Supporting the Reconciliation of Models of
Object Behaviour®

GEORGE SPANOUDAKIS AND HYOSEOB K M2

Department of Computing,
City University,
Northampton Square, London EC1V OHB, UK

E-mail: gespan@soi.city.ac.uk

Abstract: This paper presents Reconciliation+, a method which identifies overlaps between models of
software systems behaviour expressed as UML object interaction diagrams (i.e., sequence and/or
collaboration diagrams), checks whether the overlapping elements of these models satisfy specific
consistency rules and, in cases where they violate these rules, guides software designers in handling the
detected inconsistencies. The method detects overlaps between object interaction diagrams by using a
probabilistic message matching algorithm that has been developed for this purpose. The guidance to
software designers on when to check for inconsistencies and how to deal with them is delivered by
enacting a built-in process model that specifies the consistency rules that can be checked against
overlapping models and different ways of handling violations of these rules. Reconciliation+ is
supported by a toolkit. It has also been evaluated in a case study. This case study has produced positive
results which are discussed in the paper.

Keywords: consistency management, software design models, object interaction diagrams

1 Introduction

The specification of software system behaviour using multiple object interaction
diagrams (i.e.,, sequence and/or collaboration diagrams) creates the potential of
conflicting specifications of messages, objects and operations in these models. Thisis
because different object interaction diagrams may, by virtue of the exchanges of
messages that they specify and other elements in the specifications of these messages,
imply different behaviours for the same objects and operations.

Consider, for example, an object model for a library system that includes the object
interaction diagrams I; and I, of Figure 1 and the class diagram of Figure 2. The
diagrams I, and |, specify interactions, which occur when the library system is used to
search for items in the library either by keywords which refer to the author of an item
(1) or by keywords which refer to thetitle of an item (1,). The class diagram of Figure

Y This article is an extended version of the article "Reconciliation of Object Interaction Models" that
appeared in the proceedings of the 7" International Conference on Object Oriented Information
Systems.

2 This article reports on research that was carried out while the second author was affiliated with the
Department of Computing of City University.

https://core.ac.uk/display/57202?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 specifies the classes of the objects that participate in the interactions of 11 and I.
According to I; and I, the library system: (i) gets search keywords from a Ul
component (see messages 11: get Text () in Iy and 8: get Text () in Iy); (ii)
formulates a database query (see message 9: f or nul at eQuer y() in ly); and (iii)
executes the query (see messages 12: execut eQuer y(SQLSt at enent) in I; and
10: execut eQuer y(SQLSt) inly).

ol: cl:SearchByAuthor| |f1: SearchForm| | tf: TextField bt: : m: sefo : : TextField : :
Manager Button || DBHandler Manager| |SearchForm Button DBHandler
N = create(ol) m linew(m . ! .
‘ 2:new(o1) ‘ ‘ m) ‘ 2: TextField("book-title")
3: TextField("author_name")

3: addActionListener(m)

4: Button("search”)

5: Panel() 4: Button("search")

6: add(bt, pos2, . ‘
(B, pos?) LH 5: addAcnonIT\stener(m) Lﬁ
7: add(f1,pos3) LH ‘ i
8: addActionListener(f1) LH 6 SetVIS‘b‘e(True)
L T
9: actionPerformed (e) ° 7: actionPerformed(ActionEvent)
10: actionPerformed (ActionEvent) 8: getText()
9: formulateQuery()
11: getText() :

10: executeQuery(SQLSt)

12: executeQuery (SQL) I

I1-|SearchByAuthqr L i
h h 121 SearchByTitle

Figure 1. Object interaction diagrams Sear chBy Aut hor (I,) and Sear chByTi tl e (I,)

In this example, it is plausble to assume that the messages
10: acti onPerfornmed(Acti onEvent) in I and
7:actionPerfornmed(ActionEvent) inl,overlap since (in the current state of
the models) they both appear to invoke the operation
acti onPerforned(e: Acti onEvent) of the class
Dat abaseAct i onLi st ener in Figure 2. If, however, this assumption is correct
then the gpecifications of the behaviour of the operation
actionPerforned(e: Acti onEvent) which are implied by I, and I, are
conflicting. This is because according to I, (but not I;) the execution of the operation
actionPerforned(e: Acti onEvent) leads to the dispatch of the message
9:fornul ateQuery() and therefore the execution of the operation
formul at eQuery() of theclassManager .

Conflicts of this form need to be detected and reconciled in the design phase of a
system development project in order to eliminate ambiguities that could be more
expensive to resolve at the implementation phase.

In this paper, we describe a tool-supported method, called Reconciliation+, that we
have developed to support software designers to detect and handle conflicts in
behavioural specifications in models of object interactions which are expressed as
sequence (or collaboration) diagrams in UML [9]. This method is a newly developed

extension of a method for managing modelling discrepancies in structural object
models that is discussed in [15].

<<Interface>> DBHandler Component
EventListener
executeQuery(statement : String) processEvent(e : AWTEvent)
<<Interface>> ‘
ActionListener Container Button
/———
1
actionPerformed(e : ActionEvent) : void A processEvent(e : AWTEvent)
Z_% - Panel
DatabaseActionListener
Panel() TextComponent
actionPerformed(e : ActionEvent) : void Panel(layout : LayoutManager)
4& addNotify() : void
1
SearchByAuthor -
TextField
formulateQuery()
<<constructor>> create(m : Manager) processEvent(e : AWTEvent)
Manager SearchForm
formulateQuery() <<constructor>> new(m : Manager)
getData()
actionPerformed(e : ActionEvent) : void

Figure 2: Model of classes of object interaction diagrams of Figure 1

Conflicts in Reconciliation+ are detected as violations of consistency rules. A
consistency rule sets the conditions that should be satisfied by overlapping messages
in different object interaction diagrams. In the above example of the library system,
for instance, the conflict in the specifications of the behaviour of the operation
acti onPerforned(e: Acti onEvent) implied by I; and I, could be detected as a
violation of the following consistency rule:

CR1: If a message m overlaps with a message m then for every message my
that is dispatched by my (m) there must exist a message m,, dispatched
by my (my) such that me and m,, overlap.

CRL1 in this case would be violated by the message 9: f or nul at eQuer y() that is
dispatched by the message 7: act i onPer f or ned(Act i onEvent) in I, and has no
overlapping counterpart in the messages which are dispatched by the message
10: acti onPer f or med(Acti onEvent) inlthat overlapswithit.

Overlaps in Reconciliation+ are defined as relations between messages which are
likely to signify the invocation of operations with the same implementation and are
detected by a probabilistic message matching algorithm. This algorithm can detect
overlaps between messages which are not identically modelled if certain parts of their
specifications provide strong evidence to believe that the messages signify the
invocation of operations with the same implementation. Thus, for example, it may
detect an overlap relation between two messages m and my that have different
signaturesif they are sent to objects which are instances of the same class and dispatch
the same messages (e.g. message 12: execut eQuer y(SQLSt at enent) inl; and
message 10: execut eQuer y(SQLSt) in Iy).

Reconciliation+ incorporates a set of pre-defined consistency rules that should be
satisfied by overlapping messages and alternative ways of handling violations of these
rules. The method guides software designers in selecting which of these consistency
rules to check and how to handle their violations. This guidance is delivered by
enacting a built-in process model that specifies the consistency rules that can be
checked against overlapping messages, and different ways of handling the violations
of these rules. The method is extensible as software designers can extend its built-in
process model by specifying new consistency rules, and new ways of handling
violations of new or existing rules.

The rest of this paper is structured as follows. In Section 2, we describe the algorithm
that Reconciliation+ deploys for detecting overlapping messages in different
interaction diagrams. In Section 3, we describe the specification and enactment of the
process model of the method that is used for guiding designers in reconciling object
interaction diagrams. In Section 4, we describe the specification of consistency rules
using the process model of the method and the mechanism for detecting violations of
these rules. In Section 5, we describe the scheme for specifying and executing
different ways of handling inconsistencies. In Section 6, we present an overview of the
prototype toolkit we have developed to support Reconciliation+. In Section 7, we
present the results of a case study that we have conducted to evaluate the method.
Finally, in Section 8 we overview related work and, in Section 9, we summarise the
method and outline ongoing work on it.

2 Detection of overlaps

2.1 Basic algorithmic formulation

Overlaps in Reconciliation+ are defined as relations between messages which are
likely to signify the invocation of operations with the same implementation. The
detection of these relations is formulated as an instance of the weighted bipartite
graph matching problem [10]. More specifically, assuming a pair of interaction
diagrams |; and I;, we construct a weighted interaction overlap graph: 10G(l;, I;) = (Vi
O Vj, E(V.,V)). This graph has two sets of digoint vertices, V; and Vj, which
assuming that |; has more messages than 1;, are defined as:

Vi = Messages(l;) and Vj = Mes&ages(l,-) U DV

where
» Messages(l;) is the set of messages of the interaction diagram I;;
» Messages(l;) is the set of messages of the interaction diagram [;; and
» DV isaset of k special vertices representing dummy messages (k = [Messages(l;)|
- [Messages(1;)).

The set of the edges E(V},V;) includes all the possible edges between the messages of
l; and the messages of |, or formally:
E(Vi,Vj) = {(ni ,n;, bo(=ov(ni,m))) | (n 0 Vi) and (n; T V)}

An edge (n; ,n;, bo(=ov(n;,n;))) in E(V;,V;) designates the assumption that the messages
represented by the nodes n; and n; overlap and is weighted by the measure
bo(—~ov(n;,n;)). This measure is defined as the degree of belief in the falsity of the
overlap assumption expressed by the edge, and is computed according to the following
function:

if n; 0 Messages(l;) and nj [Messages(l;) ()
bo(=ov(n;,n)) = 1if n, 0 DV

The functions by,...,bg used in (I) compute partial beliefs in the existence/absence of
an overlap between two messages. The computation of these partial beliefs is based on
heuristic criteria for assessing the equivalence of the functional roles and
implementations of the operations invoked by the messages, and the functional
contexts in which these operations are invoked. These belief functions and the criteria
underpinning them are discussed in detail in Section 2.2.

After computing the beliefs bo for all the edges of I0G(l;, 1), the most likely overlaps
between the messages in I; and [; are detected in two steps. In the first step, the most
likely candidate overlaps are identified by selecting a subset O(Vi,Vé) of E(Vi,V))
which is a total morphism between V; and V; and minimises the function™:

z(nu, nw, bO(= ov(nu,nw))) O O(Vi,Vj) bO(" OV(nu,nw)) (I I)

In the second step, O(ViV;) is restricted to include only the edges
(nu,nw,bo(= ov(ny,ny)) whose belief does not exceed a threshold value by, (i.e., edges for
which bg(=ov(ny,ny)) < by).

2.2 Criteria of overlap and partial belief functions

Beliefs in favour of, or against a hypothesis that two messages overlap are computed
based on six criteria. These criteria indicate the equivalence of the functional roles and
implementations of the operations which are invoked by the messages, and the
equivalence of the contexts in which these operations are invoked.

2.2.1 Equivalence of functional roles of invoked operations

Beliefs in the equivalence of the functional roles of the operations which are invoked
by two messages are computed using two criteria, namely the criterion of the most
generic overridden operation and the criterion of the operation stereotypes.

The criterion of most generic overridden operation
Two operations are assumed to have equivalent functional roles if they override the
same most general operation in an object model.

According to this criterion, the operations pr ocessEvent (e: AWEvent) which
are defined in the classes But t on and Text Fi el d in Figure 2, for example, are

% The morphism O(V,,V;)) is selected using the Hungarian method [10].
5

considered to have equivaent functional roles. This is because both of them override
the same most generic operation in the class model of the figure, namely the operation
processEvent (e: AWMEvent) of Conponent. In this example, the classes
Button and Text Fi el d overide the latter operation that they inherit from
Component in order to introduce the different functionality which is required for
processing events of two different types: action events by But t on and text events by
Text Fi el d [20]. Despite of the differences in their exact functionality, however, the
functional role of the operations pr ocessEvent (AWIEvent e) in Butt on and
Text Fi el d is the same, that is to enable the instances of these classes to handle
eventsrelated to them.

Note that, while in single inheritance hierarchies an operation always overrides a
single most generic operation (which may trivially be itself*), in multiple inheritance
graphs there is a potential for ambiguity. Such an ambiguity arises in cases where two
superclasses of a class C, which are not directly or implicitly related by a
generaisation relation themselves, define operations that have the same signature as
an operation that is defined in C.

To cope with ambiguities of this form, we introduce the following function that
measures the degree of belief in the existence (absence) of an overlap relation between
two messages based on the criterion of the most generic overridden operations:

Definition 1. The degree of belief in the existence (absence) of an overlap relation

between two messages m; and m; based on the criterion of the most generic operations

overridden by the operations invoked by m; and my; is computed according to the
function:
bi(=ov(m;,m;)) = ay x dy(m;,m;) and by(ov(m;,m;)) =0

where

= di(mi,m;) = (|0s(01)~0s(0y) |[+0s(0;) ~Os(0))/ |Os(0:) 1 Os(0)|
if Os(0;) # 0 and Os(g;) # [

u dl(mi,mj)zl
if Os(0;) =0 or Os(0) =0

= 0; is the operation invoked by m; and o; is the operation invoked by m;

* Og(0) (Os(0))) is a set of operations which are defined in the superclasses of the
class that defines o; (0;), have the same signature with it, and do not override any
other operation with the same signature.

» 0, isthe expected ratio of messages that invoke operations which do not override the
same most generic operation and do not overlap (0<a;< 1)

Examples
The belief produced by b, in the absence of an overlap relation between the messages
7:actionPerfornmed(ActionEvent) and

10: acti onPer f or med(Acti onEvent)) in the interaction diagrams I, and I, of
Figure 1 is 0. This is because, according to the class model of Figure 2, both these
messages invoke the same operation, that is
Dat abaseAct i onLi stener. acti onPerforned(e: Acti onEvent), and

* Asin the case of the operation f or mul at eQuer y() of the class Manager in Figure 2.

6

therefore the same most generd overridden operation (i.e,
Acti onLi stener. acti onPerformed(e: Acti onEvent)). Thus, the d;
distance between these messagesis 0.

Note, however, that the belief in the absence of an overlap relation between the
messages 9: acti onPerforned(e) in I and
7:actionPerfornmed(ActionEvent) in I, that is generated by b; is 0.4
(assuming that a; = 0.4). This is because the former message invokes the operation
Sear chForm acti onPerforned(e: ActionEvent) and the latter message
invokes the operation Dat abaseActi onLi stener. acti onPerfornmed(e:

Act i onEvent) in Figure 2. And as these two operations override different most
general operations in the relevant class model (i.e, the operation
Sear chForm actionPerforned(e: ActionEvent) and the operation
ActionLi stener. acti onPerfornmed(e: Acti onEvent), respectively), the
distance between the above messagesis 1. As aresult, b; assumes that the functional
roles of SearchForm acti onPerfornmed(e: Acti onEvent) and
Dat abaseActi onLi st ener. acti onPerforned(e: ActionEvent) are
different and, therefore, it generates the maximum possible belief against the existence
of an ovelap relation between 9:actionPerforned(e) and
7:actionPerforned(Acti onEvent).

The criterion of operation stereotypes

The second criterion for assessing the equivalence of the functional roles of two
operations is based on operation stereotypes. According to this criterion, the functional
roles of two operations are considered equivaent if the operations have the same
stereotype(s). This criterion is used since, in UML, operation stereotypes are used to
designate groups of functionally similar operations. The belief function associated
with this criterion is defined as follows:

Definition 2: The degree of belief in the existence (absence) of an overlap relation

between two messages m; and m; based on the criterion of the stereotypes of the

operations that m; and m; invoke is computed according to the function:
ba(=ov(m;,m;)) = asx dg(m;,m) and bs(ov(m;,m;)) =0

where
= dy(mi,m;) = (ISH(0)-St(0})[+St(0)-St(0n)/ISt(o)OSK(op)| if St(o)D and St(0)0
= dy(mim) =1 if St(o))=0U or St(o5)=01

* 0 isthe operation invoked by m; and o; is the operation invoked by my

* St(0;) and St(0;) are the sets of the stereotypes of o; and o

=" Q4 is the expected ratio of operations with different stereotypes which do not
overlap (0< as<1)

The functional form of b, covers cases where an operation may belong to different
stereotype groups. In these cases, d, measures the likelihood of the operations invoked
by two messages not having a common stereotype.

Examples

The d, distance between the messages 1: creat e(0l) inl;and 1: new(n) inlzis
0. This is because the operations Sear chByAut hor . cr eat e(0: Manager) and
Sear chFor m new(o: Sear chByAut hor) which are invoked by these messages,
are both stereotyped as constructor-operations in the class diagram of Figure 2. Thus,
b, isaso 0in this case. For any other pair of messages in Figure 1, however, since the
stereotypes of the operations invoked by them are not defined (see Figure 2) the d,
distanceis 1 and thusit generates ab, belief equal to ay.

2.2.2 Equivalence of the functional contexts of operations

The assessment of the equivalence of the functional contexts of two messages is based
on three criteria. The first of these criteria is whether the messages are sent by
instances of the same class or, equivaently in terms of UML, they have the same
senders. The second criterion is whether the messages are received by instances of the
same class or, in terms of UML, they have the same receivers. The third criterion is
whether the messages are dispatched by the same message or, in terms of UML, have
the same activator.

The criterion of message senders

According to this criterion, the functional contexts in which two messages are
dispatched are considered to be different if the messages are sent by objects which are
instances of different classes. The belief function that is associated with this criterion
Is defined as:

Definition 3: The degree of belief in the existence (absence) of an overlap relation
between two messages m; and m; based on the criterion of message senders is
computed according to the function:
bo(=ov(m;,my)) = azxdx(s, §) and by(ov(m;,m)) =0
where
* 5 and s are the classes of the objects that send m; and my, respectively
* dy(s, S) isafunction measuring the generalisation distance between s and s; defined
as.
— 0x(s, S) = Y xonesj SDX) ™ T yoassi SD(Y)™ if 5 and s are specified
da(s,s)=1 If 5 or s isnot specified
- NCSj=((s.Is&* O{s}) - (s.Is&* O{s})) O ((s.sa* O {s}) - (s.Isa* O {s}))
- ASSj=((ssa O{s}) O (s.lsr O{s}))
— SD(x) isthe length of the longest path connecting a class x with its most general
superclass, called specialisation depth of x
- s.sa* (s.1sa*) isthetransitive closure of the superclasses of class s(s)
» 0, isthe expected ratio of non overlapping messages with different senders (0 < a, <
1)

The assumption underpinning the definition of the belief function by is that the identity
of class names is not necessarily an accurate indicator of the identity of classes,
especially if classes are specified in two independently constructed models of the same

system. Thus, b, computes a belief in class identity based not only on the classes
themselves but also on their superclasses. According to its definition, the more the
non-common superclasses of two classes ¢; and ¢; the stronger the belief that ¢; and ¢
are not identical.

Each of the non-common superclasses of two classes ¢; and ¢; produces evidence of
different strength for the assumption that ¢; and ¢; are not identical. The strength of
this evidence is measured as the inverse of the specialisation depth (i.e., the length of
the longest path connecting a class with its most general superclasses) of a superclass
in the generalisation graph of the model(s). According to this measure, non common
superclasses which appear in relatively low levels of generalisation graphs and, by
virtue of their position, introduce fine-grain specialisations of more general classes
provide weaker evidence than classes which appear in higher positions [14].

Examples

Given the class model of Figure 2, the d, distance between the classes Manager and
Sear chByAut hor that send the messages 2: new(01) and 1: new(n) in the
interaction diagrams |1 and I, is 0.21. Thus, assuming that a, = 0.1, the belief in the
absence of an overlap relation between these messages that b, generatesis 0.021.

The criterion of message receivers

According to this criterion, the functional contexts of two messages are not considered
to be equivaent if the messages are received by objects which are instances of
different classes or, equivalently in terms of UML, if they have different receivers.
The belief function that is associated with this criterion is defined as:

Definition 4: The degree of belief in the existence (absence) of an overlap relation
between two messages m; and m; based on the criterion of message receivers is
computed according to the function:
ba(=ov(m;,m;)) = asxdy(ri,r;) and bs(ov(m;,m;)) =0
where
* 1 andr; arethe classes of the objects that receive m; and m;, respectively
= d,isasdefined in Definition 3
* q3isthe expected ratio of messages with different receivers which do not overlap
(O<az<])

The rational for using the above function for measuring belief in the absence/existence
of an overlap relation between the receivers of two messages is the same as that used
in the case of the function b,.

The criterion of message activators

The third criterion for calculating belief in the equivalence of the functional contexts
of two messages m and m is whether these messages are sent by messages which
overlap themselves (these messages are called activatorsin UML). The belief function
associated with this criterion of message activatorsis defined as follows:

Definition 5: The degree of belief in the existence (absence) of an overlap relation
between two messages m; and m; based on the criterion of their message activators is
computed according to the function:

bs(—ov(mim;)) = asx 1 if my = nil or m;=nil
bs(ov(m;,m;)) =0

where

* my and m; are the activators of the messages m; and m;, respectively

= by,..., baare the belief functions defined definitions 1-4

» Os5is the expected ratio of messages with different activators which do not overlap (0
<as<1)

According to Definition 5, the criteria used for computing beliefs in the absence of an
overlap relation between the activators of two messages include the criteria of most
generic overridden operation, operation stereotypes, message senders and message
receivers but excludes the criteria of message activators and message activations (see
Section 2.2.3). The reason for not using the criterion of message activators in the
computation of bs beliefs is to avoid recursive computations in the transitive closure of
the activators of the messages. Similarly, the reason for excluding the criterion of
message activations when calculating beliefs in the existence and absence of an
overlap relation between the activators of two messages m and m is that their
inclusion would lead to a non terminating recursion in the computations, since it
would require the computation of the belief in the absence of an overlap between m
and m again (see definition of belief function be below).

Examples

Assuming that the parameters a; 02 03 04, Os Og take the values 4, .1, .2, .1, .2, and
4, respectively, the bs belief in the absence of an overlap relation between the
messages 3: Text Fi el d("aut hor _nane") in I1 and 2:
Text Fi el d("book_title")inlyis 0.02. This is because there is weak evidence
from the model against the existence of an overlap relation between the activators of
these messages (these are the messages 2: new(01) and 1: new(m) , respectively) .
More specifically, in this case we have that:

2.2.3 Equivalence of the implementations of operations

The criterion of message activations

The final criterion for computing a partial belief in the existence/absence of an overlap
relation between two messages my and my is whether the messages that m and m
dispatch messages which overlap themselves or, in terms of UML, they have the same
activations. This criterion is used since the dispatch of non-overlapping messages by
two messages m and my implies that the operations which are invoked by m and m
have different implementations. The belief function associated with this criterion is
defined as follows:

10

Definition 6: The degree of belief in the existence (absence) of an overlap relation
between two messages m; and m; based on the criterion of message activations is
computed according to the function:

be(— ov(m;,m;)) = 0 x dg(mi,m;) and bg(ov(m;,m;)) = 0

where
= ds(mi,m;) = (MiNxomorphisms(ij) (X (mu,mvoxBo(— ov(mgy,my)) + max(JAil-|A|,
IAIIAD) 7 max(JAil, 1A if Aj#z0 and A; 2 0
do(mi,m;) = 1 if Aj=0 or Aj=0

» A and A; are the sets of messages which are dispatched by m; and my, respectively.

= Morphisms(i,j) isthe set of al the total morphisms from the messagesin A to the
messages in A; if |Ai| < |Aj| or onto morphisms from the messagesin A; to the
messagesin A; if |Aj| < |Ail.

* by(—~ov(my,my)) is computed as defined by formula (l).

* 0glisthe expected ratio of messages with different activations which do not overlap
(O=<06<1)

According to Definition 6, the computation of bg beliefs for two messages m; and my
leads recursively to the identification of the most likely overlaps between al the
messages which are directly or transitively dispatched by them (this is because ds is
defined in terms of by which, according to formula (1), is defined in terms of bg). This
recursive computation is terminated whenever the messages under comparison in the
transitive closures of the activations of m; and m; dispatch no further messages. In
cases where any of the messages under comparison dispatches no messages, ds returns
a belief equal to one. This belief reflects the hypothesis that in the absence of any
evidence about the additional operations that two operations 0; and 0, invoke 0; and 0,
can be assumed to have different implementations.

Examples

The bg beliefs in the absence of an overlap relation between the messages 1: new(m)
and 2: newol) and between the messages
7:actionPerforned(Acti onEvent) and

10: acti onPer f or ned(Act i onEvent) in the interaction diagrams of Figure 1
are .88 and .61, respectively. These beliefs are computed assuming that the parameters
01 02 O3, 04, 0Os Op takethevalues .4, .1, .2, .1, .2, and .4, respectively.

The above bg beliefs reflect the facts that

(&) Theactivationsof 1: newm(m and 2: new 01) have only one pair of overlapping
messages, that is the pair formed by the messages 2: Text Fi el d(" book-
title") and 3: Text Fi el d("aut hor - nane") , and four messages without
overlapping counterparts, namely the messages 3: addAct i onLi st ener (n),
4: Button("search"), 5: addAct i onLi stener (m, and
6: set Vi si bl e(True) intheactivationof 1: new(m .

(b) The activations of 7:actionPerfornmed(Acti onEvent) and
10: acti onPerfornmed(Acti onEvent) have two pairs of overlapping
messages (these are pairs formed by the messages 8: get Text() and

11

11:getText (), and the messages 10: execut eQuery(SQSt) and
12: executeQuery(SQ.St atenent)), and one message without an
overlapping counterpart, namely the message 9: f or nul at eQuery().

2.3 Example of detecting an overlap morphism

The agorithm specified in Sections 2.1 and 2.2 detects the following overlapping
messages in the interaction diagrams of Figure 1.

(i) message2: new(0l) inl;and message1l: new(m inl;

(i) message 3: Text Fi el d("aut hor _name") inl; and message
2: Text Fi el d("book-title") inl;

(iii) message4: Butt on(" sear ch") inl; and message
4: Button("search") inl;

(iv) message 10: act i onPer f or med(Acti onEvent) inl; and message
7:actionPerfornmed(Acti onEvent) inl;

(v) messagell: get Text () inl; and message8: get Text () inl;

(vi) message12: execut eQuer y(SQLSt at enent) in |, and message
10: execut eQuery(SQSt)inl,

M essages Beliefs
b, b, bs by bs be b,

(2,1 0 0.214 0 0 1 0.928 | 0.507
(3,2 0 1 0 0 0.52 1 0.516
4,49 0 1 0 0 0.52 1 0.516
(10, 7) 0 0.612 | 0.214 0 0.479 | 0.616 | 0.388
(11, 8) 0 0.214 0 0 0.1 1 0.424
(12, 10 0 0.214 0 0 0.1 1 0.424

Table 1: Beliefs against the overlaps detected between the messages of 1, and I,

The beliefsin the absence of overlaps between the above messages are shown in Table
1 and were computed after setting the parameters ay, a,, as, a4, s, 0g and b; to 0.4,
0.1,0.2,0.1, 0.2, 0.4, and 0.65, respectively. The rows of the table designate the above
pairs of messages by using the numbers that indicate the order of their dispatch in each
diagram. For example, the overlapping messages 11: get Text () and
8: get Text () are signifiedin Table 1 asthe pair (11, 8).

The vaues selected for the parameters a;—dg in this example were empiricaly
determined after considering models that incorporated generaisation graphs and
object interactions specified at varying degrees of completeness and elaboration.
Reconciliation+ assumes that designers should decide which are the appropriate values
for the parameters a;—0g and b;. These decisions should be based on an assessment of
how accurate is as an indicator of overlaps each of the criteria that underpin the belief
functions b;—be. This assessment can be formed based on the form and level of
elaboration of different parts of the involved design model(s). If a model uses no

12

stereotypes, for instance, a4 should be set to 0. Similarly, for models that do not
incorporate el aborate class generalisation graphs a; should be set to alow value.

2.4 Properties of the belief functions

As proved in [21], the functions b;—bg are al distance metrics and satisfy the axioms
of Dempster-Shafer basic probability assignments [19]. The functional form of by is
derived from the combination of the belief functions by, ...,be using the rule of the
orthogonal sum of the Dempster-Shafer theory, and measures the belief that is jointly
committed to —ov(m;,m;) by bi—bs. bo is also a distance metric (see [21] for a proof).
These characteristics of by guarantee the following intuitive properties for its outputs:

= for any three messages m, m; and m¢ we have, due to the triangularity of distance
metrics, that: bo(—ov(m;,my)) < bo(=ov(m;,m;)) + bo(-ov (mj,m))

= for any two messages m; and m, we have, due to the symmetry of distance metrics,
that: bo(—ov(m;,m;)) = bo(—ov(m;,m;))

» for any two messages my and m we have, due to axiomatic foundation of
Dempster-Shafer basic probability assignments [19], that: bg(-ov(m;,m;) O
ov(m;,m;)) =0

3 The Reconciliation+ process: specification and
enactment

As we discussed in Section 1, Reconciliation+ guides software designers through the
activity of reconciling their models by enacting a built-in process model. This model
specifies consistency rules that may be checked against overlapping messages and
alternative ways of handling violations of these rules. In this section, we introduce the
scheme that is used by the method to specify this process model, and the mechanism
that is used to enact it.

3.1 A UML profile for specifying reconciliation processes

The process of Reconciliation+ is specified as a graph of contexts following a
decision-oriented approach to software process modelling [11]. A context represents a
decision that may be taken in a given sSituation. This situation is specified as a
condition over the state of the software models which are being manipulated by the
process (i.e., the interaction diagrams which are being reconciled in the case of
Reconciliation+). Contexts are distinguished into:

(1) executable contexts — these are contexts which represent decisions to take actions
that change the state of the software model;

(2) plan contexts — these are contexts which represent decisions that can be realised by
a set of sub-decisions which must be made in a specific order; and

13

(3) choice contexts — these are contexts which represent decisions that may be realised
by two or more other aternative decisions.

ModelElement Situation — Context
element tpe : String +situation E‘ +situation 1.1
+ +option
+element descendant lp* alternatives
N N . .) .
0. next ActionOperation 4“’%
0.1 1.1 0.%
Internal | +choiceContext
order h c
ChoiceContext
+executes ‘ PlanContext ‘
+operation| 1.1 ‘ 1.1

QueryingSetOperation +continueFrom

opname : String
ModificationOperation ExecutableContext 1.1
feature: Sting

| it - St -
Slementhpe : Sving Z} ExternalAction
Z% action_script : String

BinarySetOperation

1% +executes‘

AddOperation InternalActionContext ‘ ‘ ExternalActionContext ‘

. —— ! 1| 1
UnarySetOperation L 1 1

+result | +arg2 | +argl

ModelElementSet ————— | SaveOperation ‘ InconsistencyHandlingContext
+argl withname : String - I |
+validFor inpackage : Sring DeleteOperation ! !
| |
| ;

+saves ‘ ConsistencyCheckContext ‘

| |

+adds UpdateOperation || !

newalue : String
+deletes

Figure 3: A UML profile for specifying Reconciliation+ processes

The process models that can be formulated using this process modelling approach are
essentially AND/OR graphs of decisions which are guarded by specific conditions.
Figure 3 presents a UML profile that we have defined for specifying model
reconciliation processes in UML using the contextual process modelling approach
described above®.

Profilesin UML are user-defined extensions of the meta-model of the language which
are introduced to support the construction of models for specific purposes and
domains. Typically, a UML profile consists of: (i) a set of stereotypes that define
additiona kinds of modelling elements which are required to construct models for the
particular domain, (ii) tag definitions that introduce additional meta-attributes for the
model elements that may be classified under the stereotypes of the profile, and (iii)
constraints which are associated with the stereotypes of the profile and apply to all the
elements classified under them [9].

The Reconciliation+ process specification profile that we have developed is
represented by the UML class diagram shown in Figure 3. This diagram has been
constructed according to the following representation conventions:

® The introduction of a UML profile for the specification of the reconciliation processes of our method
was motivated by the need to have both software models and the processes that reconcile them
expressed in a single representational framework as this would facilitate the implementation of tool
support for the method (see Section 6).

14

(i)

(i)

Classes represent the stereotypes of the profile. The class Choi ceCont ext ,
for example, designates the stereotype that represents choice contexts in the
process modelling approach outlined above.

A named association end in Figure 3 designates a tag defined for the stereotype
that is represented by the class that is attached to the opposite end of the relevant
association. For example, situati on is a tag defined for the stereotype
Cont ext. The type of this tag is the stereotype Situation and its
multiplicity is 1..1.

(iii) An attribute in Figure 3 designates a tag defined for the stereotype that is

represented by the class incorporating it. Attributes represent tags whose type is
a data type. For example, feature is a tag defined for the stereotype
Modi fi cati onOper ati on whosetypeisStri ng.

(iv) A generaisation relation in Figure 3 designates a generalisation relation between

the stereotypes represented by the classes that it connects. For example,
Choi ceCont ext isaspecia kind of Cont ext .

As shown in Figure 3, our profile, includes stereotypes that represent the basic
constructs for specifying reconciliation processes, including contexts, situations and
actions.

<<ChoiceContext>>

i Reconcile_Sequence_Diagrams_In -
+continueFrom _>€q _Dlag _ +continueFrom

<<ExternalAction>> <<Situation>>

CallOverlapDetector ?0verlapMorphismExists

action_script = c: _v2_d.ebs (trom Situations)

+executes +option +option +situation

<<ExecutableContext>> <<ChoiceContext>>

Find_Overlaps_Between_Sequence_Diagrams_In Reconcile_Overlapping_Messages_In

<<Situation>>

?NonldenticalActivations | +situation +option

(from Sit_?Inconsistentactivations) <<ChoiceContext>>

+continueFrom | Reconcile_Non_ldentical_Activations_Of

<<Situation>>
<<internalAction>> ?DispatchedWithoutCounterpart
IdentifyMessagesWithoutCounterparts (from Sit_7DispatchedByMes2WithoutCounterparts)

(from Action_ldentifyMessagesWithoutCounterparts) +situation
+option

+executes

<<ChoiceContext>>

Handle_Message_Without_Counterpart

(from Contexts)

+option

<<InternalAction>>

<<ConsistencyCheckContext>>
— Check_For_Messages_Without_Counterparts_Dispatched_By [,mfgffﬁfﬁfji‘ge

(from Contexts)

+executes

+situation +situation +option
+situation <<InconsistencyHandlingContext>>

on>> Record_Message_Without_Counterpart
NoExtraConditions (rom Comtosy 9e_ - P

+option
<<Situation>> <<InconsistencyHandlingContext>>

?SameOperation | *situation Add_Counterpart_For

(from Sit_?SameOOperation) (from Contexts)

Figure 4: Part of the Reconciliation+ process model

15

A part of the Reconciliation+ process model that is specified according to the above
profile is shown in Figure 4. This part includes, for example, the choice context
Reconci | e_Overl appi ng_Messages_|I n which represents the decision to
start the process of reconciling overlapping messages. The situation of this context,
?0ver | apMor phi snmEXxi st s, checks whether an overlap morphism between the
interaction diagrams to be reconciled has been identified. Thus, the context
Reconci | e_Over | appi ng_Messages_I| n can be selected only if the overlaps
between two interaction models have been identified.

3.2 Specification of situations

In Reconciliation+, a situation is specified as a query defined by an ordered sequence
of querying set operations. A querying set operation is ether a
Unar ySet Oper ati on or aBi nar ySet Oper ati on.

Unary set operations are used to retrieve elements of a UML model which are
associated with a given element e of it viaany of the different kinds of associations or
attributes defined for the type of e. A unary set operation is associated with two sets:
thear g1 set and ther esul t set. The former set includes all the elements of a UML
model that the operation should be applied to. The latter set is used to store the union
of the elements which are retrieved for each of the elements of ar g1 following the
application of the operation. An example of a unary set operation is the operation
I mmnc-02 in Figure 6. This operation is stereotyped as a Get Acti vati on
operation, that is a unary set operation which retrieves the messages which are directly
dispatched by the messages which belong to its ar g1 set. Additional examples of
unary set operations are given in Section 4.

Binary set operations are associated with three sets: the ar g1, arg2 and resul t
set. There are three different types of such operations in our process specification
profile for computing the union, intersection and set-difference of given sets. Similarly
to unary operations, the result of a binary set operation issaved initsr esul t set. An
example of a binary set operation is the operation i mwmc- o7 in Figure 6. This
operation is stereotyped as a Set Di f f er ence operation and, therefore, it computes
the set difference of the sets of messages i mwmnc- 06-s1 and i mwnc- 04-s1 (i.e,
I mwmnc-06-s1 — i mwmnc- o04-sl) and inserts the elements of this set differencein
I mwmnc-o7-sl.

The operations that define the query of a situation s are ordered through the
association or der © (see Figure 3) and may take as an argument any of the sets which
are generated by operations preceding them in s. A situation is satisfied if ther esul t
set of the last of its operations is not empty. Examples of specifications of situations
are given in Section 5.

® The association end next of this association denotes the next operation in a local operation
sequence.

16

3.3 Specification of actions

In our process specification profile, each executable context must have an action that
can be ether an external or internal action (see the action stereotypes
Ext ernal Acti onandI nt ernal Acti on inFigure3).

External actions are used to specify the invocation of externa tools during the
enactment of a Reconciliation+ process. An example of an external action is the action
Cal | Over | apDet ect or inthe process model of Figure 4. This action is associated
with the context Fi nd_Over | aps_Bet ween_Sequence_Di agrans_I n and is
executed when this context is selected. The execution of this action invokes the
overlap detection tool of Reconciliation+ (a pointer to the executable file of thistool is
specified as the value of the attribute acti on_scri pt of the action as shown in
Figure 4).

Internal actions are used to specify consistency rules and ways of handling
inconsistencies. These actions are specified as sequences of action operations. An
action operation may be a querying, model modification, or save operation. Querying
operations are the same as those used in the specification of situations. Modification
operations are operations which are used to modify the state of the software models
being manipulated by the process. Save operations are used to store the results of
guerying operations in the trace of the enactment of a process model so as to make
them available in subsequent stages of this enactment. Action operations are ordered in
internal actions and executed similarly to sequences of querying operations in
situations. Examples of specifications of interna actions and the different types of
operations that may be used in them are given in Sections 4 and 5.

3.4 Process enactment

The Reconciliation+ process model is enacted by an engine which functions as a
model interpreter [13]. The algorithm underpinning the operation of this engine is
specified in Figure 5. According to this algorithm, the enactment of a process model
starts from the root context of the process model (a process model must have a single
root context that should be a choice context). The situation of the root context of a
process model (and any other context that is encountered as the enactment engine
traverses it) is evauated by executing the set querying operations that define it. If the
set which results from the execution of the last of these operations (called situation
set) is not empty, the situation of the context is considered to have been satisfied. In
this case, the enactment engine generates different possible decisions from the context,
one for each of the elementsin the situation set.

More specifically, adecision is defined as a pair:
<context;, situation_set_elenent;>
where
» cont ext; isthe context whose situation is satisfied, and

17

*situation_set_el enent; isanelement of the situation set of cont ext ;.

Algorithm: EnactProcess (CurContext, Argument, Trace)

In: CurContext
Argument /I model element that the input Context was instantiated for
In/Out: Trace /I list of pairs <context, argument>

If CurContext # nil Then
EvaluateSituation(CurContext.Situation, Argument, ResultSet);
For each model element e in ResultSet Do
Options = Options O {< CurContext, e >}
End For
Options = Options O {< Tactical Guidance, nil >} O {< Abort Process, nil >};
/] Options is a set of pairs of the form <context, argument>
If Options is not empty Then
SelectedOption = User’s selection from available options;
If SelectedOption.context = Tactical Guidance Then
LastChoice = last <context, argument> pair in Trace before CurContext whose context
is a choice context; // if no such context exists LastChoice becomes <nil, nil>
NextContext = LastChoice.context;
NextArgument = LastChoice.argument;
EnactProcess(NextContext, NextArgument, Trace);
Else If SelectedOption.context = Abort Process Then
NextContext = nil;
NextArgument = nil;
EnactProcess(NextContext, NextArgument, Trace);

Else
insert(SelectedOption.context, SelectedOption.argument, Trace);
If SelectedOption.context is an executable context Then

Execute(SelectedOption.context);
NextContext = SelectedOption.context.continueFrom;
NextContextAncestor = last <context, argument> pair in Trace before NextContext;
NextArgument = NextContextAncestor.argument;
EnactProcess(NextContext, NextArgument, Trace);
Else/l SelectedOption.context is a choice context

Alternatives = CurContext.alternatives
For each context c in Alternatives Do

EvaluateSituation(c, SelectedOption.argument, ResultSet);

For each model element e in ResultSet Do

Options = Options O {< ¢, e >}

End For
End For
Options = Options 0 {<TacticalGuidance,nil>} O {<AbortProcess,nil>};
SelectedOption = User’s selection from available options
EnactProcess(SelectedOption.context, SelectedOption.argument, Trace);

End If
End If
End If
End If

Figure5: Process enactment algorithm

The situation ?Nonl dent i cal Acti vati ons inthe process mode of Figure 4, for
example, retrieves al the pairs of overlapping messages of two interaction diagrams
that have non identical activations. In the case of the interaction diagrams I, and I,
these pairs of messages are:

(2: new(ol),1: nem(m)

(10: acti onPer f or ned(Acti onEvent),7: acti onPerformed(Acti onEvent))

Thus, the possible decisons that may be generated from the context
Reconcil e_Non_ldentical Activations O of this stuation when
reconciling I, and I, are:

18

(1) <Reconcil e_Non_ldentical Activations O, (2: new0l),
1. newm(m)>

(2) <Reconci |l e_Non_l dentical Activations_O,
(10: acti onPer f or ned(Acti onEvent),
7:actionPerfornmed(ActionEvent)) >

A designer may select one of the different possible decisions which are generated from
a context, ask for tactical guidance or terminate the process. If a decision
<context;, si tuati on_set _el ement;> is selected, it is recorded in the trace
of the enacted process model and subsequently:

. If cont ext; is a choice context, the enactment engine: (1) retrieves the option
contexts associated with it, (2) inserts the si tuati on_set _el enent; in the
ar gl set of theinitial querying set operation of each of these contexts, (3) evaluates
the situation of each of these contexts, (4) generates the possible decisions for each
of these contexts, and (5) prompts the designer to make a new selection.

. If cont ext; is an externa action context, the enactment engine executes the file
specified by the attributeact i on_scri pt of it and continues the enactment of the
process model from the context associated with cont ext; via the association end
cont i nueFr om(see Figure 3).

- If context; is an internal action context, the enactment engine executes the
sequence of the operations in its internal action and continues the enactment of the
process model asin the case of external action contexts.’

In cases where the designer asks for tactical guidance, the enactment engine identifies
the decision before the last decision recorded in the process trace and resumes
execution from the context of it. The designer may also abort the execution of the
process model at any point.

In the following, we describe how the process specification profile of our method can
be used to specify consistency rules and actions to handle their violations.

4 Detection of inconsistencies

In Reconciliation+, a consistency rule is defined as an internal action of a consistency
check context (i.e., a specia kind of executable contexts as shown in Figure 3). This
action is essentially a query which retrieves the model elements that violate the
conditions required by the rule. Thus, the specification of consistency rules is
procedural. The consistency check context which incorporates the interna action that
defines a consistency rule represents the decision to check the rule. It also specifies the
conditions under which this decision may be made. These conditions are specified by
the situation of the context.

" Plan contexts are not used in the current process model of Reconciliation+ and therefore the
description of their enactment is beyond the scope of this paper.

19

Furthermore, the internal actions of consistency check contexts are restricted not to
include any modification operations. This restriction guarantees that the execution of a
consistency rule will not modify the contents of the underlying models. Also, the last
operation of such actions must be a save operation that records the model elements
which violate the rules (see stereotype SaveQper ati on in Figure 3) in order to
make them available to subsequent stages of the enactment of the reconciliation
Process.

Figure 6 shows the internal action | dentifyMessagesW t hout Count erparts
that defines the consistency rule CR1. Asdiscussed in Section 1, CR1 requires that if a
message my overlaps with a message my then for each message x activated by m there
must be a message y activated by my that overlaps with x and vice versa The
specification of this interna action assumes that message overlap relations are
represented by overlap objects in the trace of the Reconcilication+ process which point
to the overlapping messages and store the beliefsin their overlap (see the object

10: acti onPer f or med(Acti onEvent) - 7: acti onPer f or med(Acti onEvent)
in Figure7).

<<InternalAction>>
IdentifyMessagesWithoutCounterparts

+saves <<SaveOperation>>
imwnc-012
+operation <<ModelElementSet>> W;h e e st
<<GelEndClassesWithName>> imwnc-ol-s1
imwnc-ol +argl
+argl imwnc-o011-s1
endname = message2 +result tresult +next
<<ModelElementSet>> "
imwnc-o1-s2 ——| =<Senion>>
+next +arg2 imwnc-o11
| <<ModelElementSet>=> | ——
: +argl .
imwnc-o2 9 imwnc-010-s1 +next|
+result imwnc-o02-s2
‘ +next <<SetDifterence>>
imwnc-o010
<<GetEndClassesWithName>> +argl +argl
imwnc-o3 +result
endname = mapping — —
tresult | ==ModelEtemenser +next
inwnc-o3-s1
+next I i "00. +
‘ +argl | imwnc-09-s1 |+arg2
imwnc-o4 <<ModelElementser-> | L gr Tresult <<Gel-EndCIassesWuhl;;ame>>
endname = messagel imwnc-o4-s1 imwnc-o
+result endname =
‘ +next <<ModelElementSet>> +next
<<GelEndClassesWithName>> imwnc-o08-s1 | +argl
imwnc-o5
endname = messagel <<GetEndClassesWithName>>
+result <<ModelElementSet>> +result imwnc-o8
imwnc-05-s1 endname = mapping
]
-
+next 4
- argl +next
.“GE‘AC"““C’"E <<ModelElementSet>>
imwnc-o +result imwnc-06-s1 +argl
‘ +next +argl
<<SetD
imwnc-o7 .
imwnc-o7-sl1 |+argl
+result

Figure 6: Specification of the internal action | dent i f yMessagesW t hout Count erparts
To implement CR1, |dentifyMessagesW thout Counterparts retrieves the

messages in the activations of two overlapping messages which do not have
overlapping counterparts through the execution of the following operations:

20

(1) i mmnc-01® - this operation retrieves one of the messages that is pointed to by
the selected overlap object (message?2).

(2) i mmnc-02 - this is an operation which, by virtue of its stereotype (i.e., a
Get Acti vat i on operation), finds the messages which are directly dispatched
by amessage (message?2 of the selected overlap object in this case).

() i mmnc-03 andi mmnc- 04 - these operations find the messages that overlap
with the messages dispatched by nessage?2 and inserts them in set i mwmnc- 04-
sl.

(4) i mmnc-05 and i mwmnc- 06 - these operations find the messages which are
directly dispatched by the other message that is pointed to by the selected overlap
object (i.e., nessagel) and insert themin seti mmnc- 06- s1.

(5) i mmnc-o07 - this operation finds the messages which are dispatched by
nmessagel and have no counterparts in the set of messages dispatched by
nmessage2 by computing the difference between set i mwnc- 06-s1 and set
I mwmnc-o04-sl.

(6) i mmnc-08, imwmc-09, and i mmnc-0l10 - similarly to steps 4-5 these
operations identify the messages which are dispatched by nessage2 and have
no counterparts in the set of messages dispatched by nessagel.

(7) i mnc-011 - this operation takes the union of the messages which are
dispatched by nessagel and nessage2 and have no overlapping
counterparts.

(8 i mmnc-0l12 - this operation saves the messages which are dispatched by
nmessagel and nessage?2 and have no overlapping counterparts as elements
of the set DMANC _nes_set .

OptimalMorphism
type : string = Morphism
dsd = 0.7402988

Fmapping
10:actionPerformed(ActionEvent)<->7:actionPerformed(ActionEvent) (a)

=0
b3 = 0.2142857
b2 = 0.6129032
b5 = 0.4798658 +diagram1
b6 = 0.7238937
Bo = 0.388 39969BADO0OF1

OwnerName : string = 39EE CE560266
type : string = SequenceDiagram

+mapping +mapping

+message2

3996B7680213 .
OwnerName : string = 39969BC20051 rdiagram2

type : string = Message 39969BC20051

type : string = SequenceDiagram
+messagel OwnerName : string = 39EEDBEC01B3

3AF70CF4028E
OwnerName : string = 39969BADOOF1
type : string = Message

Figure 7: Overlap objects - objects that represent overlap relations

| denti f yMessagesW t hout Count er part s is specified as the internal action
of the consistency check context

8 i mmnc-ol is an operation stereotyped as Get EndCl assesW t hNane. Operations of this

stereotype retrieve the objects which are related to the elementsin their ar g1 set via the association
end named by their attribute endnarre.

21

Check For Messages Wt hout Counterparts Dispatched By (see
Figure 4). Thus, to check the consistency rule CR1 against a pair of overlapping
messages, a designer has to decide to apply this context to this pair. Note, however,
that Check For Messages Wt hout Counterparts_Di spatched By
may be applied only in certain parts of the reconciliation process and if the situation
associated with it is satisfied. More specifically, according to the process model of
Figure 4, this context can be applied to a pair of overlapping messages only after a
designer has selected:

1) the executable context
Fi nd_Over | aps_Bet ween_Sequence_Di agr ans_| n to detect overlaps
in the interaction diagrams to be reconciled;

2) thechoice context Reconci | e_Overl appi ng_Messages_| n to start the
reconciliation of the overlapping messages detected in these interaction
diagrams; and

3) thechoice context Reconcil e _Non_ Il dentical Activations O to
start the reconciliation of the overlapping messages with the non-identical
activations.

The selection and application of the consistency check context
Check_For _Messages_W thout Counterparts_ D spatched By to the

overlap object of Figure 7 (that is the object
10: acti onPer f or med(Acti onEvent) - 7: acti onPerfor ned(Acti onE
vent)) leads to the execution of the internal action

| denti f yMessagesW t hout Count er par t s which retrieves and saves in the
process trace the following set of messages without overlapping counterparts:
DMANC nes_set ={9: formul at eQuery()}

5 Handling inconsistencies

The ways of handling inconsistencies in Reconciliation+ are specified as internal
actions of a specia kind of executable contexts, called inconsistency handling contexts
(see stereotype | nconsi st encyHandl i ngCont ext in Figure 3).

A consistency rule is associated with one or more inconsistency handling contexts
which specify aternative ways of handling its violations. These contexts are grouped
as options of a choice context which, by virtue of the definition of its situation,
becomes selectable only if there is arecord of violations of the particular consistency
rule in the trace of the reconciliation process. The alternative inconsistency handling
contexts which are available as options of this context are associated with situations
which define the particular conditions under which the aternative inconsistency
handling options may be applied.

In the following, we discuss how the situations and the actions of inconsistency
handling contexts can be specified using the process modelling profile of

22

Reconciliation+. Our discussion is based on inconsistency handling contexts that the
process model of Reconciliation+ incorporates to deal with inconsistencies which arise
asviolations of therule CR1.

<<Situation>> <<ModelElementSet>>
?DispatchedWithoutCounterpart ActivationsOfMes2WithNoCounterparts
‘+operation +argl +result —=GetEndClasseswithName=~
<<SetUnion>> <<ModelElementSet>> d brn 2nc-o6
dbm2nc-o1 +arg?2 dbm2nc-ol-s1 endname = element
<<ModelElementSet>> +argl
+result dbm2nc-05-s1 +next
+next Tresult <<SelectOperation>>
<<GetModelPackages>> +result dbm2nc-o05
dbm2nc-02 nentSet>> <<ModelElementSet>> +argl feature = name
dbm2nc-o02-s1 dbm2nc-o04-s1 T el to
value = DMWNC_mes2_set
elementtype = Class

+next +argl +result hext
<<ModelElementSet>>
<<SelectOperation>> +result dbm2nc-o03-s1 [+argl

dbm2nc-o03 <<Getl

feature = name dbm2nc-o04

ropera ual_to +next
ionClasses

value tionC
elementtype = Package

Figure 8: Specification of situation ?Di spat chedW t hout Count er parts

A violation of CR1 can be handled in different ways. One possibility, for instance, is
to delete the messages without counterparts from the relevant message activation. A
second possibility is to add the missing messages in the relevant activation. A third
possibility is to modify the software models so that overlapping messages that
dispatch messages without counterparts will no longer be considered as overlapping
messages. A fourth possibility is to record the inconsistency and postpone its
resolution.

The process model shown in Figure 4 includes the contexts
Add_Count erpart_For and Record_Message Wt hout Counterpart,
which correspond to the 2™ and 4™ of the above options. As shown in Figure 4, these
contexts are grouped as options of the choice context
Handl e_Message Wth _No Counterpart. The latter context, due to the
definition of itsSituation ?Di spat chedW t hout Count er parts (seeFigure8),
becomes available only if there are messages that violate CR1. This is because,
according to Figure 8, ?Di spat chedW t hout Count er part s issatisfied only if
there is a non empty set called DMANC _nes_set that has as e ements the messages
in the activations of two overlapping messages that violate CR1° (recall from Section
4 thaa DMANC nes_set is generated by the action of the context
Check_For _Messages_W t hout Counterparts_ D spat ched_By).

Handl e_Message Wt hout Counterpart can be applied to any of the
messages in DMANC _nes_set. These dternative applications are generated as
decisions by the process enactment engine as described in Section 3.4 and are
proposed to the designer. In the case of the overlap relation between the messages
10: acti onPer f ormed(Acti onPer f or ned) and

® The set DMWNC_mes _set is represented as an object that is associated with al its elements and
existsin a special package called ExecutionClasses of the repository of the Reconciliation+ toolKkit.

23

7:actionPerfornmed(Acti onEvent) of the interaction diagrams |; and |, the
only decision generated from Handl e Message_ W t hout _Count er part is

<Handl e_Message Wt hout Counterpart,9:fornul ateQuery()>

<<Situation>>) <<ModelElementSet>>
?SameOperation so-opl-sl
+argl

+arg?2

‘ +operation

<<SetUnion>>

so-opl <<ModelElementSet>>
+result| S0-0p2-s2

‘ +next +argl
<<SelectOperation>>
so-op2
feature = activator.mapping.messagel.action.operation
roperator = equal_to +resu |t <<ModelElementSet>>

value = activator.mapping.message2.action.operation so-op 2-s1
elementtype = message

Figure9: Specification of situation ?SaneCper at i on

If this decision is selected, the process enactment engine checks the situations of the
two alternative contexts for handling this particular kind of inconsistencies, namely
Record_Message Wt hout Counterpart and Add_Counterpart_For
to establish if they can be applied in the case of 9: f or nul at eQuery() .

If applicable, Record_Message Wt hout _Count er part can be activated to
make a persistent record of the inconsistency (i.e., a record saved after the end of the
reconciliation process). This context can be selected under any circumstances as its
situation contains no conditions in addition to those set by its ancestor context in the
process model.

Add_Count er part _For can be selected to create a copy of a message that does
not have an overlapping counterpart and add it to the activation of the message that
overlaps with its activator. Note, however, that this way of resolving the inconsistency
makes sense only if the overlapping messages that gave rise to it indeed invoke the
same operation in the object model. Thus, the situation of Add_Count er part _For
(i.e, the situation ?SameQper at i on shown in Figure 9) is specified so as to check
whether this is the case. More specifically, the unary set operation so- op2 in
?SanmeQper ati on retrieves the activator ml of the message that caused the
violation of CR1 (i.e.,, 9: f or mul at eQuer y() in our example) and the message m2
that ml overlaps with and checks if ml and m2 have been declared in the models to
invoke the same operation (the operations invoked by ml and m2 are identified
through the evauation of the path expressions
activator. mappi ng. nessagel. acti on. operati on and
acti vat or. mappi ng. message2. acti on. oper ati on™). If that is the case,

19 The evaluation of the sub-paths act i vat or . mappi ng. messagel(2) in these path expressions
locate the overlapping messages in the activations of which the message without the counterpart was
encountered. These sub-paths assume the representation of overlap morphisms and relations by the
tool that we have built to support Reconciliation+ (shown in Figure 7). The remaining sub-paths

24

?SanmeQper ati on is satisfied and, therefore, Add_Count er part _For can be
selected for the message 9: f or mul at eQuery() .

<<InternalAction>> AddO| ti
AddMessage << peration>>
9 ama-o7
feature = message
‘ . +adds elementtype = SequenceDiagram
+0perat|on +argl <<ModelElementSet>>
<<SetUnion>>
ama-ol-sl
ama-ol +arg?2 +next
opname : type = SetUnion +modifies
+result <<ModelElementSet>>
‘ +next ama-o06-sl1
<<ModelElementSet>>
<<GetModelPackages>> +
ama-o2 result | ama-o2-s1 +result
+ ¢ +argl <<GetEndClassesWithName>>
nex
ama-o6
<<SelectOperation>> endname = diagram1
P am a—03 <<ModelElementSet>> +al’gl _—
eature = name _—
roperator = equal_to +result ama-o03-sl <<ModelElementSet>> +next
value = ExecutionClasses
elementtype = Package | a 1 ama-o5-s1 +result
+arg
<<SelectOperation>>
<<ModelElementSet>> +argl ama-o5
Fnext +result | ama-o4-si feature = name
<<GetPackageClasses>> roperator = equal_to
value = OptimalMorphism
ama-o4 +nNnext |elementype =Class

Figure 10: Specification of action AddMessage

The creation of a copy of this message is the result of executing the internal action
AddMessage of Add_Count er part For. The specification of this action is
shown in Figure 10. According to this specification, to execute AddMessage, the
process enactment engine first locates the interaction diagram of the overlapping
message of the activator of the message that Add_Count erpart For was
selected for (i.e., the diagram |1 in our example) by executing the operations ama- 02
to ama- 06, and then adds to the set of the messages of this diagram a copy of this
message by executing the operation ana- 07.

6 Tool support

Reconciliation+ is supported by a toolkit which incorporates: (a) a tool that detects
overlaps between object interaction models, and (b) an engine which enacts the
process model of the method to drive the activity of reconciling interaction diagrams.
This toolkit has been implemented as an add-on utility for Rational Rose (a CASE tool
supporting UML) using the API of thistool [21].

The architecture of the Reconciliation+ toolkit is shown in Figure 11. As shown in this
figure, the toolkit stores the models to be reconciled as collections of UML class
models and sequence diagrams in a model repository that is accessible through the
API of Rose. The overlap morphisms which are detected by the overlap detection tool,

(*. acti on. oper at i on) assume the standard representation for UML models that is established
by the UML meta-model [9].

25

the process model of the method, and the trace of the enactment of this model are also
represented and stored as UML object models in the same repository.

Overlap Detection Tool
Toolkit

—>

Process Enactment Engine

¢

¢

Rose API

Rose model repository

Process Enactment

Trace

Figure 11: Architecture of the Reconciliation+ toolkit

Figure 12 shows a snapshot of the overlap detection tool following its invocation to
identify overlaps between the interaction diagrams of Figure 1.

& Rational Hose - demo_v1.3

File Edt ‘iew Browse Debugger

Tools Addine Window Help

M

Dlla| x|=e 8 wo| 2slolo] & 2lole)e]

E Seguence Diagram Modell / SearchByTitle v1 _:I-;' Sequence Diagram: Model2 / SeachByAuther v1
™ Manager safo: SearchForn | Tedied | Buton | | ot Manager | c1:seachByeut. | 61 seawhomn | W Tetred | ran
T | S O =
‘ m: Manager | | sefo ‘ ‘ TentField ‘ ‘ Button [o1, ¢l Search | [1. Search | | TextField
| SearchForm Manager | | ByAuthor Form Jo5
A 1Tonewim)) . : " ‘
nk w20 TextField("book-title”) [1'create(o1) : :
: > 2 new{ol) : :
3 addActionListener(m) 3 TextField("author_name'
- |
i g
4 Button{"search") 4 Button("search’)
= addAct\onL\steﬂer(m) 5 Panel()
| Overlap Detector 56 add(bt DOSQJ E
Model 1 Seauence Diaaram 1 Overlap Mappings 7 add(f1 pos3)
Tnewim] <> 2newfal) - S : .
— SearchByTitle 2 TewtField[book itle'] <> 3 TeutFistd " suthor_name"] :]
o Searchbylilevs e N addActionListener(f1)
SgetTextl) <-» 11.getT ext(] 2 !
1 lhexecubelue SOLSE <> 12 executeluenpSOLS atement) _|
Model 2 Seouence Diagram 2
Belief Weights Distance Belief Measures
Modell .
SearchBwuthor w0 al Displap Distance
B2= 5129032
SearchBywhuthor v a2 '1— B3= 142857
4= D
a3 | 2 B5 = 479658
il bl st | a1 gg: .1516519 P
a2
L"m a6 [Overall beliet - I
finalyse I a7 [0

Figure 12: Overlap Detector — detection of overlap morphism between |, and |,

Figure 13 shows a snapshot of the process enactment engine of the toolkit. This
snapshot shows a point in the enactment of the Reconciliation + process model where

the

consistency

check context

26

Check_For _Messages_W t hout _Counterparts_D spatched_By may
be selected to check for violations of the rule CR1 by messages in the activations of
the overlapping pair of messages. 10: act i onPer f or ned(Acti onEvent), and
7:actionPerfornmed(Acti onEvent) of thediagramsof Figure 1. Asshownin
Figure 13, the process enactment engine gives a designer the options of: (a) applying
any of the contexts which become available at the current point in the enactment of the
process model (see list Next Decision), and (b) asking for tactica guidance or
equivalently go back to the previous decision point in the enactment of the process
model. Note also that the enactment engine keeps a record of the decisions that have
been made up to the current point in the enactment of a process (process trace) and
presents them to the designer (see the list Decisions made so far).

+- Rational Rose - demo_v1.3 M
fie Edi View Browss Debugger Jools Addins Window Help

Disal s &l wo] xiwalo] & 2o e]e])

-

W iif Sequence Diagram Modell / Searchiy T ile v1 = | - iii Sequence Diagram Model? / SearchByAuthor v1

» mManager | sere. Seawaremn | tedried | cputton | 08| ot :Manager | o1 searcheyaut. | r1:seacerom | wirearws |

Elllm: Manager | [sefo | [_TedField | [_Buton | ._[ﬂ [ot |[cl Search| [11 Search] |tf TextField | ,jl

|« (I | SearchForm | __| 1L |Manager | |_B¥Author__ Fom | |

b M Eremny w2 TextField("book-title"") 1 [11: create(at) 3

= | — ——T—l : > 2 mfal].]

P 3 addActionListener(m) ‘ = TextF|e|d‘j(ﬁauthor_na
(T U ‘

Process Enactment Engine - Process Model reconcile_sequence_diagrams 4 Button(?earCh)

| sPaek) |
o oot pos2)|
7 saarpoe |
équQI{OHF‘ S,t?”?r?(fj)

o

Decisions made so far

R B«:ﬂnc\le:Elvmlapplrrg‘MessagiasJ n 0 pliraalM orphism
Reconcile_Mor_|dentical_actvations_Of | achionPerformed|2chonE vent) > achorPerfarmedjd.chonE vent|_[a)

TACTICAL GLNDANCE I STRATEGIC GUIDANCE ABORT PROCESS I

Figure 13: Process Enactment Engine

7 Case study

To evauate Reconciliation+ we have carried out a case study. The objectives of this
study were to:

(i) measure the performance of the overlap detection algorithm that is deployed by
the method in terms of recall (i.e., the ability to detect overlap relations that
humans would identify), and precision (i.e., the ability to detect correct overlap
relations);

(i) assessthe sensitivity of the overlap detection algorithm against the granularity of
the modelsit is applied to; and

27

(iii) investigate the diversity of the ways that may be used to handle inconsistencies,
and assess whether the process model of the method could support the
specification of inconsistency handling contexts to implement these ways.

In this case study, we used 5 UML models built by MSc students at City University.
These models had been constructed to specify a system supporting banking
transactions through the use of ATM machines.

7.1 Recall and precision of overlap detection algorithm

To evauate the recall and precison of the overlap detection algorithm of
Reconciliation+, we performed 50 comparisons of pairs of UML interaction diagrams
drawn from the models of our case study.

Following a manual identification of overlap relations between these interaction
diagrams, we detected overlap relations between them using the algorithm specified in
Section 2, and subsequently measured the recall and the precision of the algorithm
according to the following formulas:

Precision=|AQ" n MQ"| and Recdl = |AQ' n MQ'|
|AQY | IMO'|
where
» AQ" isthe set of the overlap relations that were detected by the overlap detection
algorithm between the messages of two interaction diagramsi and j; and
» MO' is the set of the manually identified overlap relations between the messages
of two interaction diagramsi and |.

Model | IMOOAO| #|D-Pairs Recall Precision
Mean | S. Dev. Mean | S. Dev.
1 77 10 1.00 0 1.00 0
2 60 11 0.86 0.20 0.99 0.03
3 74 6 0.92 0.20 0.90 0.2
4 231 15 0.87 0.08 0.98 0.05
5 87 8 0.91 0.06 1.00 0
All 529 50 0.91 0.13 0.98 0.08

Table 2: Recall and precision of overlap detection algorithm

Table 2 shows the average and standard deviation of the recall and precision measures
that we obtained for pairs of diagrams drawn from each of the five object models used
in our experiments, and from all of the models (these results were obtained for the
values of parameters a;—0gand b; used in Section 2.3). It aso shows the number of the
pairs of interaction diagrams that were compared in each model (i.e., #/D-Pairs) and
the total number of the overlap relations detected by the overlap agorithm and the
overlap relations that were manually identified between them in each case (i.e., MO O
AQ]). The object models that we used in our experiments and the overlap relations
identified manually by the experts and the overlap detection algorithm are available
from: http://www.soi.city.ac.uk/~gespan/imoosd_case studies.html

28

Asshown in Table 2, the overlap detection algorithm had very high precision (0.98 on
average across al models) and relatively high recall (0.91 on average across models).
Also there was a low variation in these measures across different pairs of interaction
diagrams and models (the standard deviation of the recall and precision measures
across al models were 0.13 and 0.07, respectively). Although preliminary, the above
results indicate that the overlap detection agorithm has a very low probability of
producing false overlaps and is capable of detecting a high proportion of the overlaps
indicated by human designers.

7.2 Effect of model granularity on overlap detection

To explore the effect of model granularity on our overlap detection algorithm, we also
carried out a correlation analysis of the obtained recall and precision measures against
the following measures of model granularity:

(i) thenumber of classesin amodel (#CL) — this measure was expected to affect the
beliefs b and by,

(i) the average number of superclasses of aclass in a model (#lsa*) — this measure
was expected to affect directly the beliefs b, and bz and implicitly bs,

(iii) the average degree of operation overriding in a model (i.e., the ratio of classes
which inherit an operation but override it — #00) — this measure was expected to
affect directly the beliefs b; and implicitly bs, and

(iv) the average number of dispatched messages in message activations (#AC) — this
measure was expected to affect the beliefs bg.

M odel #Cl #l sa* #00 #AC
1 697 0.014 1 3.685
2 200 0.420 0.305 1.288
3 55 0.309 0.584 2.722
4 702 0.017 0.772 1.030
5 696 0.012 0.696 1.911
Correlation Coefficients
Recall 0.29 -0.28 0.76 0.96
Precision 0.74 -0.74 0.24 -0.16

Table 3: Model granularity measures and correlation with recall and precision

Table 3 presents the above granularity measures for the five models of our case study
and their correlation with the recall and precision measures obtained for these models.
As shown in the table, recall had strong positive correlations with #00 and #AC. This
was expected as the weights of the d; and dg distances, which were directly affected by
#00 and #AC, in establishing beliefs in overlaps were relatively higher than the
weights of the other four distances of our algorithm (see values of a; and & in Section
2.3). The observed negative correlation of recall with the average number of
superclasses (#lsa*) is likely to have been the result of the small number of
superclasses that the senders and receivers of messaged had in the considered models.
It should also be noted that only the positive correlation of #AC with recall (i.e., 0.96)
was statistically significant (at a=0.10).

29

In the case of precision, positive correlations were detected only for #CL and #00 and
none of the obtained correlations was statistically significant at a=0.10. This may be
attributed to the fact that precision was very high across all models and therefore the
differencesin model granularity did not have any significant effect on it.

The results of the above correlation analysis indicate that the overlap detection
algorithm is not over-sensitive to the degree of completeness and elaboration of design
models. This was expected due to the use of six different criteria that focus on
different parts of software design models for detecting overlaps. Clearly, however, our
results are only preliminary and need to be confirmed by additional experiments.

7.3 Diversity of inconsistency handling options

The third objective of our case study was to investigate the diversity of the ways that
may be used to handle inconsistencies, and to assess whether the process model of the
method could support the specification of inconsistency handling contexts to
implement these ways. In this part of the study, we selected 4 consistency rules to
check against the overlapping messages that were detected by the overlap detection
agorithm in the first part of the study. The selected rules were:

» CR1 -thiswastherule specified in Sections 1 and 4;

» CR2 - this was a rule that required the operations invoked by two overlapping
messages to have the same name;

» CRS3 - this was a rule that required the operations invoked by two overlapping
messages to be defined in the same class; and

= CR4 - this was a rule that required the operations invoked by two overlapping
messages to have the same number and types of parameters.

The above rules were selected since they capture the main forms of possible
discrepancies in the specifications of operations which are invoked by overlapping

messages.

CR1 CR2 CR3 CR4
Violations 40 3 2 23
No need to be resolved 10 0 1 9
Need to be resolved 29 3 1 14
Alternative resolutions 6 2 1 4

Table 4: Inconsistencies and alternative ways of handling them

Table 4 shows the number of the detected violations of each of these rules, the number
of the cases where we found that it was necessary to resolve the detected
inconsistency, and the number of the different alternative ways that we advocated for
resolving the inconsistencies of the same rule. As it may be seen from the figures of
this table, some diversity was indeed observed in the ways of handling violations of
the same rule. However, due to the size of our experiments these results cannot be
generalised. Nevertheless, the case study has given rise to some interesting
observations that we discuss in the following.

30

More specificaly,

8

In some cases, following the violation of a consistency rule, it was realised that the
overlap relation detected by the method and checked against the rule was wrong.
In such cases, it was not necessary to take any inconsistency resolution action. The
way that was adopted to handle such inconsistencies was to record them along
with an annotation that the overlap relation that gave rise to them were wrong.

There were cases, where the violation of a consistency rule should be tolerated as
the relevant rule should not be satisfied by particular pairs of overlapping
messages. Thiswas, for instance, the case with some of the violations of rule CR1
in which two overlapping messages were dispatching messages with the same
signature but different activations which had not themselves been detected as
overlapping messages. In these cases, the non overlapping messages were
invoking polymorphic operations (i.e., operations defined in different classes with
the same signature and different implementations as, for example, the operations
Sear chForm act i onPer f or ned(e: Act i onEvent) and
Dat abaseAct i onLi st ened. acti onPer f or ned(e: Act i onEvent)
in Figure 2) and therefore the resolution of the inconsistency was not necessary.
To deal with such cases, it is, in principle, possible either to amend the conditions
of the relevant rule so as to ignore non overlapping messages that invoke
polymorphic operations, or to add inconsistency handling contexts for the rule that
ignore its violations by such messages. Although both these strategies can be
accommodated by the method, Reconciliation+ does not incorporate at its current
stage of development criteria for helping designers to decide which of the two
options is more appropriate in specific circumstances.

The selection of the best inconsistency handling strategy in a given situation may
depend on the satisfiability (or unsatisfiability) of more than one rules. The
violation of both rule CR1 and CR2, for instance, in some cases led to the
realisation that the overlap relation that gave rise to the inconsi stencies was wrong.
In these cases, the relevant inconsistencies were ignored. In other cases, however,
where CR3 was violated but CR1 was satisfied the inconsistencies were resolved
by changing the name of one of the overlapping messages. In Reconciliation+,
cases like these could be handled by specifying the situations of the inconsistency
handling contexts for a specific rule so as to check if the pair of the overlapping
messages that violated the rule has al so violated another rule.

Related work

A considerable body of research has been concerned with the problem of detecting
inconsistencies in software models and documentation. This work has generated
techniques for detecting inconsistencies in structured and text-based [1][3][4][12]
object-oriented [2][6][15][18] state-based [7][8], and formal software models[5][17].

Some of the proposed techniques focus on object-oriented models. Glinz [6], for
example, has developed a technique that checks behavioural software models
expressed as statecharts for deadlocks, reachability and mutual exclusiveness of states.

31

Cheung et a [2] have developed a technique that checks whether the sequence of the
execution of operations that isimplied by a UML statechart diagram is compliant with
the sequence of the executions of operations implied by a UML sequence diagram.
Zisman et a [18] have developed a consistency link generator which checks whether
UML software models satisfy specific consistency rules. These rules are expressed in
XML and the consistency checking is performed using a tool developed using an
XML development platform. A critical survey of al the above techniques may be
found in [16].

9 Conclusions and further work

In this paper, we have presented Reconciliation+, a method that guides designers in
reconciling object interaction diagrams specified as part of software design models.
The method detects overlaps between messages in interaction diagrams, checks
consistency rules that overlapping messages must satisfy, and provides ways of
handling violations of these rules. The rules and the ways of handling inconsistencies
are specified as parts of a process model that is enacted by the method to drive the
reconciliation activity. Reconciliation+ can be applied at the design phase of software
development following the specification of, at least, partial object-oriented software
design models defining the basic class structure and interactions of a system. The
method can be used in conjunction with development approaches which require the
development of design models prior to implementation and approaches that advocate
an incremental development of such models and/or software systems.

We have evaluated Reconciliation+ in a case study the objectives of which were to
measure the recall and precision of the overlap detection algorithm deployed by the
method, investigate its senditivity to variations of model granularity, and investigate
the diversity of the strategies that may be needed in handling inconsistencies. This
case study has shown positive preliminary results regarding the recall and precision of
the overlap detection agorithm of the method, and has demonstrated some diversity in
the nature of inconsistency handling strategies which can be accommodated by the
method. It has aso shown that the overlap detection algorithm is not prohibitively
sensitive to the degree of elaboration and completeness of the modelsiit is applied to.
Thus, Reconciliation+ can be applied to models specified at varying levels of
completeness.

Further experimentation is, however, required to confirm these findings. Furthermore,
it is necessary to evaluate the method against some usability criteria including the
difficulty in extending its process model with new consistency rules and ways of
handling their violations, as well as with intermediate decisions (choice contexts) to
guide software designers in selecting amongst alternative inconsistency handling
options. Currently, we are evaluating the method along these lines.

Acknowledgements

The work presented in this paper has been partially funded by the EPSRC grant no.
GR/M57422.

32

References

[1] Boehm B, In H (1996), Identifying Quality Requirements Conflicts, |EEE Software, 25-35.

[2] Cheung K, Chow K, Cheung T (1998), Consistency Analysis on Lifecycle Model and Interaction Model, Proc.
of the 7" Int. Conference on Object-Oriented Information Systems, 427-441.

[3] Easterbrook S (1991), Handling Conflict between Domain Descriptions with Computer-Supported
Negotiation, Knowledge Acquisition, 3: 255-289.

[4] Emmerich W, Finkelstein F, Montangero C, Antonelli S, Armitage S (1999), Managing Standards
Compliance, |EEE Transactions on Software Engineering, 25(6): 836-851.

[5] Finkelstein A., Gabbay D, Hunter, A, Kramer, J, and Nuseibeh, B (1994), Inconsistency Handling In Multi-
Perspective Specifications, | EEE Transactions on Software Engineering, 20(8): 569-578.

[6] Glinz M (1995), An Integrated Formal Model of Scenarios Based on Statecharts, In Proc. of the 5™ European
Software Engineering Conference, LNCS 989, Springer-Verlag, 254-271.

[71 Heimdahi M.P.E, Leveson N (1996), Completeness and Consistency in Hierarchical State-Based
Requirements, |EEE Transactions in Software Engineering, 22(6): 363-377.

[8] Heitmeyer C, Jeffords R, Kiskis D (1996), Automated Consistency Checking Requirements Specifications,
ACM Transactions on Software Engineering and Methodology, 5(3): 231-261.

[9] OMG, Unified Modeling Language Specification (Action Semantics) - V. 1.4. Available from:
http://www.omg.org/technol ogy/documents/modeling_spec_catalog.htm .

[10] Papadimitriou C, Steiglitz K (1982), Combinatorial Optimisation: Algorithms and Complexity, Prentice-Hall
Inc.

[11] Pohl K (1996), Process-Centred Requirements Engineering, Advanced Software Development Series, J.
Kramer (ed), Research Studies Press Ltd., ISBN 0-86380-193-5, London.

[12] Robinson, W. and Fickas S (1994), Supporting Multi-Perspective Requirements Engineering, In Proc. of the
|EEE Conference on Requirements Engineering, |EEE Computer Society Press, 206-215.

[13] Si-Said S, Rolland C, Grosz G (1996), MENTOR: A Computer Aided Requirements Engineering
Environment, Proc. of the 8" International Conference on Advanced Information Systems Engineering, 22-43.

[14] Spanoudakis G, Constantopoulos P (1996), Elaborating Analogies from Conceptua Models, International
Journal of Intelligent Systems, 11(11): 17-974.

[15] Spanoudakis G, and Finkelstein A (1997), Reconciling requirements. a method for managing interference,
inconsistency and conflict, Annals of Software Engineering, Specia Issue on Software Regquirements
Engineering, 3: 459-475.

[16] Spanoudakis G, Zisman A. (2001), Inconsistency Management in Software Engineering: Survey and Open
Research Issues, Handbook of Software Engineering and Knowledge Engineering, (ed) Chang S. K, World
Scientific Publishing Co, 329-380.

[17] Lamsweerde A, Darimont R, Letier E (1998), Managing Conflicts in Goal-Driven Requirements Engineering,
| EEE Transactions on Software Engineering, 24(11): 908-926.

[18] Zisman A, Emmerich W, Finkelstein A (2000), Using XML to Specify Consistency Rules for Distributed
Documents, Proc. of 10" Int. Workshop on Software Specification and Design.

[19] Shafer G (1976), A Mathematical Theory of Evidence, Princeton University Press.

[20] http://java.sun.com/j2se/1.3/docs/gui de/awt/

[21] Spanoudakis G (2000), An Algorithm for Detecting Overlaps between Models of Object Interactions,
Technical Report Series, TR-2000/03, ISSN 1364-4009, Department of Computing, City University.

[22] http://www.rational .com/products/rose/index.jsp.

33

