161,867 research outputs found

    A Note On Computing Set Overlap Classes

    Get PDF
    Let V{\cal V} be a finite set of nn elements and F={X1,X2,>...,Xm}{\cal F}=\{X_1,X_2, >..., X_m\} a family of mm subsets of V.{\cal V}. Two sets XiX_i and XjX_j of F{\cal F} overlap if XiXj,X_i \cap X_j \neq \emptyset, XjXi,X_j \setminus X_i \neq \emptyset, and XiXj.X_i \setminus X_j \neq \emptyset. Two sets X,YFX,Y\in {\cal F} are in the same overlap class if there is a series X=X1,X2,...,Xk=YX=X_1,X_2, ..., X_k=Y of sets of F{\cal F} in which each XiXi+1X_iX_{i+1} overlaps. In this note, we focus on efficiently identifying all overlap classes in O(n+i=1mXi)O(n+\sum_{i=1}^m |X_i|) time. We thus revisit the clever algorithm of Dahlhaus of which we give a clear presentation and that we simplify to make it practical and implementable in its real worst case complexity. An useful variant of Dahlhaus's approach is also explained

    Distributed Dominating Set Approximations beyond Planar Graphs

    Full text link
    The Minimum Dominating Set (MDS) problem is one of the most fundamental and challenging problems in distributed computing. While it is well-known that minimum dominating sets cannot be approximated locally on general graphs, over the last years, there has been much progress on computing local approximations on sparse graphs, and in particular planar graphs. In this paper we study distributed and deterministic MDS approximation algorithms for graph classes beyond planar graphs. In particular, we show that existing approximation bounds for planar graphs can be lifted to bounded genus graphs, and present (1) a local constant-time, constant-factor MDS approximation algorithm and (2) a local O(logn)\mathcal{O}(\log^*{n})-time approximation scheme. Our main technical contribution is a new analysis of a slightly modified variant of an existing algorithm by Lenzen et al. Interestingly, unlike existing proofs for planar graphs, our analysis does not rely on direct topological arguments.Comment: arXiv admin note: substantial text overlap with arXiv:1602.0299

    Supporting the reconciliation of models of object behaviour

    Get PDF
    This paper presents Reconciliation+, a method which identifies overlaps between models of software systems behaviour expressed as UML object interaction diagrams (i.e., sequence and/or collaboration diagrams), checks whether the overlapping elements of these models satisfy specific consistency rules and, in cases where they violate these rules, guides software designers in handling the detected inconsistencies. The method detects overlaps between object interaction diagrams by using a probabilistic message matching algorithm that has been developed for this purpose. The guidance to software designers on when to check for inconsistencies and how to deal with them is delivered by enacting a built-in process model that specifies the consistency rules that can be checked against overlapping models and different ways of handling violations of these rules. Reconciliation+ is supported by a toolkit. It has also been evaluated in a case study. This case study has produced positive results which are discussed in the paper

    Towards Correctness of Program Transformations Through Unification and Critical Pair Computation

    Get PDF
    Correctness of program transformations in extended lambda calculi with a contextual semantics is usually based on reasoning about the operational semantics which is a rewrite semantics. A successful approach to proving correctness is the combination of a context lemma with the computation of overlaps between program transformations and the reduction rules, and then of so-called complete sets of diagrams. The method is similar to the computation of critical pairs for the completion of term rewriting systems. We explore cases where the computation of these overlaps can be done in a first order way by variants of critical pair computation that use unification algorithms. As a case study we apply the method to a lambda calculus with recursive let-expressions and describe an effective unification algorithm to determine all overlaps of a set of transformations with all reduction rules. The unification algorithm employs many-sorted terms, the equational theory of left-commutativity modelling multi-sets, context variables of different kinds and a mechanism for compactly representing binding chains in recursive let-expressions.Comment: In Proceedings UNIF 2010, arXiv:1012.455
    corecore