermore, E(H ′3) ∩ E(R4) ⊆ F ′2 and so H ′3 − x0 and R4 − x0 are edge-disjoint. Since

also p4 ≥ log21 n/n, we may apply Corollary 4.3.6 to obtain a regular graph H ′′3 of degree

∆(H ′3) such that H ′3 ⊆ H ′′3 ⊆ H ′3 ∪ R4. Note that since x0 is of maximum degree in H ′3,

we have the following:

No edge from R4 incident to x0 was added to H ′3 in order to obtain H ′′3 . (4.4.14)

Let G∗3 := (G′3 ∪ G3 ∪ R4 ∪ G4) + F ′2. Since |F ′2| ≤ 5
√
np3 log n =

√
np′3 log n/8

by (4.4.13), we may apply Lemma 4.2.8 with G′3 ∪G3 ∪R4 ∪G4 and F ′2 playing the roles

of G and F to see that G∗3 is (p′3 + p3 + 2p4)-pseudorandom.

Note that for every 1 ≤ j ≤ 2m4 + 1

np(4,j) ≥ (4np′3)
3
4 log

5
2 n ≥ (n(p′3 + p3 + 2p4))

3
4 log

5
2 n,
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where the first inequality follows similarly to (4.4.9). Recall that F ∗ denotes the set of

all those edges of G4 which are incident to x0. Since F ′2 ∩ F ∗ = ∅, H ′′3 and G4 are edge-

disjoint (and so H ′′3 , H(4,1), . . . , H(4,2m4+1) are pairwise edge-disjoint). Thus we can apply

Lemma 4.4.1 with G∗3, H
′′
3 , G(4,1), . . . , G(4,2m4+1) and H(4,1), . . . , H(4,2m4+1) playing the roles

of G, H0, G1, . . . , G2m+1 and H1, . . . , H2m+1 to obtain a collection HC3 of edge-disjoint

Hamilton cycles such that the union HC3 :=
⋃
HC3 of these Hamilton cycles satisfies

H ′′3 ⊆ HC3 ⊆ H ′′3 ∪
2m4+1⋃
j=1

H(4,j) ⊆ H ′′3 ∪G4.

We claim that no edge of G incident to x0 is covered more than once in HC := HC1 ∪

HC2∪HC3. Indeed, (HC2) implies that this was the case for HC1∪HC2. Moreover, recall

that the Hamilton cycles in HC3 are pairwise edge-disjoint. In addition, (4.4.14) implies

that all edges incident to x0 in HC3 are contained in

H ′3 + F ∗ = H3 + F ′2 + F ∗ ⊆ H3 + F2.

So (HC2′) implies that none of these edges lies in HC1 ∪HC2, which proves the claim.

Note that (HC2′′) and the definition of HC3 together imply that HC covers all edges

of G− F3. Let F ⊆ F3 be the set of uncovered edges. Then F and HC are as required in

the lemma. �

We remark that for the final application of Lemma 4.4.1 in the proof of Lemma 4.4.3

it would have been enough to consider G3 ∪R4 ∪G4 instead of G′3 ∪G3 ∪R4 ∪G4 (since

H ′′3 and all the G(4,j) are contained in (G3 ∪R4 ∪G4) +F ′2). However, we would not have

been able to apply Lemma 4.2.8 in this case since |F ′2| >
√
np3 log n/8. Introducing G′3

ensures that the conditions of Lemma 4.2.8 are satisfied (and this is the only purpose of

G′3).
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We can now combine Theorem 4.2.12 and Lemma 4.4.3 in order to prove Theo-

rem 4.1.1.

Proof of Theorem 4.1.1. Lemma 4.4.3 implies that a.a.s. G contains a collection HC of

Hamilton cycles and a collection F of edges incident to the unique vertex x0 of maximum

degree such that no edge of G incident to x0 is contained in more than one Hamilton

cycle in HC and such that the Hamilton cycles in HC cover precisely the edges of G−F .

Moreover, by Theorem 4.2.12, a.a.s. G− x0 is Hamilton-connected.

If |F | is odd, we add one edge of G − F incident to x0 to F . We still denote the

resulting set of edges by F . Let r := |F |/2 and e1e
′
1, . . . , ere

′
r be pairs of edges such that

F is the union of all these 2r edges. Since G−x0 is Hamilton-connected, for each 1 ≤ i ≤ r

there exists a Hamilton cycle Ci of G containing both ei and e′i. Then HC ∪ {C1, . . . , Cr}

is a collection of d∆(G)/2e Hamilton cycles covering G, as desired. �

Using further iterations in the proof of Lemma 4.4.3, one could reduce the exponent

117 in Lemma 4.4.3 (and thus in Theorem 4.1.1). One further iteration would lead to an

exponent of 60, while the effect of yet further iterations quickly becomes insignificant.
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Chapter 5

On-line Ramsey numbers of paths

and cycles

5.1 Introduction

Ramsey’s theorem [81] states that for all k ∈ N, there exists t ∈ N such that any red-blue

edge colouring of a clique Kt contains a monochromatic clique of order k. We call the

least such t the kth Ramsey number, and denote it by r(k). Ramsey numbers and their

generalisations have been a fundamentally important area of study in combinatorics for

many years. Particularly well-studied are Ramsey numbers for graphs. Here the Ramsey

number of two graphs G and H, denoted by r(G,H), is the least t such that any red-blue

edge colouring of Kt contains a red copy of G or a blue copy of H. See e.g. [80] for a

survey of known Ramsey numbers.

An important generalisation of Ramsey numbers, first defined by Erdős, Faudree,

Rousseau and Schelp [31], is as follows. Let G and H be two graphs. We say that

a graph K has the (G,H)-Ramsey property if any red-blue edge colouring of K must

contain either a red copy of G or a blue copy of H. Then the size Ramsey number

r̂(G,H) is given by the minimum number of edges of any graph with the (G,H)-Ramsey
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property.

In this chapter, we consider the following related generalisation defined independently

by Beck [12] and Kurek and Ruciński [64]. Let G and H be two graphs. Consider a game

played on the edge set of the infinite clique KN with two players, Builder and Painter.

In each round of the game, Builder chooses an edge and Painter colours it red or blue.

Builder wins by creating either a red copy of G or a blue copy of H, and wishes to do

so in as few rounds as possible. Painter wishes to delay Builder for as many rounds as

possible. (Note that Painter may not delay Builder indefinitely – for example, Builder

may simply choose every edge of Kr(G,H).) The on-line Ramsey number r̃(G,H) is the

minimum number of rounds it takes Builder to win, assuming that both Builder and

Painter play optimally. We call this game the r̃(G,H)-game, and write r̃(G) = r̃(G,G).

Note that r̃(G,H) ≥ e(G) + e(H) − 1 for all graphs G and H, as Painter may simply

colour the first e(G) − 1 edges red and all subsequent edges blue. It is also clear that

r̃(G,H) ≤ r̂(G,H).

On-line Ramsey theory has been well-studied. The best known bounds for r̃(Kt) are

given by

r(t)

2
≤ r̃(Kt) ≤ t−c

log t
log log t 4t,

where c is a positive constant. The lower bound is due to Alon (see [12]), and the upper

bound is due to Conlon [24]. Note that these bounds are similar to the best known bounds

for classical Ramsey numbers r(Kt), although Conlon also proves in [24] that

r̃(t) ≤ C−t
(
r(t)

2

)

for some constant C > 1 and infinitely many values of t. For general graphs G, the best

known lower bound for r̃(G) is given by Grytczuk, Kierstead and Pra lat [41].

Theorem 5.1.1 For graphs G, we have r̃(G) ≥ β(G)(∆(G) − 1)/2 + e(G), where β(G)
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denotes the vertex cover number of G.

Various general strategies for Builder and Painter have also been studied. For example,

consider the following strategy for Builder in the r̃(G,H)-game. Builder chooses a large

but finite set of vertices in KN, say a set of size n ∈ N, with n ≥ r(G,H). Then Builder

chooses the edges of the induced Kn in a uniformly random order, allowing Painter to

colour each edge as they wish, until the game ends. This strategy was analysed for the

r̃(K3)-game by Friedgut, Kohayakawa, Rödl, Ruciński and Tetali [35], and for the more

general r̃(G)-game by Marciniszyn, Spöhel and Steger [67, 66].

Finally, it is interesting to consider the results of possible restrictions to Builder’s

strategy. For example, Grytczuk, Ha luszczak and Kierstead [40] proved (among other

things) that if χ(G) ≤ k, then Builder can win the r̃(G)-game without uncovering a

graph with chromatic number greater than k. Kierstead and Konjevod [49] consider

similar questions for a generalisation of the r̃(G,H)-game to hypergraphs.

Given the known bounds on r̃(Kt), it is not surprising that determining on-line Ram-

sey numbers exactly has proved even more difficult than determining classical Ramsey

numbers exactly, and very few results are known. A significant amount of effort has been

focused on the special case where G and H are paths. Grytczuk, Kierstead and Pra lat [41]

and Pra lat [77, 78] have determined r̃(Pk+1, P`+1) exactly when max{k, `} ≤ 8. In addi-

tion, Beck [10] has proved that the size Ramsey number r̂(Pk+1) is at most linear in k.

The following general bounds are the best known, and were proved in [41].

Theorem 5.1.2 For all k, ` ∈ N, we have k + `− 1 ≤ r̃(Pk+1, P`+1) ≤ 2k + 2`− 3.

In general, it seems difficult to bound on-line Ramsey numbers r̃(G,H) below. One

of the major difficulties in doing so is the variety of possible strategies for Builder. We

present a strategy for Painter which mitigates this problem somewhat.
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Definition 5.1.3 Let F be a family of graphs. We define the F -blocking strategy for

Painter as follows. Write Ri for the graph consisting of all uncovered red edges imme-

diately before the ith move of the game, and write ei for the ith edge chosen by Builder.

Then Painter colours ei red if Ri + ei is F-free, and blue otherwise. (Recall that a graph

is F -free if it contains no graph in F as a subgraph.)

In an r̃(G,H)-game, it is natural to consider F -blocking strategies with G ∈ F . For

example, if F = {G}, then the F -blocking strategy for Painter consists of colouring every

edge red unless doing so would cause Painter to lose the game. If Painter is using an

F -blocking strategy, one clear strategy for Builder would be to construct a red F -free

graph, then use it to force a blue copy of H in e(H) moves. We will show that this

is effectively Builder’s only strategy (see Proposition 5.3.3), and thus to bound r̃(G,H)

below it suffices to prove that no small red F -free graph can be used to force a blue copy

of H. We use this technique to derive some lower bounds for on-line Ramsey numbers of

the form r̃(Pk+1, H), taking F = {Pk+1} ∪ {Ci : i ≥ 3}.

Theorem 5.1.4 Let k, `, d ∈ N with k ≥ 2. Let H be a graph with e(H) = ` and

∆(H) = d. Then

r̃(Pk+1, H) ≥


(2d+ 1)`/(2d) if k = 2,

(5d+ 4)`/(5d) if k = 3,

(d+ 1)`/d if k ≥ 4.

Moreover, if H is connected and k ≥ 3, then

r̃(Pk+1, H) ≥


`+ 2 d(2`+ 1)/de /5 if k = 3,

(d+ 1)`/d+ min {k/2− 1, `/d} − 1 if k ≥ 4.
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Taking H = P`+1, we determine r̃(P3, P`+1) exactly for all ` ≥ 2. Furthermore, we

obtain strong bounds on r̃(Pk+1, P`+1) for all ` ≥ k ≥ 3.

Theorem 5.1.5 For all ` ≥ k ≥ 2, we have

r̃(Pk+1, P`+1) = d5`/4e if k = 2,

(7`+ 2)/5 ≤ r̃(Pk+1, P`+1) ≤ (7`+ 52)/5 if k = 3,

(3`+ k)/2− 2 ≤ r̃(Pk+1, P`+1) ≤ 2`+ 2k − 3 if k ≥ 4.

Here our lower bound for k ≥ 4 follows from Theorem 5.1.4, and our upper bound is

taken from Theorem 5.1.2. Note that our lower bound for k ≥ 4 substantially improves

Theorem 5.1.2 unless k is very close to `. Our proof of the upper bound for k = 3

is complicated, and in the interest of clarity we have chosen not to fully optimise the

bound. We do not believe that it could be made tight without substantial additional

work, however.

Motivated by Theorem 5.1.5 and the known values of r̃(Pk+1, P`+1), we make the

following conjecture.

Conjecture 5.1.6 For all ` ≥ k, we have

r̃(Pk+1, P`+1) =



` if k = 1,

d5`/4e if k = 2,

d(7`+ 2)/5e if k = 3,

d3`/2e+ k − 3 if k ≥ 4.

In particular, we have r̃(Pk+1) = d5k/2e − 3 for k ≥ 3.

Note that Conjecture 5.1.6 would imply Conjecture 4.1 of [77]. The conjecture is

trivially true for k = 1. Theorem 5.1.5 implies that it is true for k = 2 and that it is true
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up to an additive error in the upper bound for k = 3. It also implies that an approximate

lower bound holds when k = o(`) as ` → ∞. Finally, the conjecture is already known

when max{k, `} ≤ 8 or when k = ` = 9.

We also determine r̃(P3, C`) exactly for all `.

Theorem 5.1.7 For all ` ≥ 3, we have

r̃(P3, C`) =


`+ 2 if ` ≤ 4,

d5`/4e if ` ≥ 5.

Note that r̃(P3, C`) = r̃(P3, P`+1) for ` ≥ 5. This is somewhat surprising, as e(C`) =

e(P`+1) but it seems much harder for Builder to close a blue cycle than to extend a blue

path. This result gives rise to the following natural question.

Question 5.1.8 For what graphs G and integers ` do we have r̃(G,C`) = r̃(G,P`+1)?

Further, we give bounds on r̃(C4, P`+1).

Theorem 5.1.9 For ` ≥ 3, we have 2` ≤ r̃(C4, P`+1) ≤ 4`− 4. Moreover, r̃(C4, P4) = 8.

Many of the lower bounds in Theorems 5.1.5 and 5.1.7 follow from Theorem 5.1.4,

and all of them follow from analysing F -blocking strategies. In particular, we obtain

tight lower bounds on r̃(P3, P`+1) and r̃(P3, C`) in this way, as well as a lower bound

on r̃(P4, P`+1) which matches Conjecture 5.1.6. We are therefore motivated to ask the

following question.

Question 5.1.10 For which graphs G and H does there exist a family F of graphs such

that the F-blocking strategy is optimal for Painter in the r̃(G,H)-game?

The chapter is laid out as follows. In Section 5.3, we prove Theorem 5.1.4. In Sec-

tion 5.4, we prove Theorem 5.1.5 for k = 2 (see Theorem 5.4.3). We use a similar argument
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to prove Theorem 5.1.7 in Section 5.5 (see Proposition 5.5.2 and Theorem 5.5.3). In Sec-

tion 5.6 we prove Theorem 5.1.5 for k = 3. Finally, in Section 5.7 we prove Theorem 5.1.9.

5.2 Notation and conventions

We write N for the set {1, 2, . . . } of natural numbers, and N0 := N ∪ {0}.

Suppose P = v1 . . . vk and Q = w1 . . . w` are paths. If i < j, we write viPvj (or

vjPvi) for the subpath vivi+1 . . . vj of P . We also write PQ for the concatenation of

P and Q. For example, if i < j and i′ < j′ then uviPvjywi′Qwj′ denotes the path

uvivi+1 . . . vjywi′wi′+1 . . . wj′ .

In the context of an r̃(G,H)-game, an uncovered edge is an edge of KN that has

previously been chosen by Builder, and a new vertex is a vertex in KN not incident to

any uncovered edge.

Many of our lemmas say that in an r̃(G,H)-game, given a finite coloured graph X ⊆

KN, Builder can force Painter to construct a coloured graph Y ⊆ KN satisfying some

desired property. We will often apply such a lemma to a finite coloured graph X ′ ) X,

and in these cases we will implicitly require V (Y ) ∩ V (X ′) ⊆ V (X). (Intuitively, when

Builder chooses a new vertex while constructing Y , it should be new with respect to X ′

rather than X.) This is formally valid, since we may apply the lemma to an r̃(G,H)-game

on the board KN − (V (X ′) \ V (X)) and have Builder choose the corresponding edges in

KN.

For technical convenience, we allow Builder to “waste” a round in the r̃(G,H)-game

by choosing an uncovered edge. Clearly this change does not affect the duration of an

optimally-played game.
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5.3 General lower bounds

Our aim is to bound r̃(G,H) below for graphs G and H. In this section, Painter will

always use an F -blocking strategy for some family F of graphs with G ∈ F . Hence, as we

shall demonstrate in Proposition 5.3.3 below, Builder’s strategy boils down to choosing a

red graph with which to force a blue copy of H.

Definition 5.3.1 Let F be a family of graphs and let R ⊆ KN be an F-free graph. We

say that an edge e ∈ KN − R is (R,F)-forceable iff R + e is not F-free. We say a graph

H is (R,F)-forceable iff there exists H ′ ⊆ KN − R with H ′ ' H such that every edge

e ∈ E(H ′) is (R,F)-forceable. We call H ′ an (R,F)-forced copy of H. If R and F are

clear from context, we will omit ‘(R,F)-’.

Definition 5.3.2 Let F be a family of graphs and let H be a graph. We say a graph

R ⊆ KN is an F -scaffolding for H iff the following properties hold.

(i) R is F-free.

(ii) H is (R,F)-forceable.

(iii) R contains no isolated vertices.

Note that (iii) is simply a convenience – any isolated vertices in R have no bearing on

Builder’s ability to use R to force a copy of H, so we disregard them.

Proposition 5.3.3 Let G and H be graphs. Let F be a family of graphs with G ∈ F .

Suppose every F-scaffolding for H has at least m edges. Then r̃(G,H) ≥ m+ e(H).

Proof. Consider an r̃(G,H)-game in which Painter uses an F -blocking strategy. Fur-

ther suppose Builder wins by claiming edges e1, . . . , er. Since Builder choosing an edge

which Painter colours blue has no effect on Painter’s subsequent choices, without loss of
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generality we may assume that there exists i such that Painter colours e1, . . . , ei red and

ei+1, . . . , er blue. Let R ⊆ KN be the subgraph with edge set {e1, . . . , ei}, and let B ⊆ KN

be the subgraph with edge set {ei+1, . . . , er}. Thus R is the uncovered red graph and B

is the uncovered blue graph.

We will show that R is an F -scaffolding for H. First note that R is F -free by Painter’s

strategy, and R has no isolated vertices by definition. Moreover, since G ∈ F and Builder

wins, there exists H ′ ⊆ B with H ′ ' H. So e(B) ≥ e(H). Moreover, by Painter’s

strategy all edges in B must be (R,F)-forceable, so H is (R,F)-forceable. Hence R is an

F -scaffolding for H, so e(R) ≥ m. Therefore, Builder wins in r ≥ e(R)+e(B) ≥ m+e(H)

rounds. �

Therefore, to bound r̃(G,H) below, it suffices to bound the number of edges in an F -

scaffolding for H below for some family F of graphs with G ∈ F . To prove Theorem 5.1.4,

we set G = Pk+1 and F = {Pk+1} ∪ {Ci : i ≥ 3}. Thus an F -free graph is a forest

whose components have diameter less than k. Lemma 5.3.7 gives a lower bound on the

number of edges in an F -scaffolding for H. Theorem 5.1.4 then follows immediately from

Lemma 5.3.7 and Proposition 5.3.3.

Note that replacing F by {Pk+1} and attempting a similar proof yields a worse lower

bound in some cases. For example, taking H = P2k+1 with k ≥ 3, if Painter follows the

{Pk+1}-blocking strategy then Builder can win in 3k moves by first constructing a red Ck.

We will see in the proof of Lemma 5.3.7 that if R is a red F -free graph with no isolated

vertices, and X ⊆ V (R) is the set of endpoints of Pk’s whose vertices lie in R, then Builder

may force at most ∆(H)(|R| + |X|) edges of H using R. It will therefore be very useful

to bound |R|+ |X| above in terms of e(R), first in the special case where R is a tree (see

Lemma 5.3.4) and then in general (see Lemma 5.3.5).

Lemma 5.3.4 Let k,m ∈ N with k ≥ 2. Let R be a Pk+1-free tree with m edges. Let X
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be the set of endpoints of Pk’s whose vertices lie in R. Then

|R|+ |X| ≤ max{2m− k + 4, 2m}.

Moreover, if X 6= ∅, then |R|+ |X| ≤ 2m− k + 4.

Proof. If k = 2, then R = K2 and so |R| + |X| = 2m + 2 and we are done. If X = ∅,

then |R| + |X| = |R| = m + 1 ≤ 2m and we are done. We may therefore assume that

k ≥ 3 and X 6= ∅.

We claim that if x ∈ X, then x is a leaf of R. Indeed, let P be a Pk with one endpoint

equal to x. Let y ∈ V (P ) be the neighbour of x in P , and suppose xz ∈ E(R) for some

z 6= y. Then either z ∈ V (P ) and xzPx is a cycle in R, or z /∈ V (P ) and Pxz is a Pk+1

in R – both are contradictions. Hence if x ∈ X, then x is a leaf. But since X 6= ∅, R

contains a Pk and hence at least k − 2 vertices of degree greater than 1. Hence

|R|+ |X| ≤ |R|+ |R| − (k − 2) = 2m− k + 4,

and the proposition follows. �

Lemma 5.3.5 Let k,m ∈ N with k ≥ 2. Let R be a Pk+1-free forest with m edges and no

isolated vertices. Let X be the set of all endpoints of Pk’s whose vertices lie in R. Then

|R|+ |X| ≤


4m if k = 2,

5m/2 if k = 3,

2m− q(k − 4) if k ≥ 4,

where q is the number of components of R containing a Pk. Moreover, if k ≥ 4 and there

exists an edge e such that R + e contains a Pk+1, then |R|+ |X| ≤ 2m− k + 4.
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Proof. Let R1, . . . , Rr be the components of R. Let mi = e(Ri) and Xi = X ∩ V (Ri)

for all 1 ≤ i ≤ r. If k = 2, by Lemma 5.3.4 we have

|R|+ |X| =
r∑
i=1

(|Ri|+ |Xi|) ≤
r∑
i=1

(2mi + 2) = 2(m+ r) ≤ 4m.

Similarly if k ≥ 4, suppose without loss of generality that R1, . . . , Rq are the components

of R containing Pk’s. Then by Lemma 5.3.4 we have

|R|+ |X| ≤
q∑
i=1

(2mi − k + 4) +
r∑

i=q+1

2mi = 2m− q(k − 4). (5.3.6)

Suppose k = 3. Without loss of generality, let R1, . . . , Rr′ be those components of R

which consist of a single edge. (Note that we may have r′ = 0.) Then m = r′+
∑r

i=r′+1mi

and r − r′ ≤ m/2. Then by Lemma 5.3.4 we have

|R|+ |X| =
r′∑
i=1

(|Ri|+ |Xi|) +
r∑

i=r′+1

(|Ri|+ |Xi|)

≤ 2r′ +
r∑

i=r′+1

(2mi + 1)

= 2m+ r − r′ ≤ 5m/2

and so the result follows.

Finally, suppose k ≥ 4 and there exists an edge e such that R + e contains a Pk+1.

If X 6= ∅, then q ≥ 1 and so |R| + |X| ≤ 2m − k + 4 by (5.3.6). Hence we may assume

that X = ∅, and so e is an edge between two vertices of R. It follows that R contains two

vertex-disjoint paths of combined length at least k − 1, and hence that

|R|+ |X| = |R| = m+ r ≤ m+ (m− k + 3) < 2m− k + 4,
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as desired. The first inequality follows since all edges in a given path must lie in the same

component of R. �

Lemma 5.3.7 Let k, `, d ∈ N with k ≥ 2. Let H be a graph with e(H) = ` and ∆(H) = d.

Let F = {Pk+1} ∪ {Ci : i ≥ 3}. Suppose R is an F-scaffolding for H. Then, we have

e(R) ≥


`/(2d) if k = 2,

4`/(5d) if k = 3,

`/d if k ≥ 4.

Moreover, if H is connected then

e(R) ≥


2
5

⌈
2`+1
d

⌉
if k = 3,

min
{
`
d

+ k−4
2
, 2`
d
− 1
}

if k ≥ 4.

Proof. Let m = e(R). Note that R is a Pk+1-free forest with m edges and no isolated

vertices. LetX be the set of endpoints of Pk’s whose vertices lie in R and let Y = V (R)\X.

We first claim that any (R,F)-forceable edge is either incident to X or internal to Y .

Suppose not. Then there exist y ∈ Y and z /∈ V (R) such that yz is a forceable edge. Let

F ∈ F be such that F ⊆ R+e. Note that e ∈ E(F ), since R is F -free. Since dR+e(z) = 1,

we have F = Pk+1. But then y is an endpoint of a Pk in R, contradicting y ∈ Y .

Let H ′ be a forced copy of H. Then H ′ contains at most d|X| edges incident to X,

and at most d|Y |/2 edges internal to Y . All edges of H ′ are forceable, so it follows that

` = e(H ′) ≤ d|X|+ d|Y |
2

=
d(|R|+ |X|)

2
. (5.3.8)

Then (5.3.8) and the first case of Lemma 5.3.5 imply the lemma holds when k = 2 or H

is not connected.
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Now suppose H is connected and k ≥ 4. If there exists an edge e such that R + e

contains a Pk+1, then |R|+ |X| ≤ 2m−k+ 4 by Lemma 5.3.5. Hence, (5.3.8) implies that

m ≥ `
d

+ k−4
2

. Therefore, we may assume that no such edge exists, and in particular that

X = ∅. This implies that R is a {Ci : i ≥ 3}-scaffolding for H. Since no edge between

components of R is (R, {Ci : i ≥ 3})-forceable, and H is connected, we may assume that

R is connected and therefore a tree. Hence, |R| = m + 1. Moreover, (5.3.8) implies that

m ≥ 2`/d− 1. Therefore

m ≥ min

{
`

d
+
k − 4

2
,
2`

d
− 1

}

in all cases, as required.

Finally, suppose H is connected and k = 3. First suppose X = ∅, so that R is a

matching. Note that m ≥ 2, or there would be no (R,F)-forceable edges. If ` ≤ 2d, it

follows that

m ≥ 2 =
2

5

(
4d+ d

d

)
≥ 2

5

(
2`

d
+ 1

)
≥ 2

5

⌈
2`+ 1

d

⌉
,

as desired. Otherwise, if ` > 2d, we have

m =
|R|
2

(5.3.8)

≥ `

d
=

2

5

(
4`+ `

2d

)
>

2

5

(
2`

d
+ 1

)
≥ 2

5

⌈
2`+ 1

d

⌉
,

as desired.

We may therefore assume that X 6= ∅. Moreover, Y 6= ∅. (Indeed, since R is a P4-free

forest only leaves of R can be elements of X. Since X 6= ∅, R contains a P3 and hence a

non-leaf.) Since H is connected, H ′ either contains an edge between X and Y , consists

entirely of edges incident to X, or consists entirely of edges internal to Y . We will show
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that in all three cases, we have

` ≤ d(|R|+ |X|)− 1

2
. (5.3.9)

If there is an edge of H ′ between X and Y , then there are at most (d|Y | − 1)/2 edges

internal to Y and so (5.3.9) holds by a calculation similar to that of (5.3.8). If H ′ consists

entirely of edges incident to X, then H ′ contains at most d|X| edges. Since Y 6= ∅, we

have d|X| < d(|R| + |X|)/2 and so (5.3.9) holds. Finally, suppose all edges of H ′ are

internal to Y . Then

` = e(H ′) ≤ d|Y |
2
≤ d(|R| − 1)

2
,

where the last inequality follows since X 6= ∅, and so again (5.3.9) holds. Hence (5.3.9)

holds in all cases.

It now follows from (5.3.9) that |R|+ |X| ≥ d(2`+ 1)/de, and so Lemma 5.3.5 implies

that m ≥ (2/5) · d(2`+ 1)/de as required. �

Theorem 5.1.4 now follows immediately from Proposition 5.3.3 and Lemma 5.3.7.

5.4 Determining r̃(P3, P`+1) for ` ≥ 2

Theorem 5.1.4 implies that r̃(P3, P`+1) ≥ d5`/4e for ` ≥ 2. To bound r̃(P3, P`+1) above,

we shall present a strategy for Builder. In the discussion that follows, we assume for

clarity that Painter will never voluntarily lose the r̃(P3, P`+1)-game.

Builder will use the threat of a red P3 to force a blue P`+1. First, Builder will use

Lemma 5.4.1 to construct a blue path P with one endpoint incident to a red edge. Builder

will then use a procedure outlined in Lemma 5.4.2 to efficiently extend P until it has length

between `− 4 and `. Finally, Builder will carefully extend P into a blue P`+1, yielding a

tight upper bound for r̃(P3, P`+1) (see Theorem 5.4.3).
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Lemma 5.4.1 Let q ∈ N with q ≥ 5. Builder can force one of the following structures

independent of Painter’s choices:

(i) a red P3 in at most q − 1 rounds.

(ii) a blue Pq in q − 1 rounds.

(iii) a blue Pt with one endpoint incident to a red edge in t rounds for some 4 ≤ t ≤ q−1.

Proof. Builder first chooses an arbitrary vertex x1, then proceeds as follows. Suppose

that Builder has already obtained a blue path x1 . . . xi in i− 1 rounds for some 1 ≤ i < q.

Builder then chooses the edge xixi+1, where xi+1 is a new vertex. If Painter colours xixi+1

blue, we have obtained a blue path x1 . . . xi+1 in i rounds, and so if i + 1 < q we may

repeat the process. If Painter colours all such edges blue, we will obtain a blue path

x1 . . . xq in q − 1 rounds and achieve (ii). Suppose instead that for some 1 ≤ i ≤ q − 1,

within i rounds we obtain a path x1 . . . xi+1 such that x1 . . . xi is blue and xixi+1 is red.

If i ≥ 4 then we have achieved (iii), so suppose in addition i ≤ 3.

First suppose i ∈ {1, 2}. In this case, Builder chooses the two edges xiv and vxi+1

where v is a new vertex. If i = 1, Builder also chooses the edge xi+1w where w is a

new vertex. If Painter colours xiv, vxi+1 or xi+1w red, then xi+1xiv, vxi+1xi or xixi+1w

respectively is a red P3 and we have achieved (i). Otherwise, we have achieved (iii).

Indeed, if i = 1 then x1vx2w is a blue P4 constructed in 4 rounds with x1 incident to the

red edge x1x2, and if i = 2 then x1x2vx3 is a blue P4 constructed in 4 rounds with x3

incident to the red edge x3x2.

Finally, suppose i = 3. Then Builder chooses the edge x4x1. If Painter colours the

edge red, then x3x4x1 is a red P3 and we have achieved (i), so suppose Painter colours

the edge blue. Then x4x1x2x3 is a blue P4 constructed in 4 rounds with x3 incident to

the red edge x3x4, so we have achieved (iii). �

151



Lemma 5.4.2 Let ` ∈ N with ` ≥ 4. Builder can force one of the following structures

independent of Painter’s choices:

(i) a red P3 in at most 5`/4− 1 rounds.

(ii) a blue P`+1 in at most 5`/4− 1 rounds.

(iii) a blue Pt with one endpoint incident to a red edge in at most 5t/4 − 1 rounds for

some `− 3 ≤ t ≤ `.

Proof. Throughout the proof, we assume for clarity that Painter will always avoid (i)

and (ii) if possible. By Lemma 5.4.1 (taking q = `+ 1) we may assume that Builder has

constructed a blue Pt, say v1 . . . vt, which satisfies

(∗) v1 . . . vt has one endpoint incident to a red edge v1u, and Builder constructed v1 . . . vt

in at most 5t/4− 1 rounds. Moreover, 4 ≤ t ≤ `.

Note that t ≤ 5t/4− 1 since t ≥ 4.

If t ≥ ` − 3, then we have achieved (iii). Hence, we may assume that 4 ≤ t < ` − 3.

Without loss of generality, let v1u be a red edge as in (∗). Builder will extend v1 . . . vt as

follows. We apply Lemma 5.4.1 with q = `− t+ 1 ≥ 5 on a set of new vertices. We split

into cases depending on Painter’s choice.

Case 1: Builder obtains a red P3 in at most `− t rounds, as in Lemma 5.4.1(i).

In this case, Builder has spent at most 5t/4 − 1 + ` − t ≤ 5`/4 − 2 rounds in total

since t ≤ `− 4, and so we have achieved (i).

Case 2: Builder obtains a blue path w1 . . . w`−t+1 in `− t rounds, as in Lemma 5.4.1(ii).

In this case, Builder has again spent at most 5`/4 − 2 rounds in total. Builder now

chooses the edge w1v1. If Painter colours it red, then w1v1u is a red P3 and we have

achieved (i). If Painter colours it blue, then w`−t+1 . . . w1v1 . . . vt is a blue P`+1 and we

have achieved (ii).
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Case 3: Builder obtains a blue path w1 . . . wt′ and a red edge w1x in at most t′ rounds

for some 4 ≤ t′ ≤ `− t, as in Lemma 5.4.1(iii).

In this case, Builder has spent at most

5t

4
− 1 + t′ =

5t

4
+

5t′

4
− t′

4
− 1 ≤ 5(t+ t′)

4
− 2 ≤ 5`

4
− 2

rounds in total. Builder now chooses the edge vtw1. If Painter colours it red, then vtw1x

is a red P3 and we have achieved (i). If Painter colours it blue, then v1 . . . vtw1 . . . wt′ is

a blue Pt+t′ with v1 incident to the red edge v1u. Moreover, this Pt+t′ satisfies (∗) with

t+ t′ > t. Hence by iterating the argument above, the result follows. �

Theorem 5.4.3 For all ` ≥ 2, r̃(P3, P`+1) = d5`/4e.

Proof. Theorem 5.1.4 implies that r̃(P3, P`+1) ≥ d5`/4e. It therefore suffices to

prove that Builder can win the r̃(P3, P`+1)-game within d5`/4e rounds. First note that

r̃(P3, P3) = 3 and r̃(P3, P4) = 4, as shown by Grytczuk, Kierstead and Pra lat [41] and

Pra lat [78] respectively, so we may assume ` ≥ 4. Applying Lemma 5.4.2, either Builder

obtains a blue path v1 . . . vt+1 and a red edge v1u in at most 5(t + 1)/4 − 1 rounds for

some `− 3 ≤ t+ 1 ≤ ` or we are done. Write

r(t) =

⌈
5`

4

⌉
−
(⌊

5(t+ 1)

4

⌋
− 1

)
=

⌈
`

4

⌉
−
⌊
t+ 1

4

⌋
+ (`− t),

and note that Builder has at least r(t) rounds left to construct either a red P3 or a blue

P`+1. We now split into cases depending on the precise value of t.

Case 1: t = `− 1, so that r(t) = 1.

Builder chooses the edge v0v1, where v0 is a new vertex. If Painter colours it red, then

v0v1u is a red P3 and we are done. Otherwise, v0v1 . . . v` is a blue P`+1 and we are done.

Case 2: t = `− 2, so that r(t) ≥ 3.
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Builder chooses the edge v`−1x, where x is a new vertex. If Painter colours it blue, then

we are in Case 1 with an extra round to spare. If Painter colours it red, Builder chooses

the edges v`−1w and wx, where w is a new vertex. If Painter colours either edge red then

xv`−1w or wxv`−1 respectively is a red P3 and we are done. Otherwise, v1 . . . v`−1wx is a

blue P`+1 and we are done.

Case 3: t = `− 3, so that r(t) ≥ 4.

Builder chooses the edge v`−2x, where x is a new vertex. If Painter colours it blue,

then we are in Case 2. If Painter colours it red, Builder chooses the edges v`−2w, wx and

xy, where w and y are new vertices. If Painter colours any of these edges red then xv`−2w,

wxv`−2 or v`−2xy respectively is a red P3 and we are done. Otherwise, v1 . . . v`−2wxy is a

blue P`+1 and we are done.

Case 4: t = `− 4, so that r(t) ≥ 5.

Builder chooses the edge v`−3x, where x is a new vertex. If Painter colours it blue,

then we are in Case 3. If Painter colours it red, Builder chooses the edges v0v1, v`−3w,

wx and xy, where v0, w and y are new vertices. If Painter colours any of these edges red

then v0v1u, xv`−3w, wxv`−3 or v`−3xy respectively is a red P3 and we are done. Otherwise,

v0v1 . . . v`−3wxy is a blue P`+1 and we are done. �

5.5 Determining r̃(P3, C`) for ` ≥ 3

Our aim is to prove Theorem 5.1.7, i.e. to determine r̃(P3, C`) for all ` ≥ 3. As a

warmup, we first determine r̃(P3, C3) and r̃(P3, C4). Note that Theorem 5.1.4 implies

that r̃(P3, C3) ≥ 5`/4 for all ` ≥ 3, but this lower bound is too weak when ` ≤ 4. Instead,

we consider the {C`}-blocking strategy for Painter in an r̃(C`, P3)-game.

Proposition 5.5.1 For all ` ≥ 3, we have r̃(P3, C`) ≥ `+ 2.

154



Proof. We consider the {C`}-blocking strategy for Painter in the r̃(C`, P3)-game. Let

R be an edge-minimal {C`}-scaffolding for P3. Then R must contain two distinct P`’s, so

e(R) ≥ `. The result therefore follows from Proposition 5.3.3. �

The upper bounds are both relatively straightforward.

Proposition 5.5.2 We have r̃(P3, C3) = 5 and r̃(P3, C4) = 6.

Proof. By Proposition 5.5.1, we have r̃(P3, C3) ≥ 5 and r̃(P3, C4) ≥ 6. It is easy to

show that r(P3, C4) = 4 (see e.g. Radziszowski [80]), so we also have r̃(P3, C4) ≤
(
4
2

)
= 6

as Builder may simply choose the edges of a K4. It therefore suffices to prove that Builder

can win the r̃(P3, C3)-game in 5 rounds.

Take new vertices u, v, w, x, y and z. Builder first chooses the edges uv, uw and ux.

If Painter colours more than one of these edges red, then we have obtained a red P3 and

we are done.

Suppose Painter colours uv, uw and ux blue. Then Builder chooses the edges vw and

wx. If Painter colours either edge blue, then vwuv or wxuw respectively is a blue C3 and

we are done. If Painter colours both edges red, then vwx is a red P3 and we are done.

Finally, suppose Painter colours (without loss of generality) uv red, but uw and ux

blue. Then Builder chooses the edge xy. If Painter colours xy red, Builder chooses the

edge wx, yielding either a red P3 (namely wxy), or a blue C3, wxuw, and we are done.

If Painter colours xy blue, Builder chooses the edge yu, yielding either a red P3 (namely

yuv) or a blue C3 (namely uxyu), and we are done. �

We now determine r̃(P3, C`) for ` ≥ 5. As in Section 5.4, Builder’s strategy will be to

build up a long blue path using Lemma 5.4.2. Builder will then carefully close this path

into a blue C`.

Theorem 5.5.3 For all ` ≥ 5, r̃(P3, C`) = d5`/4e.
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Proof. Theorem 5.1.4 implies that r̃(P3, C`) ≥ d5`/4e. It therefore suffices to prove

that Builder can win the r̃(P3, C`)-game within d5`/4e rounds. By Lemma 5.4.2, Builder

can force one of the following structures independent of Painter’s choices:

(i) a red P3 in at most 5(`− 1)/4− 1 rounds.

(ii) a blue P` in at most 5(`− 1)/4− 1 rounds.

(iii) a blue Pt with one endpoint incident to a red edge in at most 5t/4 − 1 rounds for

some `− 4 ≤ t ≤ `− 1.

If Painter chooses (i), then we are done. Suppose Painter chooses (ii), so that Builder has

at least ⌈
5`

4

⌉
−
(

5(`− 1)

4
− 1

)
=

⌈
5`

4

⌉
− 5`

4
+

9

4
> 2

rounds to construct a red P3 or a blue C`. (Thus Builder has at least 3 rounds.) Let

v1 . . . v` be the corresponding blue path. Then Builder chooses the edges v`v1, v1v3 and

v`v2. If Painter colours v`v1 blue then v1 . . . v`v1 is a blue C` and we are done. If Painter

colours v`v1 red and v1v3 or v`v2 red, then v`v1v3 or v1v`v2 respectively is a red P3 and

we are done. Finally, if Painter colours both v1v3 and v`v2 blue, then v1v3v4 . . . v`v2v1 is

a blue C` and we are done.

Finally, suppose Painter chooses (iii). Let v1 . . . vt be the corresponding blue path and

let v1u be a red edge. Write

r(t) =

⌈
5`

4

⌉
−
(⌊

5t

4

⌋
− 1

)
=

⌈
`

4

⌉
−
⌊
t

4

⌋
+ `− t+ 1,

so that Builder has at least r(t) rounds left to construct either a red P3 or a blue C`. We

split into cases depending on the precise value of t.

Case 1: t = `− 1, so that r(t) ≥ 3.
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Builder first chooses the edge v`−1w, where w is a new vertex. If Painter colours v`−1w

blue, then Builder chooses the edge wv1. If Painter colours wv1 red then wv1u is a red P3,

and if Painter colours wv1 blue then v1v2 . . . v`−1wv1 is a blue C`. Now suppose Painter

colours v`−1w red instead. Then Builder chooses the edges v`−1x and xv1, where x is a

new vertex. If Painter colours either edge red, then wv`−1x or xv1u respectively is a red

P3 and we are done. Otherwise, v1 . . . v`−1xv1 is a blue C` and we are done.

Case 2: t = `− 2, so that r(t) ≥ 4.

Builder first chooses the edge v`−2w, where w is a new vertex. If Painter colours v`−2w

blue then we are in Case 1, so suppose Painter colours v`−2w red. Builder then chooses the

edges v`−2x, xw and wv1, where x is a new vertex. If Painter colours any of these edges

red, then wv`−2x, xwv`−2 or v`−2wv1 respectively is a red P3 and we are done. Otherwise,

v1v2 . . . v`−2xwv1 is a blue C` and we are done.

Case 3: t = `− 3, so that r(t) ≥ 5.

Builder first chooses the edge v`−3w, where w is a new vertex. If Painter colours v`−3w

blue then we are in Case 2, so suppose Painter colours v`−3w red. Builder then chooses

the edges v`−3x, xw, wy and yv1, where x and y are new vertices. If Painter colours any

of these edges red, then wv`−3x, xwv`−3, v`−3wy or yv1u respectively is a red P3 and we

are done. Otherwise, v1v2 . . . v`−3xwyv1 is a blue C` and we are done.

Case 4: t = `− 4, so that r(t) ≥ 6.

Builder first chooses two edges wx and xy, where w, x and y are new vertices. If

Painter colours both edges red, wxy is a red P3 and we are done. Now suppose that

Painter colours one edge blue and one red, say wx red and xy blue. Then Builder chooses

the edges v`−4w, wz, zx and yv1, where z is a new vertex. If Painter colours any of

these edges red, then v`−4wx, xwz, zxw or yv1u respectively is a red P3 and we are done.

Otherwise, v1v2 . . . v`−4wzxyv1 is a blue C` and we are done.
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We may therefore assume that Painter colours both wx and xy blue. Builder now

chooses the edge v`−4w. If Painter colours v`−4w blue, we are in Case 1 (taking our path

to be v1v2 . . . v`−4wxy), so suppose Painter colours v`−4w red. Then Builder chooses the

edges v`−4z, zw and yv1, where z is a new vertex. If Painter colours any of these edges

red, then wv`−4z, zwv`−4 or yv1u respectively is a red P3 and we are done. Otherwise,

v1v2 . . . v`−4zwxyv1 is a blue C` and we are done. �

5.6 Bounding r̃(P4, P`+1) for ` ≥ 3

Theorem 5.1.4 implies that r̃(P4, P`+1) ≥ (7` + 2)/5 for ` ≥ 3. In order to prove Theo-

rem 5.1.5 for the case when k = 3, it therefore suffices to bound r̃(P4, P`+1) above, which

we do in Theorem 5.6.24. In the following discussion we take on the role of Builder, and

we will assume for clarity that Painter will not voluntarily lose the game by creating a

red P4. Finally, note that throughout this section the variable R will be used to refer to

a path, not a scaffolding.

We will employ the following strategy to construct a blue P`+1. We will obtain two

(initially trivial) vertex-disjoint blue paths Q and R, repeatedly extend them, and then

join them together to form a blue P`+1 when they are sufficiently long. Here Q is distinct

from R in that we require one of Q’s endpoints to be incident to a red edge bc disjoint

from V (R). Some of our methods for extending a blue path require this property, and

others destroy it. Thus at each stage we will extend either Q or R depending on which

of our extension methods Painter allows us to use.

We will use the following lemma to join Q and R together (and sometimes to extend

Q).

Lemma 5.6.1 Let Q be a (possibly trivial) blue path with endpoints a and b, where b

is incident to a red edge bc. Let R be a (possibly trivial) blue path vertex-disjoint from
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V (Q) ∪ {c}. Then Builder can force Painter to construct one of the following while

uncovering at most 2 edges:

(i) a blue path Q′ of length e(Q) + e(R) + 1 with one endpoint incident to a red edge.

(ii) a red P4.

Proof. First suppose that R is non-trivial, and let x and y be the endpoints of R.

Moreover, suppose that either a = c or Q is trivial, so that both endpoints of Q are

incident to bc. Builder chooses the edges bx and cy. If Painter colours both edges red,

then xbcy is a red P4. Hence, without loss of generality, we may assume that Painter

colours bx blue. Then Q′ := aQbxRy is a blue path of length e(Q) + e(R) + 1, where a is

incident to the red edge bc.

Now suppose that Q is non-trivial and a 6= c. Builder chooses the edge ax. If Painter

colours ax blue, then bQaxRy is a blue path of length e(Q) + e(R) + 1 with endpoint

b incident to the red edge bc. So we may assume that Painter colours ax red. Builder

then chooses the edge bx. If Painter colours bx red, then cbxa is a red P4. Otherwise

Q′ := aQbxRy is a blue path of length e(Q) + e(R) + 1 where a is incident to the red edge

ax.

Finally, suppose R is trivial with endpoint x. Let y be a new vertex. Then the

argument above implies the lemma on replacing xRy with x throughout. �

The arguments that follow are by necessity somewhat technical. The reader may

therefore find the following intuition useful.

(i) For every seven edges we uncover, we will extend either Q or R by five blue edges.

(ii) When we join Q and R, e(Q) + e(R) + 1 should not be too much greater than `.

It is clear that following the above principles will yield a bound of the form

r̃(P4, P`+1) ≤ 7`/5 + C for some constant C. We will violate (i) in the first and last
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phases of Builder’s strategy, but this introduces only constant overhead.

Before we can apply Lemma 5.6.1 to join Q and R and obtain a blue P`+1, we must

extend them until e(Q) + e(R) + 1 ≥ `. Each time we extend Q and R, we require

two independent edges of the same colour. (Naturally, we can obtain these by choosing

three independent edges.) If these edges are blue, we may extend Q efficiently using

Lemma 5.6.5 (see Section 5.6.1). If they are red, we may extend either Q or R effi-

ciently using Lemma 5.6.18 (see Section 5.6.2). Note that the latter case is significantly

harder. We then apply Lemmas 5.6.5 and 5.6.18 repeatedly to prove Theorem 5.6.24 (see

Section 5.6.3).

In our figures throughout the section, we shall represent blue edges with solid lines

and red edges with dotted lines.

5.6.1 Extending Q using two independent blue edges e and f .

Throughout this subsection, e and f will be two independent blue edges vertex-disjoint

from Q and R. We will prove that we can use these two edges to efficiently extend Q –

see Lemma 5.6.5. We first define a special type of path which will be important to the

extension process.

Definition 5.6.2 We say that a path xySz is of type A if xy is a red edge and S is a

non-trivial blue path with endpoints y and z.

Note that the above definition requires x /∈ V (S). For the remainder of the section, if

we refer to a path xySz of type A, we shall take it as read that x, y, z and S are as in

Definition 5.6.2.

We now sketch the proof of Lemma 5.6.5. By greedily extending the blue edge e into

a path, Builder can obtain either a long blue path or a path of type A (see Lemma 5.6.3).

If Builder obtains a long blue path P , then we can simply join P and Q together using

Lemma 5.6.1. Suppose instead Builder obtains a path xySz of type A. Then we use
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Lemma 5.6.4 to efficiently join S and Q together. In either case, the resulting blue path

Q′ also has an endpoint incident to a red edge, so Q′ retains the defining property of Q.

We first prove that Builder can obtain either a long blue path or a path of type A by

greedily extending e.

Lemma 5.6.3 Let m ∈ N and let e be a blue edge. Then Builder can force Painter to

construct one of the following:

(i) a path xySz of type A with e(S) = t while uncovering t edges for some 1 ≤ t < m.

(ii) a blue path of length m while uncovering m− 1 edges.

Proof. Let S1 be the blue path formed by e. Builder proceeds to extend S1 greedily

until either Builder has constructed a blue path of length m or Painter has coloured an

edge red.

Indeed, suppose Si is a blue path of length i for some 1 ≤ i ≤ m− 1 with endpoints y

and z, and that Builder has uncovered i − 1 edges in forming Si from S1. Then Builder

chooses the edge xy, where x is a new vertex. If Painter colours xy red then xySiz is

a path of type A with e(Si) = i, where 1 ≤ i < m. Moreover, Builder has uncovered i

edges in constructing it, and so we have achieved (i). If instead Painter colours xy blue,

then Si+1 := xySiz is a blue path of length i + 1 and Builder has uncovered i edges in

constructing it.

By repeating this process, Builder must either obtain a path of type A as in (i) or a

blue path Sm of length m as in (ii). �

We now prove that Builder can use a path of type A to efficiently extend Q. Recall

that we were given two independent blue edges, e and f , and that we have already used

e to construct a path of type A.

Lemma 5.6.4 Suppose Q is a non-trivial blue path with endpoints a and b, where b is

incident to a red edge bc. Suppose xySz is a path of type A which is vertex-disjoint from
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ca bQ x y S z v w

Figure 5.1: Extending Q using a path of type A as in Lemma 5.6.4(i).

V (Q) ∪ {c}. Further suppose that f = vw is a blue edge vertex-disjoint from V (Q) ∪

V (xySz) ∪ {c}. Then Builder can force Painter to construct one of the following:

(i) a blue path Q′ of length e(Q) + e(S) + 2 with one endpoint b′ incident to a red edge

b′c′ while uncovering 2 edges. Moreover, f is vertex-disjoint from V (Q′) ∪ {c′}.

(ii) a blue path Q′ of length e(Q) + e(S) + 4 with one endpoint incident to a red edge b′c′

while uncovering 4 edges. (Note that f need not be vertex-disjoint from V (Q′)∪{c′}.)

(iii) a red P4 while uncovering at most 4 edges.

Proof.

Builder chooses the edge ax. First suppose Painter colours ax blue. Builder then

chooses the edge by. If Painter colours the edge by red, then cbyx is a red P3 and we have

achieved (iii). Suppose not. Then Q′ := xaQbySz (see Figure 5.1) is a blue path of length

e(Q) + e(S) + 2, where x is incident to the red edge xy, and we have achieved (i).

Now suppose Painter instead colours ax red. Builder then chooses the edges av, wy

and xb. If Painter colours any of these edges red, then yxav, wyxa or yxbc respectively is a

red P4 and we have achieved (iii). Suppose not. Then Q′ := xbQavwySz (see Figure 5.2)

is a blue path of length e(Q) + e(S) + 4, where x is incident to the red edge xy, and we

have achieved (ii). �

We now consolidate Lemmas 5.6.3 and 5.6.4 into a single lemma which says that given

two independent blue edges, Builder can efficiently extend Q. In applying Lemma 5.6.5,

we will take m to be `− e(Q)− e(R)− 1. Thus if we can extend Q by at least m edges,

then we can join Q and R to obtain a blue P`+1 immediately afterwards.
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c ab Q x y S z

v w

Figure 5.2: Extending Q using a path of type A and an blue independent edge vw as in
Lemma 5.6.4(ii).

Lemma 5.6.5 Let m ∈ N. Suppose Q is a non-trivial blue path with endpoints a and b,

where b is incident to a red edge bc. Suppose e and f are two independent blue edges

which are vertex-disjoint from V (Q) ∪ {c}. Then Builder can force Painter to construct

one of the following:

(i) a blue path Q′ with e(Q′) = e(Q) + `′ for some 3 ≤ `′ ≤ m + 3 such that Q′ has

an endpoint b′ incident to a red edge b′c′. A total of `′ edges are uncovered in the

process. Moreover, if `′ < 5 ≤ m, then f is vertex-disjoint from V (Q′) ∪ {c′}.

(ii) a red P4 while uncovering at most m+ 3 edges.

Proof. We apply Lemma 5.6.3 to e and m, and split into cases depending on Painter’s

choice.

Case 1: As in Lemma 5.6.3(i), we obtain a path xySz of type A with e(S) = t for some

1 ≤ t < m which is vertex-disjoint from V (f) ∪ V (Q) ∪ {c}, while uncovering t edges.

We apply Lemma 5.6.4 to Q, xySz and f . First suppose that as in Lemma 5.6.4(i),

we obtain a blue path Q′ of length e(Q) + t+ 2 with one endpoint incident to a red edge

while preserving f ’s independence. In total we have uncovered t + 2 edges. Hence Q′

satisfies (i) on setting `′ = t+ 2.

Now suppose that as in Lemma 5.6.4(ii), we obtain a blue path Q′ of length e(Q)+t+4

with one endpoint incident to a red edge. We have uncovered t+ 4 edges in total. Hence

setting `′ = t+ 4, we have achieved (i) with `′ ≥ 5.
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Finally, suppose that as in Lemma 5.6.4(iii) we obtain a red P4. Then we have uncov-

ered at most t+ 4 ≤ m+ 3 edges in total and so we have achieved (ii).

Case 2: As in Lemma 5.6.3(ii), we obtain a blue path S of length m which is vertex-

disjoint from V (Q) ∪ {c} while uncovering m− 1 edges.

We apply Lemma 5.6.1 to Q and S to construct either a blue path Q′ of length

e(Q) + m + 1 with one endpoint incident to a red edge or a red P4 while uncovering at

most 2 additional edges. We have uncovered at most m + 1 edges in total. Hence in the

former case we have achieved (i), and in the latter case we have achieved (ii). �

5.6.2 Extending Q and R using two red edges e and f .

In this subsection, our aim is to extend Q or R efficiently when given two independent

red edges e and f – see Lemma 5.6.18. As in Section 5.6.1, it will be convenient to define

some special paths that we will use in the extension process. These paths can be viewed

as analogues of paths of type A.

Definition 5.6.6 A path vwxyz is of type B if vw and yz are red edges, and wx and xy

are blue edges.

Definition 5.6.7 A path T1 . . . Tk is of type C if the following statements hold:

(C1) k is odd and k ≥ 3.

(C2) T1 is either a blue edge or a path of the form x1y1z1, where z1 ∈ V (T2) and y1z1 is

red (and x1y1 may be red or blue).

(C3) Tk is either a blue edge or a path of the form xkykzk, where xk ∈ V (Tk−1) and xkyk

is red (and ykzk may be red or blue).

(C4) T2, T4, . . . , Tk−1 are blue paths. Exactly one of these paths has length 1 and the rest

have length 2.
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x1 y1 z1 x5 y5 z5

T1 T2 T3 T4 T5

Figure 5.3: A complete path T1 . . . T5 of type C.

(C5) T3, T5, . . . , Tk−2 are all red P3’s.

We say T1 . . . Tk is incomplete if T1 or Tk is a red P3. Otherwise, we say T1 . . . Tk is

complete.

For the remainder of the section, if we refer to a path vwxyz of type B or a path T1 . . . Tk

of type C, we shall take it as read that v, w, x, y, z and T1, . . . , Tk are as in Definitions 5.6.6

and 5.6.7 respectively. Note that paths of type C are well-defined with respect to direction

of traversal – if v1 . . . vp is a path of type C, then so is vp . . . v1. See Figure 5.3 for an

example of a path of type C.

We now sketch the proof of Lemma 5.6.18. Let e and f be two independent red edges.

Using these edges, Builder can force either a path of type B or a path of type C using

Lemma 5.6.8. If Builder obtains a path vwxyz of type B, they will apply Lemma 5.6.9 to

efficiently extend Q using vwxyz.

Suppose instead Builder obtains a path T1 . . . Tk of type C. Then we run into a prob-

lem – T1 . . . Tk is not complete, and only a complete path of type C may be used to

efficiently extend R (see Lemma 5.6.13). Builder will therefore use Corollary 5.6.12 to

extend T1 . . . Tk into a path T ′1 . . . T
′
k′ of type C which is either complete or arbitrarily long.

Builder then uses Lemma 5.6.13 to extend R using T ′1 . . . T
′
k′ . If T ′1 . . . T

′
k′ is complete, this

extension is efficient; otherwise, Builder wins the game immediately afterwards by joining

Q and the resulting blue path. Thus an incomplete path of type C is used to extend R

at most once over the course of the game, adding only constantly many rounds to the

game’s length.
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We first prove that given two independent red edges Builder can force either a path

of type B or a path of type C.

Lemma 5.6.8 Given two independent red edges e and f , Builder can force Painter to

construct one of the following:

(i) a path of type B while uncovering 2 edges;

(ii) an incomplete path T1T2T3 of type C and length 5 while uncovering 3 edges;

(iii) a red P4 while uncovering 2 edges.

Proof. Write e = uv and f = xy. Builder chooses the edges vw and wx, where w

is a new vertex. If Painter colours both edges red, then uvwx is a red P4 and we have

achieved (iii). Suppose without loss of generality that Painter colours vw blue. If Painter

also colours wx blue, then uvwxy is a path of type B and we have achieved (i). If instead

Painter colours wx red, then Builder chooses the edge tu. However Painter colours tu,

tuvwxy is now a path of type C and length 5, taking T1 = tuv, T2 = vw and T3 = wxy.

Moreover, T3 is a red P3, so T1T2T3 is incomplete and we have achieved (ii). �

We next prove that Builder can use a path of type B to efficiently extend Q.

Lemma 5.6.9 Suppose Q is a non-trivial blue path with endpoints a and b, where b

is incident to a red edge bc. Suppose vwxyz is a path of type B vertex-disjoint from

V (Q)∪ {c}. Then, by uncovering at most 3 edges, Builder can force Painter to construct

one of the following:

(i) a blue path Q′ of length e(Q) + 5 with one endpoint b′ incident to a red edge b′c′.

(ii) a red P4.

Proof. Builder chooses the edges bv, vy and wz. If Painter colours any of these

edges red, then cbvw, wvyz or vwzy respectively is a red P4 and we have achieved (ii).
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ca bQ v w x y z

Figure 5.4: Extending Q using a path of type B as in Lemma 5.6.9.

Otherwise, aQbvyxwz is a blue path of length e(Q) + 5, where z is incident to the red

edge zy (see Figure 5.4), and we have achieved (i). �

We now focus on paths of type C. We first note the following simple property of such

paths, which follows immediately from their definition (Definition 5.6.7).

Proposition 5.6.10 Suppose T1 . . . Tk is a path of type C. Then

e(T1 . . . Tk) = 2k − 5 + e(T1) + e(Tk).

Let T1 . . . Tk be an incomplete path of type C. We first prove an ancillary lemma,

which says that Builder can always extend an incomplete path of type C into a slightly

longer path of type C.

Lemma 5.6.11 Suppose T1 . . . Tk is an incomplete path of type C and length `. Then

Builder can force Painter to do one of the following:

(i) for some i ∈ {3, 4}, extend T1 . . . Tk to a path T ′1 . . . T
′
k+2 of type C and length `+ i

while uncovering i edges.

(ii) construct a red P4 while uncovering at most 4 edges.

Proof. Suppose without loss of generality that Tk = xkykzk is a red P3, where xk ∈

V (Tk−1). Set T ′i = Ti for i ≤ k. Then Builder chooses two edges uv and vw, where u, v

and w are new vertices.

First suppose Painter colours both edges blue. Then Builder chooses the edge zku. If

Painter colours zku red, then xkykzku is a red P4 and we have achieved (ii). If Painter
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colours zku blue, then set T ′k+1 = zkuv and T ′k+2 = vw. Thus, T ′1 . . . T
′
k+2 is a path of

type C and length `+ 3, and we have achieved (i).

Now suppose that Painter colours both uv and vw red. Then Builder chooses the

edges zkt and tu, where t is a new vertex. If Painter colours one of these edges red, then

xkykzkt or tuvw is a red P4, respectively, and we have achieved (ii). If Painter colours

both zkt and tu blue, then set T ′k+1 = zktu and T ′k+2 = uvw. Thus, T ′1 . . . T
′
k+2 is a path

of type C and length `+ 4, and we have achieved (i).

Finally, suppose without loss of generality that Painter colours uv blue and vw red.

Then Builder chooses the edges zku and wx, where x is a new vertex. If Painter colours

zku red, then xkykzku is a red P4 and we have achieved (ii). If Painter colours zku blue,

then set T ′k+1 = zkuv and T ′k+2 = vwx. Thus T ′1 . . . T
′
k+2 is a path of type C of length

`+ 4, however Painter colours wx, and we have achieved (i). �

By applying Lemma 5.6.11 repeatedly, Builder can extend the path T1T2T3 of type C

given by Lemma 5.6.8 into either a complete path of type C or an arbitrarily long incom-

plete path of type C. Recall from Proposition 5.6.10 that a path T1 . . . Tk of type C has

length at most 2k − 1.

Corollary 5.6.12 Let k0 ≥ 5 be an odd integer. Suppose T1T2T3 is an incomplete path

of type C and length 5. Then Builder can force Painter to do one of the following:

(i) for some k, ` ∈ N, extend T1T2T3 to a complete path T ′1 . . . T
′
k of type C and length `

such that 5 ≤ k ≤ k0, while uncovering `− 5 edges.

(ii) for some ` ∈ N, extend T1T2T3 to an incomplete path T ′1 . . . T
′
k0

of type C and length `

while uncovering `− 5 edges.

(iii) construct a red P4 while uncovering at most 2k0 − 6 edges.

We next prove that Builder can extend R using a path of type C.
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Lemma 5.6.13 Suppose T1 . . . Tk is a path of type C with k ≥ 5 and e(T1 . . . Tk) = `.

Suppose R is a (possibly trivial) blue path which is vertex-disjoint from T1 . . . Tk. Then

Builder can force Painter to construct one of the following:

(i) a blue path R′ of length e(R) + (5k − 7)/2 while uncovering 3(k − 1)/2 edges. This

case can only occur if T1 . . . Tk is incomplete.

(ii) a blue path R′ of length e(R) + `′ while uncovering at most 7`′/5− ` edges for some

1 ≤ `′ ≤ 5(k − 1)/2. This case can only occur if T1 . . . Tk is complete.

(iii) a red P4 while uncovering at most 3(k − 1)/2 edges.

Proof. Let a and b be the endpoints of R. (If R is trivial, then let a = b.) For

i ∈ {3, 5, . . . , k − 2}, write Ti = xiyizi where xi ∈ V (Ti−1) and zi ∈ V (Ti+1). Thus xiyizi

is a red P3 for each i ∈ {3, 5, . . . , k − 2}. Builder chooses the set

F1 = {x3a, bz3, x5c1, c1z5, x7c2, c2z7, . . . , xk−2c k−5
2
, c k−5

2
zk−2}

of edges, where c1, . . . , c k−5
2

are new vertices. Note that

|F1| = 2 + 2 · k − 5

2
= k − 3 <

3(k − 1)

2
. (5.6.14)

If Painter colours an edge in F1 red, say xiw or wzi for some integer i and some vertex

w, then ziyixiw or wziyixi respectively is a red P4. So in this case we have achieved (iii).

Now suppose Painter colours all edges in F1 blue. Then we have obtained a blue path

S1 = T2x3aRbz3T4x5c1z5T6x7c2z7 . . . Tk−3xk−2c k−5
2
zk−2Tk−1.
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T1 x3 y3 z3 x5 y5 z5 T7

a b c1R

S1

S2

Figure 5.5: Structure of S1 and S2 in Lemma 5.6.13 for a path T1 . . . T7 of type C.

Note that S1 has length

e(S1) = e(T2) + e(T4) + · · ·+ e(Tk−1) + |F1|+ e(R)

=

(
2 · k − 3

2
+ 1

)
+ (k − 3) + e(R) = e(R) + 2k − 5,

(5.6.15)

where the second equality follows from (5.6.14).

Builder now chooses the set

F2 = {y3y5, y5y7, . . . , yk−4yk−2}

of edges. Note that |F2| = (k − 5)/2, so by (5.6.14) we have uncovered

|F1|+ |F2| = k − 3 +
k − 5

2
=

3k − 11

2
(5.6.16)

edges in total so far. If Painter colours an edge in F2 red, say yiyi+2 for some i ∈

{3, 5, . . . , k − 4}, then ziyiyi+2xi+2 is a red P4. So in this case we have achieved (iii).

Suppose Painter colours all edges in F2 blue. Then we have obtained a blue path

S2 = yk−2yk−4 . . . y5y3.
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u

x1 y1 z1 x3 y3 z3 x5 y5 z5 T7

a b c1R(i)

x1 z1 x3 y3 z3 x5 y5 z5 x7 z7

a b c1R(ii)

x1 z1 x3 y3 z3 x5 y5 z5 x7 y7 z7

a b c1R(iii)

x1 y1 z1 x3 y3 z3 x5 y5 z5 x7 y7 z7

a b c1R(iv)

Figure 5.6: Extending a blue path R with a path T1 . . . T7 as in cases 1 through 4 (respec-
tively) of Lemma 5.6.13.

Note that S2 has length |F2| = (k − 5)/2. Moreover, S1 and S2 are vertex-disjoint (see

Figure 5.5) and by (5.6.15) we have

e(S1) + e(S2) = e(R) + 2k − 5 +
k − 5

2
= e(R) +

5(k − 3)

2
. (5.6.17)

Our aim is now to join S1 and S2 together to form R′. The way in which we do this

depends on the structure of T1 and Tk.

Case 1: T1 . . . Tk is incomplete.

Without loss of generality we may assume that T1 is a red P3, say x1y1z1 with z1 ∈

V (T2). Builder chooses the edges y1yk−2, y3x1, x1u and uz1, where u is a new vertex. In

total, Builder has uncovered |F1| + |F2| + 4 = 3(k − 1)/2 edges by (5.6.16). If Painter
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colours any of the edges red, then x1y1yk−2zk−2, y3x1y1z1, z1y1x1u or uz1y1x1 is a red P4,

respectively, and we have achieved (iii). Suppose Painter colours them all blue. Then

R′ := y1yk−2S2y3x1uz1S1 is a blue path of length e(S1) + e(S2) + 4 = e(R) + (5k − 7)/2

by (5.6.17) (see Figure 5.6(i)) and hence we have achieved (i).

Case 2: T1 . . . Tk is complete and each of T1 and Tk is a blue edge.

Write T1 = x1z1 and Tk = xkzk with z1 ∈ V (T2) and xk ∈ V (Tk−1). First suppose

that k ≥ 7. Builder chooses the edges y3x1 and yk−2x1. In total, Builder has uncovered

|F1| + |F2| + 2 = (3k − 7)/2 edges by (5.6.16). If Painter colours both edges red, then

x3y3x1yk−2 is a red P4 and we have achieved (iii). Suppose Painter colours x1y3 blue.

Then R′ := S2y3x1z1S1xkzk is a blue path of length e(S1) + e(S2) + 3 = e(R) + (5k− 9)/2

by (5.6.17) (see Figure 5.6(ii)). Writing

`′ := e(R′)− e(R) =
5k − 9

2
,

Builder has uncovered

3k − 7

2
<

7

5
· 5k − 9

2
− (2k − 3) =

7`′

5
− `

edges in total, where the last equality follows from Proposition 5.6.10. Hence we have

achieved (ii). If instead Painter colours x1yk−2 blue, the same argument shows we have

achieved (ii) on replacing S2y3 by S2yk−2. So if k ≥ 7, we are done.

If instead k = 5, Builder chooses the edges y3x1 and ux1, where u is a new vertex.

If Painter colours both edges red, then ux1y3z3 is a red P4 and we have achieved (iii).

Suppose instead Painter colours wx1 blue for some w ∈ {u, y3}. Then R′ := wx1z1S1x5z5

is a blue path of length e(S1) + e(S2) + 3 (as e(S2) = 0) and Builder has uncovered

|F1|+ |F2|+ 2 edges. Thus we have achieved (ii) as above.
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Case 3: T1 . . . Tk is complete and exactly one of T1 and Tk is a blue edge.

Without loss of generality we may assume that T1 is a blue edge. Let T1 = x1z1

with z1 ∈ V (T2), and let Tk = xkykzk with xk ∈ V (Tk−1). Note that xkyk is red and

ykzk is blue. Builder chooses the edges xkyk−2 and y3yk. In total, Builder has uncovered

|F1| + |F2| + 2 = (3k − 7)/2 edges by (5.6.16). If Painter colours either xkyk−2 or y3yk

red, then ykxkyk−2xk−2 or x3y3ykxk is a red P4 respectively, and we have achieved (iii).

Suppose Painter instead colours both edges blue. Then R′ := x1z1S1xkyk−2S2y3ykzk is a

blue path of length e(S1) + e(S2) + 4 = e(R) + (5k− 7)/2 by (5.6.17) (see Figure 5.6(iii)).

Writing

`′ := e(R′)− e(R) =
5k − 7

2
,

Builder has uncovered

3k − 7

2
<

7

5
· 5k − 7

2
− (2k − 2) =

7`′

5
− `

edges in total, where the last equality follows from Proposition 5.6.10. Hence we have

achieved (ii).

Case 4: T1 . . . Tk is complete and neither T1 nor Tk is a blue edge.

Let T1 = x1y1z1 and Tk = xkykzk where z1 ∈ V (T2) and xk ∈ V (Tk−1). Thus x1y1

and ykzk are blue, and y1z1 and xkyk are red. Then Builder chooses the edges ykz1,

xkyk−2, and y3y1. In total, Builder has uncovered |F1| + |F2| + 3 = (3k − 5)/2 edges

by (5.6.16). If Painter colours one of these edges red, then xkykz1y1, ykxkyk−2xk−2 or

z3y3y1z1 respectively is a red P4 and we have achieved (iii). Suppose Painter colours them

all blue. Then R′ := zkykz1S1xkyk−2S2y3y1x1 is a blue path (see Figure 5.6(iv)) of length

e(S1) + e(S2) + 5 = e(R) + 5(k − 1)/2 by (5.6.17). Writing

`′ := e(R′)− e(R) =
5k − 5

2
,
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Builder has uncovered

3k − 5

2
=

7

5
· 5k − 5

2
− (2k − 1) =

7`′

5
− `

edges in total, where the last equality follows from Proposition 5.6.10. We have achieved

case (ii). �

Finally, we consolidate Lemmas 5.6.8, 5.6.9 and 5.6.13 and Corollary 5.6.12 into a single

lemma which says that given two independent red edges, Builder can extend either Q or R.

As with Lemma 5.6.5, in applying Lemma 5.6.18 we will take m to be `−e(Q)−e(R)−1.

Lemma 5.6.18 Let m ≥ 9 be an integer. Let Q and R be blue paths and let e and f

be two red edges. Suppose that Q is non-trivial and has an endpoint b incident to a red

edge bc. Further suppose that V (Q) ∪ {c}, R, e and f are pairwise vertex-disjoint. Then

Builder can force Painter to construct one of the following:

(i) a blue path Q′ with one endpoint b′ incident to a red edge b′c′ such that e(Q′) =

e(Q)+5, while uncovering 5 edges. Moreover, R is vertex-disjoint from V (Q′)∪{c′}.

(ii) a blue path R′ such that e(R′) = e(R) + `′ for some 1 ≤ `′ ≤ m+ 5 while uncovering

at most 7`′/5− 2 edges. Moreover, R′ is vertex-disjoint from V (Q) ∪ {c}.

(iii) a blue path R′ such that e(R′) ≥ e(R)+m while uncovering at most 7m/5+6 edges.

Moreover, R′ is vertex-disjoint from V (Q) ∪ {c}.

(iv) a red P4 while uncovering at most 7m/5 + 6 edges.

Proof. We first apply Lemma 5.6.8 to e and f . If as in Lemma 5.6.8(iii) we obtain a

red P4 while uncovering 2 edges, then we have achieved (iv). Suppose we do not. Then

we split into cases depending on Painter’s choice.
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Case 1: We obtain a path vwxyz of type B while uncovering 2 edges, as in Lemma 5.6.8(i).

Moreover, vwxyz is vertex-disjoint from V (Q) ∪ {c} and R.

We apply Lemma 5.6.9 to Q and vwxyz. Hence we have uncovered at most 5 edges in

total. If we obtain a red P4, then we have achieved (iv). Suppose instead we obtain a blue

path Q′ of length q+5 with one endpoint b′ incident to a red edge b′c′, where V (Q′)∪{c′}

is vertex-disjoint from R. Then we have achieved (i).

Case 2: We obtain an incomplete path T1T2T3 of type C and length 5 while uncovering

3 edges, as in Lemma 5.6.8(ii). Moreover, T1T2T3 is vertex-disjoint from V (Q) ∪ {c} and

R.

Let k0 be the least odd number such that k0 ≥ (2m+7)/5. Since 5k0 < (2m+7)+5 ·2,

and both 5k0 and 2m + 17 are odd integers, we have k0 ≤ 2m/5 + 3. Moreover, k0 ≥

(2m + 7)/5 ≥ 5 since m ≥ 9. We apply Corollary 5.6.12 to T1T2T3 and k0. If we obtain

a red P4 while uncovering at most 2k0 − 6 additional edges, then we have achieved (iv).

Suppose we do not. Then we split into subcases depending on Painter’s choice.

Case 2a: For some k, ` ∈ N, we obtain a complete path T ′1 . . . T
′
k of type C and length `

such that 5 ≤ k ≤ k0 while uncovering ` − 5 additional edges, as in Corollary 5.6.12(i).

Moreover, T ′1 . . . T
′
k is vertex-disjoint from V (Q) ∪ {c} and R.

We now apply Lemma 5.6.13 to T ′1 . . . T
′
k and R. Suppose we obtain a blue path R′

with length e(R) + `′, where

`′ ≤ 5(k − 1)

2
≤ 5(k0 − 1)

2
≤ 5

2
·
(

2m

5
+ 2

)
= m+ 5,

while uncovering at most 7`′/5− ` edges as in Lemma 5.6.13(ii). Note that R′ is vertex-

disjoint from V (Q) ∪ {c}. In total we have uncovered at most 3 + (`− 5) + (7`′/5− `) =

7`′/5− 2 edges, so we have achieved (i).
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Suppose instead we obtain a red P4 while uncovering at most 3(k − 1)/2 edges as in

Lemma 5.6.13(iii). Note that ` ≤ 2k0−1 by Proposition 5.6.10. In total we have therefore

uncovered at most

3 + (`− 5) +
3(k0 − 1)

2
≤ 7k0 − 9

2
≤ 7

2
·
(

2m

5
+ 3

)
− 9

2
=

7m

5
+ 6 (5.6.19)

edges, and thus we have achieved (iv).

Case 2b: For some ` ∈ N, we obtain an incomplete path T ′1 . . . T
′
k0

of type C and length

` while uncovering `− 5 additional edges, as in Corollary 5.6.12(ii). Moreover, T ′1 . . . T
′
k0

is vertex-disjoint from V (Q) ∪ {c} and R.

We apply Lemma 5.6.13 to T ′1 . . . T
′
k0

and R. Whatever the outcome, we uncover at

most 3(k0 − 1)/2 edges. We have therefore uncovered at most 7m/5 + 6 edges in total,

as in (5.6.19). If we obtain a red P4 as in Lemma 5.6.13(iii), then we have achieved (iv).

Hence we may assume that we obtain a blue path R′ of length

e(R) +
5k0 − 7

2
≥ e(R) +

5

2
· 2m+ 7

5
− 7

2
= e(R) +m,

as in Lemma 5.6.13(i). (The inequality follows from the definition of k0.) We have

therefore achieved (iii). �

5.6.3 An upper bound on r̃(P4, P`+1) for ` ≥ 3

We now use Lemmas 5.6.1, 5.6.5 and 5.6.18 to bound r̃(P4, P`+1) above in Theorem 5.6.24.

Together with Theorem 5.1.4, this will imply the k = 3 case of Theorem 5.1.5.

Recall that Builder’s strategy is to extend blue paths Q and R using independent

edges. For the remainder of the section, we denote the graph Builder has uncovered by

G. In order to keep track of the lengths of Q and R and the number of independent edges

available, we introduce the following notation.
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Definition 5.6.20 Given q, r, nblue, nred ∈ N0, we say that a graph G contains a

(q, r, nblue, nred)-structure if it satisfies the following properties:

(P1) G contains a (possibly trivial) blue path Q of length q with one endpoint b incident

to a red edge bc.

(P2) G contains a (possibly trivial) blue path R of length r.

(P3) G contains a set F of independent edges containing nblue blue edges and nred red

edges.

(P4) V (Q) ∪ {c}, R and F are pairwise vertex-disjoint.

This notation substantially simplifies the statements of Lemmas 5.6.1, 5.6.5 and 5.6.18.

The corresponding statements are as follows.

Corollary 5.6.21 Let q, r, nred, nblue ∈ N0. Suppose G is a graph containing a

(q, r, nblue, nred)-structure. Then Builder can force Painter to construct a graph G′ ⊇ G

with e(G′) ≤ e(G) + 2 such that G′ contains a (q + r + 1, 0, nblue, nred)-structure or a red

P4.

Corollary 5.6.22 Let m, q, r, nred ∈ N0 with q,m ≥ 1. Suppose G is a graph containing

a (q, r, 2, nred)-structure. Then Builder can force Painter to construct a graph G′ ⊇ G

such that one of the following holds:

(i) G′ contains a (q + `′, r, nblue, nred)-structure and e(G′) = e(G) + `′ for some 3 ≤

`′ ≤ m + 3 and some nblue ∈ N0. Moreover, if 3 ≤ `′ < 5 ≤ m, then we may take

nblue = 1.

(ii) G′ contains a red P4 and e(G′) ≤ e(G) +m+ 3.
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Corollary 5.6.23 Let m, q, r, nblue ∈ N0 with q ≥ 1 and m ≥ 9. Suppose G is a graph

containing a (q, r, nblue, 2)-structure. Then Builder can force Painter to construct a graph

G′ ⊇ G such that one of the following holds:

(i) e(G′) = e(G) + 5 and G′ contains a (q + 5, r, nblue, 0)-structure.

(ii) There exists 1 ≤ `′ ≤ m + 5 such that e(G′) ≤ e(G) + 7`′/5 − 2 and G′ contains a

(q, r + `′, nblue, 0)-structure.

(iii) e(G′) ≤ e(G) + 7m/5 + 6 and G′ contains a (q, r +m,nblue, 0)-structure.

(iv) e(G′) ≤ e(G) + 7m/5 + 6 and G′ contains a red P4.

Theorem 5.6.24 For all ` ∈ N, we have r̃(P4, P`+1) ≤ (7`+ 52)/5.

Proof. Our aim is to show that Builder can construct a graph G with e(G) ≤ (7`+52)/5

containing a red P4 or a blue P`+1.

We first obtain an initial blue path Q with one endpoint incident to a red edge. We

claim that either Builder can construct a path xySz of type A with e(S) < `, while

uncovering at most (7e(S) + 4)/5 edges, or we are done. We proceed as follows. Builder

chooses an edge e = uv. First suppose Painter colours uv blue. Then apply Lemma 5.6.3

to uv, taking m = `. If we find a blue P`+1 while uncovering `− 1 additional edges, then

since we have uncovered ` edges in total we are done. Suppose instead we find a path

xySz of type A with e(S) < `, while uncovering e(S) additional edges in the process.

Then in total Builder has uncovered e(S) + 1 < (7e(S) + 4)/5 edges, as desired.

Suppose instead Painter colours uv red. Then Builder chooses the edge vx, where x

is a new vertex. If Painter colours vx blue, then uvx is a path of type A constructed

while uncovering 2 < (7 + 4)/5 edges in total. If Painter colours vx red, then Builder

chooses the edges tu, uw and wx, where t and w are new vertices. If Painter colours any

of these edges red, then tuvx, xvuw or wxvu respectively is a red P4 and we are done.
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Otherwise, tuwxv is a path of type A (taking S = tuwx), constructed while uncovering

5 = (7 · 3 + 4)/5 edges in total. Therefore, we may assume that Builder has constructed

a path xySz of type A with e(S) < ` while uncovering at most (7e(S) + 4)/5 edges as

claimed.

Let G0 be the graph consisting of all edges uncovered so far. Thus G0 contains a

(q0, 0, 0, 0)-structure for some 1 ≤ q0 < `, and e(G0) ≤ (7q0 +4)/5. Suppose that for some

i ≥ 0, Builder has already constructed a graph Gi such that there exist qi, ri, nblue,i, nred,i ∈

N0 satisfying the following properties:

(G1) Gi ⊆ KN is the graph of all uncovered edges.

(G2) Gi contains a (qi, ri, nblue,i, nred,i)-structure, and qi > 0.

(G3) qi + ri ≤ `+ 4.

(G4) nred,i, nblue,i ≤ 1.

(G5) e(Gi) ≤ (7(qi + ri) + 4)/5 + nblue,i + nred,i.

Note that (G1)–(G5) hold for i = 0. We are going to show that Builder can force a graph

Gi+1 ⊇ Gi such that one of the following holds:

(a) Gi+1 contains a red P4 or a blue P`+1 and e(Gi+1) ≤ (7`+ 52)/5.

(b) there exist qi+1, ri+1, nblue,i+1, nred,i+1 ∈ N0 such that qi+1 + ri+1 > qi + ri and Gi+1,

qi+1, ri+1, nblue,i+1 and nred,i+1 together satisfy (G1)–(G5).

If (a) holds, we are done. If (b) holds, then Builder can repeat the algorithm to obtain

Gi+2. We then simply repeat the process until it terminates, which must happen by (G3)

(since qi+1 + ri+1 > qi + ri whenever these quantities are defined). It therefore remains

only to prove that forcing such a graph is possible.
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Let m = ` − qi − ri − 1. We split into cases depending on the values of qi, ri, nblue,i

and nred,i.

Case 1: qi + ri ≥ `− 1.

In this case, we may simply join our two blue paths together to achieve (a). Apply

Corollary 5.6.21 to Gi. Builder obtains a graph Gi+1 ⊇ Gi with

e(Gi+1) = e(Gi) + 2
(G5)

≤ 7(qi + ri) + 4

5
+ nblue,i + nred,i + 2

(G3),(G4)

≤ 7`+ 52

5
.

Moreover, G′ contains a red P4 or a blue P`+1, so we have achieved (a).

Case 2: `− 9 ≤ qi + ri ≤ `− 2, so that 1 ≤ m ≤ 8.

In this case, it is more efficient to naively extend our paths to the right combined

length and join them than it is to apply our normal extension methods and potentially

end up with paths longer than we need. Builder will force a red P4 or a blue P`+1 as

follows. Apply Corollary 5.6.21 to Gi to obtain a graph G′ ⊇ Gi with e(G′) = e(Gi) + 2.

Note that G′ contains a red P4 or a (qi + ri + 1, 0, nblue,i, nred,i)-structure. By repeating

the process at most m additional times, Builder obtains a graph G′′ ⊇ G′ ⊇ Gi, where

e(G′′) ≤ e(G) + 2m+ 2
(G5)

≤ 7(qi + ri) + 4

5
+ nblue,i + nred,i + 2m+ 2

(G4)

≤ 7(`−m− 1) + 4

5
+ 2 + 2m+ 2 =

7`

5
+

3m+ 17

5
≤ 7`+ 41

5
,

such that G′′ contains a red P4 or a (qi + ri + m + 1, 0, nblue,i, nred,i)-structure (which

contains a blue P`+1). Thus we have achieved (a).

Case 3: qi + ri ≤ `− 10, so that m ≥ 9.

In this case, we will extend our paths efficiently using Corollaries 5.6.22 and 5.6.23. By

choosing at most 3−nblue,i−nred,i additional independent edges (on new vertices), Builder

obtains a graph G′i ⊇ Gi containing a (qi, ri, n
′
blue, n

′
red)-structure such that n′blue+n

′
red ≤ 3,
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either n′blue = 2 or n′red = 2, and

e(G′i)
(G5)

≤ 7(qi + ri) + 4

5
+ n′blue + n′red. (5.6.25)

We split into subcases depending on the values of n′blue and n′red.

Case 3a: n′blue = 2 and n′red ≤ 1.

We apply Corollary 5.6.22 to G′i, obtaining a graph G′ ⊇ G′i. First suppose Corol-

lary 5.6.22(i) holds, so that there exists some 3 ≤ `′ ≤ m + 3 such that G′ contains a

(qi + `′, ri, n
′′
blue, n

′
red)-structure and e(G′) = e(G′i) + `′. Set Gi+1 = G′, qi+1 = qi + `′,

ri+1 = ri and nred,i+1 = n′red. Set nblue,i+1 = 0 if `′ ≥ 5 and nblue,i+1 = 1 otherwise.

Clearly qi+1 + ri+1 > qi + ri, and (G1) and (G4) are satisfied. Recall from Corol-

lary 5.6.22(i) that if `′ < 5 ≤ m then we may take n′′blue = 1, so (G2) is satisfied.

We have qi+1 + ri+1 ≤ qi +m+ 3 + ri = `+ 2, so (G3) is satisfied. If 3 ≤ `′ ≤ 4, we have

e(G′) = e(G′i) + `′
(5.6.25)

≤ 7(qi + ri) + 4

5
+ 2 + n′red + `′

=
7(qi + ri + `′) + 4

5
− 2`′

5
+ 2 + n′red

≤ 7(qi+1 + ri+1) + 4

5
+ 1 + n′red

=
7(qi+1 + ri+1) + 4

5
+ nblue,i+1 + nred,i+1. (5.6.26)

If instead `′ ≥ 5, then by a calculation similar to the above, we have

e(G′)
(5.6.25)

≤ 7(qi + ri) + 4

5
+ 2 + n′red + `′ ≤ 7(qi+1 + ri+1) + 4

5
+ n′red

=
7(qi+1 + ri+1) + 4

5
+ nblue,i+1 + nred,i+1. (5.6.27)

Thus, by (5.6.26) and (5.6.27), (G5) is satisfied. We have therefore achieved (b).

Suppose instead that Corollary 5.6.22(ii) holds, so that G′ contains a red P4 and
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e(G′) ≤ e(G′i) +m+ 3. Then we have

e(G′)
(5.6.25)

≤ 7(qi + ri) + 4

5
+ 2 + n′red +m+ 3

≤ 2(qi + ri) + 4

5
+ `+ 5 ≤ 7`+ 9

5
,

where the final inequality follows since qi + ri ≤ `− 10. We have therefore achieved (a).

Case 3b: n′red = 2 and n′blue ≤ 1.

We apply Corollary 5.6.23 toG′i, obtaining a graphG′ ⊇ G′i. Suppose Corollary 5.6.23(i)

or (ii) holds. In either case, it follows that there exist q′ and r′ such that G′ contains a

(q′, r′, n′blue, 0)-structure and

1 ≤ q′ + r′ − (qi + ri) ≤ m+ 5.

Write `′ = q′ + r′ − (qi + ri). Set Gi+1 = G′, qi+1 = q′, ri+1 = r′, nblue,i+1 = n′blue and

nred,i+1 = 0. Clearly (G1)–(G4) are satisfied, and qi+1 + ri+1 > qi + ri. Moreover, we have

e(Gi+1) ≤ e(G′i) +
7`′

5
− 2

(5.6.25)

≤ 7(qi + ri + `′) + 4

5
+ n′blue

=
7(qi+1 + ri+1) + 4

5
+ nblue,i+1 + nred,i+1,

so (G5) is satisfied. We have therefore achieved (b).

Now suppose Corollary 5.6.23(iii) holds, so that G′ contains a (qi, ri + m,n′blue, 0)-

structure and e(G′) ≤ e(G′i) + 7m/5 + 6. We apply Corollary 5.6.21 to G′, obtaining a

graph G′′ such that

e(G′′) = e(G′) + 2 ≤ e(G′i) +
7m

5
+ 8

(5.6.25)

≤ 7(qi + ri +m) + 4

5
+ n′blue + 10 ≤ 7`+ 52

5
.
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Moreover, G′′ contains a red P4 or an (`, 0, n′blue, 0)-structure (which contains a blue P`+1).

We have therefore achieved (a).

Finally suppose Corollary 5.6.23(iv) holds, so that G′ contains a red P4 and e(G′) ≤

e(G′i) + 7m/5 + 6. Then we have

e(G′) ≤ e(G′i) +
7m

5
+ 6

(5.6.25)

≤ 7(qi + ri +m) + 4

5
+ n′blue + 8 ≤ 7`+ 42

5
.

We have therefore achieved (a). This completes the proof of the theorem. �

5.7 Bounding r̃(C4, P`+1) for ` ≥ 3

Our aim is to prove Theorem 5.1.9, i.e. to bound r̃(C4, P`+1) for all ` ≥ 3. The lower

bound is proved by considering a {C4}-blocking strategy for Painter.

Proposition 5.7.1 Let k ∈ N with k ≥ 3. Let H be a connected graph. Then r̃(Ck, H) ≥

|H|+ e(H)− 1.

Proof. We consider the {Ck}-blocking strategy for Painter in the r̃(Ck, H)-game. Let

R be a {Ck}-scaffolding for H with e(R) minimal. Note that each (R, {Ck})-forceable

edge must lie entirely in a component of R. Since H is connected, R is connected and

|R| ≥ |H|. Hence, e(R) ≥ |H| − 1. We are done by Proposition 5.3.3. �

Next, we prove that r̃(C4, P4) = 8. Note that a more detailed analysis of the {C4}-

blocking strategy for Painter is needed in order to obtain a better lower bound.

Proposition 5.7.2 r̃(C4, P4) = 8.

Proof. First, we consider the {C4}-blocking strategy for Painter in the r̃(C4, P4)-game.

Let R be an edge-minimal {C4}-scaffolding for P4. Then R must contain three distinct

P4’s, so e(R) ≥ 5 as R is C4-free. Proposition 5.3.3 implies that r̃(C4, P4) ≥ 8.
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It therefore suffices to prove that Builder can win the r̃(C4, P4)-game within 8 rounds.

Builder first chooses the edges uv1, . . . , uv4 for distinct vertices u, v1, . . . , v4. Without

loss of generality we may assume that there exists an integer j such that Painter colours

the edges uvi blue if i ≤ j, and red otherwise.

Suppose j ≥ 2. Then Builder chooses four edges v1w, v2w, v1w
′ and v2w

′, where w

and w′ are new vertices. If Painter colours all edges red, then v1wv2w
′v1 is a red C4. If

Painter colours one of the edges blue say v2w, then v1uv2w is a blue P4.

Suppose j ≤ 1. Then Builder chooses edges v1v2 and v1v3. If Painter colours both

edges red, then uv2v1v3u is a red C4. Suppose that Painter colours both edges blue.

Builder then chooses the edges v2v4 and v3v4. If Painter colours both v2v4 and v3v4 red,

then uv2v4v3u is a red C4. Otherwise, v3v1v2v4 or v2v1v3v4 is a blue P4. Therefore we may

assume that v1v2 is blue and v1v3 is red. Further suppose that j = 1 and so uv1 is blue.

Then Builder chooses the edges v2v3 and v2v4. If Painter colours one of them blue, then

uv1v2v3 or uv1v2v4 is a blue P4. Otherwise uv3v2v4u is a red C4. Finally, suppose that

j = 0. Builder chooses the edges v2v3 and v3v4. If Painter colours one of them red, then

uv1v3v2u or uv1v3v4u is a red C4. Otherwise v1v2v3v4 is a blue P4. �

We now prove Theorem 5.1.9.

Proof. [Proof of Theorem 5.1.9] The lower bound follows from Proposition 5.7.1 and

r̃(C4, P4) = 8 by Proposition 5.7.2. To prove the theorem, it is enough to show that

r̃(C4, P`+1) ≤ 4` − 4 for all ` ≥ 3. We proceed by induction on `. By Proposition 5.7.2,

this is true for ` = 3. Suppose instead that ` ≥ 4 and Builder first spends at most 4`− 8

rounds forcing Painter to construct a red C4 or a blue P` = v1 . . . v`. (This is possible

by the induction hypothesis.) We may assume that the latter holds or else we are done.

Then Builder chooses four edges v1x, v`x, v1y and v`y, where x and y are new vertices.

If Painter colours all edges red, then v1xv`yv1 is a red C4. If Painter colours one of the

edges blue, say v`x, then v1 . . . v`x is a blue P`+1. In total, Builder has chosen at most
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4`− 4 edges and the proposition follows. �
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