
1

Supporting the Reconciliation of Models of
Object Behaviour1

GEORGE SPANOUDAKIS AND HYOSEOB KIM
2

Department of Computing,
City University,
Northampton Square, London EC1V 0HB, UK

E–mail: gespan@soi.city.ac.uk

1 This article is an extended version of the article "Reconciliation of Object Interaction Models" that

appeared in the proceedings of the 7th International Conference on Object Oriented Information
Systems.

2 This article reports on research that was carried out while the second author was affiliated with the
Department of Computing of City University.

Abstract: This paper presents Reconciliation+, a method which identifies overlaps between models of
software systems behaviour expressed as UML object interaction diagrams (i.e., sequence and/or
collaboration diagrams), checks whether the overlapping elements of these models satisfy specific
consistency rules and, in cases where they violate these rules, guides software designers in handling the
detected inconsistencies. The method detects overlaps between object interaction diagrams by using a
probabilistic message matching algorithm that has been developed for this purpose. The guidance to
software designers on when to check for inconsistencies and how to deal with them is delivered by
enacting a built-in process model that specifies the consistency rules that can be checked against
overlapping models and different ways of handling violations of these rules. Reconciliation+ is
supported by a toolkit. It has also been evaluated in a case study. This case study has produced positive
results which are discussed in the paper.

Keywords: consistency management, software design models, object interaction diagrams

1 Introduction

The specification of software system behaviour using multiple object interaction
diagrams (i.e., sequence and/or collaboration diagrams) creates the potential of
conflicting specifications of messages, objects and operations in these models. This is
because different object interaction diagrams may, by virtue of the exchanges of
messages that they specify and other elements in the specifications of these messages,
imply different behaviours for the same objects and operations.

Consider, for example, an object model for a library system that includes the object
interaction diagrams I1 and I2 of Figure 1 and the class diagram of Figure 2. The
diagrams I1 and I2 specify interactions, which occur when the library system is used to
search for items in the library either by keywords which refer to the author of an item
(I1) or by keywords which refer to the title of an item (I2). The class diagram of Figure

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/57202?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

2 specifies the classes of the objects that participate in the interactions of I1 and I2.
According to I1 and I2, the library system: (i) gets search keywords from a UI
component (see messages 11:getText() in I1 and 8:getText() in I2); (ii)
formulates a database query (see message 9:formulateQuery() in I2); and (iii)
executes the query (see messages 12:executeQuery(SQLStatement)in I1 and
10:executeQuery(SQLSt) in I2).

Figure 1: Object interaction diagrams SearchByAuthor (I1) and SearchByTitle (I2)

In this example, it is plausible to assume that the messages
10:actionPerformed(ActionEvent) in I1 and
7:actionPerformed(ActionEvent) in I2 overlap since (in the current state of
the models) they both appear to invoke the operation
actionPerformed(e:ActionEvent) of the class
DatabaseActionListener in Figure 2. If, however, this assumption is correct
then the specifications of the behaviour of the operation
actionPerformed(e:ActionEvent) which are implied by I1 and I2 are
conflicting. This is because according to I2 (but not I1) the execution of the operation
actionPerformed(e:ActionEvent) leads to the dispatch of the message
9:formulateQuery() and therefore the execution of the operation
formulateQuery() of the class Manager.

Conflicts of this form need to be detected and reconciled in the design phase of a
system development project in order to eliminate ambiguities that could be more
expensive to resolve at the implementation phase.

In this paper, we describe a tool-supported method, called Reconciliation+, that we
have developed to support software designers to detect and handle conflicts in
behavioural specifications in models of object interactions which are expressed as
sequence (or collaboration) diagrams in UML [9]. This method is a newly developed

I2 - SearchByTitle

m :
Manager

sefo :
SearchForm

 : TextField :
Button

 :
DBHandler

1: new(m)

8: getText()

2: TextField("book-title")

4: Button("search")

10: executeQuery(SQLSt)

6: setVisible(True)

3: addActionListener(m)

5: addActionListener(m)

7: actionPerformed(ActionEvent)

9: formulateQuery()

I1 - SearchByAuthor

o1 :
Manager

c1 : SearchByAuthor f1 : SearchForm tf : TextField bt :
Button

 : Panel :
DBHandler

1: create(o1)
2: new(o1)

10: actionPerformed(ActionEvent)

11: getText()

3: TextField("author_name")

4: Button("search")

5: Panel()

6: add(bt, pos2)

7: add(f1,pos3)

12: executeQuery(SQLStatement)

9: actionPerformed(e)

8: addActionListener(f1)

3

extension of a method for managing modelling discrepancies in structural object
models that is discussed in [15].

Figure 2: Model of classes of object interaction diagrams of Figure 1

Conflicts in Reconciliation+ are detected as violations of consistency rules. A
consistency rule sets the conditions that should be satisfied by overlapping messages
in different object interaction diagrams. In the above example of the library system,
for instance, the conflict in the specifications of the behaviour of the operation
actionPerformed(e:ActionEvent) implied by I1 and I2 could be detected as a
violation of the following consistency rule:

CR1: If a message mi overlaps with a message mj then for every message mk

that is dispatched by mi (mj) there must exist a message mw dispatched
by mj (mi) such that mk and mw overlap.

CR1 in this case would be violated by the message 9:formulateQuery() that is
dispatched by the message 7:actionPerformed(ActionEvent) in I2 and has no
overlapping counterpart in the messages which are dispatched by the message
10:actionPerformed(ActionEvent) in I1 that overlaps with it.

Overlaps in Reconciliation+ are defined as relations between messages which are
likely to signify the invocation of operations with the same implementation and are
detected by a probabilistic message matching algorithm. This algorithm can detect
overlaps between messages which are not identically modelled if certain parts of their
specifications provide strong evidence to believe that the messages signify the
invocation of operations with the same implementation. Thus, for example, it may
detect an overlap relation between two messages mi and mj that have different
signatures if they are sent to objects which are instances of the same class and dispatch
the same messages (e.g. message 12:executeQuery(SQLStatement) in I1 and
message 10:executeQuery(SQLSt)in I2).

EventListener
<<Interface>>

SearchByAuthor

formulateQuery()
<<constructor>> create(m : Manager)

SearchForm

<<constructor>> new(m : Manager)
getData()

DBHandler

executeQuery(statement : String)

Manager

formulateQuery()

Button

processEvent(e : AWTEvent)

Panel

Panel()
Panel(layout : LayoutManager)
addNotify() : void

TextField

processEvent(e : AWTEvent)

ActionListener

actionPerformed(e : ActionEvent) : void

<<Interface>>

TextComponent

Container

Component

processEvent(e : AWTEvent)

DatabaseActionListener

actionPerformed(e : ActionEvent) : void

actionPerformed(e : ActionEvent) : void

4

Reconciliation+ incorporates a set of pre-defined consistency rules that should be
satisfied by overlapping messages and alternative ways of handling violations of these
rules. The method guides software designers in selecting which of these consistency
rules to check and how to handle their violations. This guidance is delivered by
enacting a built-in process model that specifies the consistency rules that can be
checked against overlapping messages, and different ways of handling the violations
of these rules. The method is extensible as software designers can extend its built-in
process model by specifying new consistency rules, and new ways of handling
violations of new or existing rules.

The rest of this paper is structured as follows. In Section 2, we describe the algorithm
that Reconciliation+ deploys for detecting overlapping messages in different
interaction diagrams. In Section 3, we describe the specification and enactment of the
process model of the method that is used for guiding designers in reconciling object
interaction diagrams. In Section 4, we describe the specification of consistency rules
using the process model of the method and the mechanism for detecting violations of
these rules. In Section 5, we describe the scheme for specifying and executing
different ways of handling inconsistencies. In Section 6, we present an overview of the
prototype toolkit we have developed to support Reconciliation+. In Section 7, we
present the results of a case study that we have conducted to evaluate the method.
Finally, in Section 8 we overview related work and, in Section 9, we summarise the
method and outline ongoing work on it.

2 Detection of overlaps

2.1 Basic algorithmic formulation

Overlaps in Reconciliation+ are defined as relations between messages which are
likely to signify the invocation of operations with the same implementation. The
detection of these relations is formulated as an instance of the weighted bipartite
graph matching problem [10]. More specifically, assuming a pair of interaction
diagrams Ii and Ij, we construct a weighted interaction overlap graph: IOG(Ii, Ij) = (Vi

∪ Vj, E(Vi,Vj)). This graph has two sets of disjoint vertices, Vi and Vj, which
assuming that Ii has more messages than Ij, are defined as:

Vi ≡ Messages(Ii) and Vj ≡ Messages(Ij) ∪ DVk

where
� Messages(Ii) is the set of messages of the interaction diagram Ii;
� Messages(Ij) is the set of messages of the interaction diagram Ij; and
� DVk is a set of k special vertices representing dummy messages (k = |Messages(Ii)|

− |Messages(Ij)|).

The set of the edges E(Vi,Vj) includes all the possible edges between the messages of
Ii and the messages of Ij, or formally:

E(Vi,Vj) = {(ni ,nj, b0(¬ov(ni,nj))) | (ni ∈ Vi) and (nj ∈ Vj)}

5

An edge (ni ,nj, b0(¬ov(ni,nj))) in E(Vi,Vj) designates the assumption that the messages
represented by the nodes ni and nj overlap and is weighted by the measure
b0(¬ov(ni,nj)). This measure is defined as the degree of belief in the falsity of the
overlap assumption expressed by the edge, and is computed according to the following
function:

b0(¬ov(ni,nj)) = ΣU⊆{1,…,6}(−1)|U|+1{Πu∈U bu(¬ov(ni,nj))}
 if ni ∈ Messages(Ii) and nj ∈ Messages(Ij) (I)
b0(¬ov(ni,nj)) = 1 if nj ∈ DVk

The functions b1,…,b6 used in (I) compute partial beliefs in the existence/absence of
an overlap between two messages. The computation of these partial beliefs is based on
heuristic criteria for assessing the equivalence of the functional roles and
implementations of the operations invoked by the messages, and the functional
contexts in which these operations are invoked. These belief functions and the criteria
underpinning them are discussed in detail in Section 2.2.

After computing the beliefs b0 for all the edges of IOG(Ii, Ij), the most likely overlaps
between the messages in Ii and Ij are detected in two steps. In the first step, the most
likely candidate overlaps are identified by selecting a subset O(Vi,Vj) of E(Vi,Vj)
which is a total morphism between Vi and Vj and minimises the function3:

Σ(nu, nw, b0(¬ov(nu,nw))) ∈ O(Vi,Vj) b0(¬ov(nu,nw)) (II)

In the second step, O(Vi,Vj) is restricted to include only the edges
(nu,nw,b0(¬ov(nu,nw)) whose belief does not exceed a threshold value bt, (i.e., edges for
which b0(¬ov(nu,nv)) ≤ bt).

2.2 Criteria of overlap and partial belief functions

Beliefs in favour of, or against a hypothesis that two messages overlap are computed
based on six criteria. These criteria indicate the equivalence of the functional roles and
implementations of the operations which are invoked by the messages, and the
equivalence of the contexts in which these operations are invoked.

2.2.1 Equivalence of functional roles of invoked operations

Beliefs in the equivalence of the functional roles of the operations which are invoked
by two messages are computed using two criteria, namely the criterion of the most
generic overridden operation and the criterion of the operation stereotypes.

The criterion of most generic overridden operation
Two operations are assumed to have equivalent functional roles if they override the
same most general operation in an object model.

According to this criterion, the operations processEvent(e: AWTEvent) which
are defined in the classes Button and TextField in Figure 2, for example, are

3 The morphism O(Vi,Vj) is selected using the Hungarian method [10].

6

considered to have equivalent functional roles. This is because both of them override
the same most generic operation in the class model of the figure, namely the operation
processEvent(e:AWTEvent) of Component. In this example, the classes
Button and TextField override the latter operation that they inherit from
Component in order to introduce the different functionality which is required for
processing events of two different types: action events by Button and text events by
TextField [20]. Despite of the differences in their exact functionality, however, the
functional role of the operations processEvent(AWTEvent e) in Button and
TextField is the same, that is to enable the instances of these classes to handle
events related to them.

Note that, while in single inheritance hierarchies an operation always overrides a
single most generic operation (which may trivially be itself4), in multiple inheritance
graphs there is a potential for ambiguity. Such an ambiguity arises in cases where two
superclasses of a class C, which are not directly or implicitly related by a
generalisation relation themselves, define operations that have the same signature as
an operation that is defined in C.

To cope with ambiguities of this form, we introduce the following function that
measures the degree of belief in the existence (absence) of an overlap relation between
two messages based on the criterion of the most generic overridden operations:

Definition 1: The degree of belief in the existence (absence) of an overlap relation
between two messages mi and mj based on the criterion of the most generic operations
overridden by the operations invoked by mi and mj is computed according to the
function:

b1(¬ov(mi,mj)) = α1 × d1(mi,mj) and b1(ov(mi,mj)) = 0
where
� d1(mi,mj) = (|Os(oi)−Os(oj)|+|Os(oj)−Os(oi)|)/|Os(oi)∪Os(oj)|

if Os(oi) ≠ ∅ and Os(oj) ≠ ∅
� d1(mi,mj)=1

if Os(oi) = ∅ or Os(oj) = ∅
� oi is the operation invoked by mi and oj is the operation invoked by mj

� Os(oi) (Os(oj)) is a set of operations which are defined in the superclasses of the
class that defines oi (oj), have the same signature with it, and do not override any
other operation with the same signature.

� α1 is the expected ratio of messages that invoke operations which do not override the
same most generic operation and do not overlap (0 ≤ α1 ≤ 1)

Examples
The belief produced by b1 in the absence of an overlap relation between the messages
7:actionPerformed(ActionEvent) and
10:actionPerformed(ActionEvent)) in the interaction diagrams I1 and I2 of
Figure 1 is 0. This is because, according to the class model of Figure 2, both these
messages invoke the same operation, that is
DatabaseActionListener.actionPerformed(e:ActionEvent), and

4 As in the case of the operation formulateQuery() of the class Manager in Figure 2.

7

therefore the same most general overridden operation (i.e.,
ActionListener.actionPerformed(e:ActionEvent)). Thus, the d1

distance between these messages is 0.

Note, however, that the belief in the absence of an overlap relation between the
messages 9:actionPerformed(e) in I1 and
7:actionPerformed(ActionEvent) in I2 that is generated by b1 is 0.4
(assuming that α1 = 0.4). This is because the former message invokes the operation
SearchForm.actionPerformed(e: ActionEvent) and the latter message
invokes the operation DatabaseActionListener.actionPerformed(e:
ActionEvent) in Figure 2. And as these two operations override different most
general operations in the relevant class model (i.e., the operation
SearchForm.actionPerformed(e: ActionEvent) and the operation
ActionListener.actionPerformed(e:ActionEvent), respectively), the
distance between the above messages is 1. As a result, b1 assumes that the functional
roles of SearchForm.actionPerformed(e: ActionEvent) and
DatabaseActionListener.actionPerformed(e: ActionEvent) are
different and, therefore, it generates the maximum possible belief against the existence
of an overlap relation between 9:actionPerformed(e) and
7:actionPerformed(ActionEvent).

The criterion of operation stereotypes
The second criterion for assessing the equivalence of the functional roles of two
operations is based on operation stereotypes. According to this criterion, the functional
roles of two operations are considered equivalent if the operations have the same
stereotype(s). This criterion is used since, in UML, operation stereotypes are used to
designate groups of functionally similar operations. The belief function associated
with this criterion is defined as follows:

Definition 2: The degree of belief in the existence (absence) of an overlap relation
between two messages mi and mj based on the criterion of the stereotypes of the
operations that mi and mj invoke is computed according to the function:

b4(¬ov(mi,mj)) = α4 × d4(mi,mj) and b4(ov(mi,mj)) = 0
where
� d4(mi,mj) = (|St(oi)−St(oj)|+|St(oj)−St(oi)|)/|St(oi)∪St(oj)| if St(oi)≠∅ and St(oj)≠∅
� d4(mi,mj) = 1 if St(oi)=∅ or St(oj)=∅
� oi is the operation invoked by mi and oj is the operation invoked by mj

� St(oi) and St(oj) are the sets of the stereotypes of oi and oj

� α4 is the expected ratio of operations with different stereotypes which do not
overlap (0 ≤ α4 ≤ 1)

The functional form of b4 covers cases where an operation may belong to different
stereotype groups. In these cases, d4 measures the likelihood of the operations invoked
by two messages not having a common stereotype.

8

Examples
The d4 distance between the messages 1:create(o1) in I1 and 1:new(m) in I2 is
0. This is because the operations SearchByAuthor.create(o:Manager) and
SearchForm.new(o:SearchByAuthor) which are invoked by these messages,
are both stereotyped as constructor-operations in the class diagram of Figure 2. Thus,
b4 is also 0 in this case. For any other pair of messages in Figure 1, however, since the
stereotypes of the operations invoked by them are not defined (see Figure 2) the d4

distance is 1 and thus it generates a b4 belief equal to α4.

2.2.2 Equivalence of the functional contexts of operations

The assessment of the equivalence of the functional contexts of two messages is based
on three criteria. The first of these criteria is whether the messages are sent by
instances of the same class or, equivalently in terms of UML, they have the same
senders. The second criterion is whether the messages are received by instances of the
same class or, in terms of UML, they have the same receivers. The third criterion is
whether the messages are dispatched by the same message or, in terms of UML, have
the same activator.

The criterion of message senders
According to this criterion, the functional contexts in which two messages are
dispatched are considered to be different if the messages are sent by objects which are
instances of different classes. The belief function that is associated with this criterion
is defined as:

Definition 3: The degree of belief in the existence (absence) of an overlap relation
between two messages mi and mj based on the criterion of message senders is
computed according to the function:

b2(¬ov(mi,mj)) = α2 × d2(si, sj) and b2(ov(mi,mj)) = 0
where
� si and sj are the classes of the objects that send mi and mj, respectively
� d2(si, sj) is a function measuring the generalisation distance between si and sj defined

as:
− d2(si, sj) = ∑

x∈NCSij SD(x)-1 / ∑
y∈ASSij SD(y)-1 if si and si are specified

d2(si, sj) = 1 if si or si is not specified
− NCSij = ((si.Isa* ∪ {si}) − (sj.Isa* ∪ {sj})) ∪ ((sj.Isa* ∪ {sj}) − (si.Isa* ∪ {si}))
− ASSij = ((si.Isa* ∪ {si }) ∪ (sj.Isa* ∪ {sj }))
− SD(x) is the length of the longest path connecting a class x with its most general

superclass, called specialisation depth of x
− si.Isa* (sj.Isa*) is the transitive closure of the superclasses of class si(sj)

� α2 is the expected ratio of non overlapping messages with different senders (0 ≤ α2 ≤
1)

The assumption underpinning the definition of the belief function b2 is that the identity
of class names is not necessarily an accurate indicator of the identity of classes,
especially if classes are specified in two independently constructed models of the same

9

system. Thus, b2 computes a belief in class identity based not only on the classes
themselves but also on their superclasses. According to its definition, the more the
non-common superclasses of two classes ci and cj the stronger the belief that ci and cj

are not identical.

Each of the non-common superclasses of two classes ci and cj produces evidence of
different strength for the assumption that ci and cj are not identical. The strength of
this evidence is measured as the inverse of the specialisation depth (i.e., the length of
the longest path connecting a class with its most general superclasses) of a superclass
in the generalisation graph of the model(s). According to this measure, non common
superclasses which appear in relatively low levels of generalisation graphs and, by
virtue of their position, introduce fine-grain specialisations of more general classes
provide weaker evidence than classes which appear in higher positions [14].

Examples
Given the class model of Figure 2, the d2 distance between the classes Manager and
SearchByAuthor that send the messages 2:new(o1) and 1:new(m) in the
interaction diagrams I1 and I2 is 0.21. Thus, assuming that α2 = 0.1, the belief in the
absence of an overlap relation between these messages that b2 generates is 0.021.

The criterion of message receivers
According to this criterion, the functional contexts of two messages are not considered
to be equivalent if the messages are received by objects which are instances of
different classes or, equivalently in terms of UML, if they have different receivers.
The belief function that is associated with this criterion is defined as:

Definition 4: The degree of belief in the existence (absence) of an overlap relation
between two messages mi and mj based on the criterion of message receivers is
computed according to the function:

b3(¬ov(mi,mj)) = α3 × d2(ri, rj) and b3(ov(mi,mj)) = 0
where
� ri and rj are the classes of the objects that receive mi and mj, respectively
� d2 is as defined in Definition 3
� α3 is the expected ratio of messages with different receivers which do not overlap

(0 ≤ α3 ≤ 1)

The rational for using the above function for measuring belief in the absence/existence
of an overlap relation between the receivers of two messages is the same as that used
in the case of the function b2.

The criterion of message activators
The third criterion for calculating belief in the equivalence of the functional contexts
of two messages mi and mj is whether these messages are sent by messages which
overlap themselves (these messages are called activators in UML). The belief function
associated with this criterion of message activators is defined as follows:

10

Definition 5: The degree of belief in the existence (absence) of an overlap relation
between two messages mi and mj based on the criterion of their message activators is
computed according to the function:

b5(¬ov(mi,mj)) = α5 × ΣU⊆{1,…,4}(–1)|U|+1{Πu∈Ubu(¬ov(mk,ml))} if mk ≠ nil & ml ≠ nil
b5(¬ov(mi,mj)) = α5 × 1 if mk = nil or ml = nil
b5(ov(mi,mj)) = 0

where
� mk and ml are the activators of the messages mi and mj, respectively
� b1,…, b4 are the belief functions defined definitions 1-4
� α5 is the expected ratio of messages with different activators which do not overlap (0

≤ α5 ≤ 1)

According to Definition 5, the criteria used for computing beliefs in the absence of an
overlap relation between the activators of two messages include the criteria of most
generic overridden operation, operation stereotypes, message senders and message
receivers but excludes the criteria of message activators and message activations (see
Section 2.2.3). The reason for not using the criterion of message activators in the
computation of b5 beliefs is to avoid recursive computations in the transitive closure of
the activators of the messages. Similarly, the reason for excluding the criterion of
message activations when calculating beliefs in the existence and absence of an
overlap relation between the activators of two messages mi and mj is that their
inclusion would lead to a non terminating recursion in the computations, since it
would require the computation of the belief in the absence of an overlap between mi

and mj again (see definition of belief function b6 below).

Examples
Assuming that the parameters α1, α2 , α3 , α4 , α5, α6 take the values .4, .1, .2, .1, .2, and
.4, respectively, the b5 belief in the absence of an overlap relation between the
messages 3:TextField("author_name") in I1 and 2:
TextField("book_title")in I2 is 0.02. This is because there is weak evidence
from the model against the existence of an overlap relation between the activators of
these messages (these are the messages 2:new(o1) and 1:new(m), respectively) .
More specifically, in this case we have that:
ΣU⊆{1,…,4}(–1)|U|+1{Πu∈Ubu(¬ov(2:new(o1), 1:new(m)))} = 0.1

2.2.3 Equivalence of the implementations of operations

The criterion of message activations
The final criterion for computing a partial belief in the existence/absence of an overlap
relation between two messages mi and mj is whether the messages that mi and mj

dispatch messages which overlap themselves or, in terms of UML, they have the same
activations. This criterion is used since the dispatch of non-overlapping messages by
two messages mi and mj implies that the operations which are invoked by mi and mj

have different implementations. The belief function associated with this criterion is
defined as follows:

11

Definition 6: The degree of belief in the existence (absence) of an overlap relation
between two messages mi and mj based on the criterion of message activations is
computed according to the function:

b6(¬ov(mi,mj)) = α6 × d6(mi,mj) and b6(ov(mi,mj)) = 0
where
� d6(mi,mj) = (min X∈Morphisms(i,j) (∑(mu,mv)∈Xbo(¬ov(mu,mv)) + max(|Ai|−|Aj|,

|Aj|−|Ai|)) / max(|Ai|, |Aj|) if Ai ≠ ∅ and Aj ≠ ∅
d6(mi,mj) = 1 if Ai = ∅ or Aj = ∅

� Ai and Aj are the sets of messages which are dispatched by mi and mj, respectively.
� Morphisms(i,j) is the set of all the total morphisms from the messages in Ai to the

messages in Aj if |Ai| ≤ |Aj| or onto morphisms from the messages in Ai to the
messages in Aj if |Aj| < |Ai|.

� b0(¬ov(mu,mv)) is computed as defined by formula (I).
� α6 is the expected ratio of messages with different activations which do not overlap

(0 ≤ α6 ≤ 1)

According to Definition 6, the computation of b6 beliefs for two messages mi and mj

leads recursively to the identification of the most likely overlaps between all the
messages which are directly or transitively dispatched by them (this is because d6 is
defined in terms of b0 which, according to formula (I), is defined in terms of b6). This
recursive computation is terminated whenever the messages under comparison in the
transitive closures of the activations of mi and mj dispatch no further messages. In
cases where any of the messages under comparison dispatches no messages, d6 returns
a belief equal to one. This belief reflects the hypothesis that in the absence of any
evidence about the additional operations that two operations o1 and o2 invoke o1 and o2

can be assumed to have different implementations.

Examples
The b6 beliefs in the absence of an overlap relation between the messages 1:new(m)
and 2:new(o1) and between the messages
7:actionPerformed(ActionEvent) and
10:actionPerformed(ActionEvent) in the interaction diagrams of Figure 1
are .88 and .61, respectively. These beliefs are computed assuming that the parameters
α1, α2 , α3 , α4 , α5, α6 take the values .4, .1, .2, .1, .2, and .4, respectively.

The above b6 beliefs reflect the facts that

(a) The activations of 1:new(m) and 2:new(o1)have only one pair of overlapping
messages, that is the pair formed by the messages 2:TextField("book-
title") and 3:TextField("author-name"), and four messages without
overlapping counterparts, namely the messages 3:addActionListener(m),
4:Button("search"), 5:addActionListener(m), and
6:setVisible(True) in the activation of 1:new(m).

(b) The activations of 7:actionPerformed(ActionEvent) and
10:actionPerformed(ActionEvent) have two pairs of overlapping
messages (these are pairs formed by the messages 8:getText() and

12

11:getText(), and the messages 10:executeQuery(SQLSt) and
12:executeQuery(SQLStatement)), and one message without an
overlapping counterpart, namely the message 9:formulateQuery().

2.3 Example of detecting an overlap morphism

The algorithm specified in Sections 2.1 and 2.2 detects the following overlapping
messages in the interaction diagrams of Figure 1:

(i) message 2:new(o1) in I1 and message 1:new(m) in I2

(ii) message 3:TextField("author_name") in I1 and message
2:TextField("book-title") in I2

(iii) message 4:Button("search") in I1 and message
4:Button("search") in I2

(iv) message 10:actionPerformed(ActionEvent) in I1 and message
7:actionPerformed(ActionEvent) in I2

(v) message 11:getText() in I1 and message 8:getText() in I2

(vi) message 12:executeQuery(SQLStatement) in I1 and message
10:executeQuery(SQLSt)in I2

Messages Beliefs
b1 b2 b3 b4 b5 b6 bo

(2, 1) 0 0.214 0 0 1 0.928 0.507
(3, 2) 0 1 0 0 0.52 1 0.516
(4, 4) 0 1 0 0 0.52 1 0.516
(10, 7) 0 0.612 0.214 0 0.479 0.616 0.388
(11, 8) 0 0.214 0 0 0.1 1 0.424
(12, 10) 0 0.214 0 0 0.1 1 0.424

Table 1: Beliefs against the overlaps detected between the messages of I1 and I2

The beliefs in the absence of overlaps between the above messages are shown in Table
1 and were computed after setting the parameters α1, α2, α3, α4, α5, α6 and bt to 0.4,
0.1, 0.2, 0.1, 0.2, 0.4, and 0.65, respectively. The rows of the table designate the above
pairs of messages by using the numbers that indicate the order of their dispatch in each
diagram. For example, the overlapping messages 11:getText()and
8:getText()are signified in Table 1 as the pair (11, 8).

The values selected for the parameters α1−α6 in this example were empirically
determined after considering models that incorporated generalisation graphs and
object interactions specified at varying degrees of completeness and elaboration.
Reconciliation+ assumes that designers should decide which are the appropriate values
for the parameters α1−α6 and bt. These decisions should be based on an assessment of
how accurate is as an indicator of overlaps each of the criteria that underpin the belief
functions b1−b6. This assessment can be formed based on the form and level of
elaboration of different parts of the involved design model(s). If a model uses no

13

stereotypes, for instance, α4 should be set to 0. Similarly, for models that do not
incorporate elaborate class generalisation graphs α2 should be set to a low value.

2.4 Properties of the belief functions

As proved in [21], the functions b1−b6 are all distance metrics and satisfy the axioms
of Dempster-Shafer basic probability assignments [19]. The functional form of b0 is
derived from the combination of the belief functions b1, …,b6 using the rule of the
orthogonal sum of the Dempster-Shafer theory, and measures the belief that is jointly
committed to ¬ov(mi,mj) by b1−b6. b0 is also a distance metric (see [21] for a proof).
These characteristics of b0 guarantee the following intuitive properties for its outputs:

� for any three messages mi, mj and mk we have, due to the triangularity of distance
metrics, that: b0(¬ov(mi,mk)) ≤ b0(¬ov(mi,mj)) + b0(¬ov (mj,mk))

� for any two messages mi and mj we have, due to the symmetry of distance metrics,
that: b0(¬ov(mi,mj)) = b0(¬ov(mj,mi))

� for any two messages mi and mj we have, due to axiomatic foundation of
Dempster-Shafer basic probability assignments [19], that: b0(¬ov(mi,mj) ∧
ov(mj,mi)) = 0

3 The Reconciliation+ process: specification and
enactment

As we discussed in Section 1, Reconciliation+ guides software designers through the
activity of reconciling their models by enacting a built-in process model. This model
specifies consistency rules that may be checked against overlapping messages and
alternative ways of handling violations of these rules. In this section, we introduce the
scheme that is used by the method to specify this process model, and the mechanism
that is used to enact it.

3.1 A UML profile for specifying reconciliation processes

The process of Reconciliation+ is specified as a graph of contexts following a
decision-oriented approach to software process modelling [11]. A context represents a
decision that may be taken in a given situation. This situation is specified as a
condition over the state of the software models which are being manipulated by the
process (i.e., the interaction diagrams which are being reconciled in the case of
Reconciliation+). Contexts are distinguished into:

(1) executable contexts − these are contexts which represent decisions to take actions
that change the state of the software model;

(2) plan contexts − these are contexts which represent decisions that can be realised by
a set of sub-decisions which must be made in a specific order; and

14

(3) choice contexts − these are contexts which represent decisions that may be realised
by two or more other alternative decisions.

Figure 3: A UML profile for specifying Reconciliation+ processes

The process models that can be formulated using this process modelling approach are
essentially AND/OR graphs of decisions which are guarded by specific conditions.
Figure 3 presents a UML profile that we have defined for specifying model
reconciliation processes in UML using the contextual process modelling approach
described above5.

Profiles in UML are user-defined extensions of the meta-model of the language which
are introduced to support the construction of models for specific purposes and
domains. Typically, a UML profile consists of: (i) a set of stereotypes that define
additional kinds of modelling elements which are required to construct models for the
particular domain, (ii) tag definitions that introduce additional meta-attributes for the
model elements that may be classified under the stereotypes of the profile, and (iii)
constraints which are associated with the stereotypes of the profile and apply to all the
elements classified under them [9].

The Reconciliation+ process specification profile that we have developed is
represented by the UML class diagram shown in Figure 3. This diagram has been
constructed according to the following representation conventions:

5 The introduction of a UML profile for the specification of the reconciliation processes of our method

was motivated by the need to have both software models and the processes that reconcile them
expressed in a single representational framework as this would facilitate the implementation of tool
support for the method (see Section 6).

InternalActionContext

Internal

1..1

1..*

+executes

1..1

1..*

ActionOperation
1..1
+operation

1..10..1

order

+next

0..1

ModificationOperation
feature : String
elementtype : String ExternalAction

action_script : String

ExternalActionContext

+executes

ExecutableContext

PlanContext ChoiceContext

1..1
+continueFrom
1..1

Situation

UnarySetOperation

ModelElement
element_type : String

Context

+descendant

0..*

1..*

+choiceContext
0..*

+option
1..* alternatives

1..1+situation 1..1

BinarySetOperation

QueryingSetOperation
opname : String

1..1+operation 1..1

+situation

SaveOperation
withname : String
inpackage : String

AddOperation

DeleteOperation

ModelElementSet
+arg1

0..*
+element
0..*

+validFor

+arg2 +arg1+result

+saves

+adds

+deletes

UpdateOperation
newvalue : String

ConsistencyCheckContext

InconsistencyHandlingContext

15

(i) Classes represent the stereotypes of the profile. The class ChoiceContext,
for example, designates the stereotype that represents choice contexts in the
process modelling approach outlined above.

(ii) A named association end in Figure 3 designates a tag defined for the stereotype
that is represented by the class that is attached to the opposite end of the relevant
association. For example, situation is a tag defined for the stereotype
Context. The type of this tag is the stereotype Situation and its
multiplicity is 1..1.

(iii) An attribute in Figure 3 designates a tag defined for the stereotype that is
represented by the class incorporating it. Attributes represent tags whose type is
a data type. For example, feature is a tag defined for the stereotype
ModificationOperation whose type is String.

(iv) A generalisation relation in Figure 3 designates a generalisation relation between
the stereotypes represented by the classes that it connects. For example,
ChoiceContext is a special kind of Context.

As shown in Figure 3, our profile, includes stereotypes that represent the basic
constructs for specifying reconciliation processes, including contexts, situations and
actions.

Figure 4: Part of the Reconciliation+ process model

IdentifyMessagesWithoutCounterparts
(from Action_IdentifyMessagesWithoutCounterparts)

<<InternalAction>>

?NonIdenticalActivations
(from Sit_?InconsistentActivations)

<<Situation>>

Check_For_Messages_Without_Counterparts_Dispatched_By
(from Contexts)

<<Consis tencyCheckContext>>

+executes

?OverlapMorphismExists
(from Situations)

<<Situation>>

NoExtraConditions
<<Situation>>

+situation

CallOverlapDetector
action_script = c:\research\reconciliation\s im ilarity\dsd2_v2_4.ebs

<<ExternalAction>>

?DispatchedWithoutCounterpart
(from Sit_?DispatchedByMes2WithoutCounterparts)

<<Situation>>

Reconcile_Non_Identical_Activations_Of
<<ChoiceContext>>

+situation

+option

+continueFrom

Record_Message_Without_Counterpart
(from Contexts)

<<Incons is tencyHandlingContext>>+situation

Reconcile_Overlapping_Messages_In
<<ChoiceContext>>

+situation

+option

Find_Overlaps_Between_Sequence_Diagrams_In
<<ExecutableContext>>

+situation

+executes

Handle_Message_Without_Counterpart
(from Contexts)

<<ChoiceContext>>

+situation
+option

+option

AddMessage
(from Action_AddMessage)

<<InternalAction>>

Reconcile_Sequence_Diagrams_In
<<ChoiceContext>>

+option+option

+continueFrom

Add_Counterpart_For
(from Contexts)

<<Incons is tencyHandlingContext>>

+option

+executes

+continueFrom

?SameOperation
(from Sit_?SameOOperation)

<<Situation>>

+situation

16

A part of the Reconciliation+ process model that is specified according to the above
profile is shown in Figure 4. This part includes, for example, the choice context
Reconcile_Overlapping_Messages_In which represents the decision to
start the process of reconciling overlapping messages. The situation of this context,
?OverlapMorphismExists, checks whether an overlap morphism between the
interaction diagrams to be reconciled has been identified. Thus, the context
Reconcile_Overlapping_Messages_In can be selected only if the overlaps
between two interaction models have been identified.

3.2 Specification of situations

In Reconciliation+, a situation is specified as a query defined by an ordered sequence
of querying set operations. A querying set operation is either a
UnarySetOperation or a BinarySetOperation.

Unary set operations are used to retrieve elements of a UML model which are
associated with a given element e of it via any of the different kinds of associations or
attributes defined for the type of e. A unary set operation is associated with two sets:
the arg1 set and the result set. The former set includes all the elements of a UML
model that the operation should be applied to. The latter set is used to store the union
of the elements which are retrieved for each of the elements of arg1 following the
application of the operation. An example of a unary set operation is the operation
imwnc-o2 in Figure 6. This operation is stereotyped as a GetActivation
operation, that is a unary set operation which retrieves the messages which are directly
dispatched by the messages which belong to its arg1 set. Additional examples of
unary set operations are given in Section 4.

Binary set operations are associated with three sets: the arg1, arg2 and result
set. There are three different types of such operations in our process specification
profile for computing the union, intersection and set-difference of given sets. Similarly
to unary operations, the result of a binary set operation is saved in its result set. An
example of a binary set operation is the operation imwnc-o7 in Figure 6. This
operation is stereotyped as a SetDifference operation and, therefore, it computes
the set difference of the sets of messages imwnc-o6-s1 and imwnc-o4-s1 (i.e.,
imwnc-o6-s1 − imwnc-o4-s1) and inserts the elements of this set difference in
imwnc-o7-s1.

The operations that define the query of a situation s are ordered through the
association order6 (see Figure 3) and may take as an argument any of the sets which
are generated by operations preceding them in s. A situation is satisfied if the result
set of the last of its operations is not empty. Examples of specifications of situations
are given in Section 5.

6 The association end next of this association denotes the next operation in a local operation

sequence.

17

3.3 Specification of actions

In our process specification profile, each executable context must have an action that
can be either an external or internal action (see the action stereotypes
ExternalAction and InternalAction in Figure 3).

External actions are used to specify the invocation of external tools during the
enactment of a Reconciliation+ process. An example of an external action is the action
CallOverlapDetector in the process model of Figure 4. This action is associated
with the context Find_Overlaps_Between_Sequence_Diagrams_In and is
executed when this context is selected. The execution of this action invokes the
overlap detection tool of Reconciliation+ (a pointer to the executable file of this tool is
specified as the value of the attribute action_script of the action as shown in
Figure 4).

Internal actions are used to specify consistency rules and ways of handling
inconsistencies. These actions are specified as sequences of action operations. An
action operation may be a querying, model modification, or save operation. Querying
operations are the same as those used in the specification of situations. Modification
operations are operations which are used to modify the state of the software models
being manipulated by the process. Save operations are used to store the results of
querying operations in the trace of the enactment of a process model so as to make
them available in subsequent stages of this enactment. Action operations are ordered in
internal actions and executed similarly to sequences of querying operations in
situations. Examples of specifications of internal actions and the different types of
operations that may be used in them are given in Sections 4 and 5.

3.4 Process enactment

The Reconciliation+ process model is enacted by an engine which functions as a
model interpreter [13]. The algorithm underpinning the operation of this engine is
specified in Figure 5. According to this algorithm, the enactment of a process model
starts from the root context of the process model (a process model must have a single
root context that should be a choice context). The situation of the root context of a
process model (and any other context that is encountered as the enactment engine
traverses it) is evaluated by executing the set querying operations that define it. If the
set which results from the execution of the last of these operations (called situation
set) is not empty, the situation of the context is considered to have been satisfied. In
this case, the enactment engine generates different possible decisions from the context,
one for each of the elements in the situation set.

More specifically, a decision is defined as a pair:
<contexti, situation_set_elementj>

where
� contexti is the context whose situation is satisfied, and

18

� situation_set_elementj is an element of the situation set of contexti.

Figure 5: Process enactment algorithm

The situation ?NonIdenticalActivations in the process model of Figure 4, for
example, retrieves all the pairs of overlapping messages of two interaction diagrams
that have non identical activations. In the case of the interaction diagrams I1 and I2,
these pairs of messages are:
(2:new(o1), 1:new(m))
(10:actionPerformed(ActionEvent), 7:actionPerformed(ActionEvent))

Thus, the possible decisions that may be generated from the context
Reconcile_Non_Identical_Activations_Of of this situation when
reconciling I1 and I2 are:

Algorithm: EnactProcess (CurContext, Argument, Trace)
In: CurContext

Argument // model element that the input Context was instantiated for
In/Out: Trace // list of pairs <context, argument>

If CurContext ≠ nil Then
EvaluateSituation(CurContext.Situation, Argument, ResultSet);
For each model element e in ResultSet Do

Options = Options ∪ {< CurContext, e >}
End For
Options = Options ∪ {< Tactical Guidance, nil >} ∪ {< Abort Process, nil >};
// Options is a set of pairs of the form <context, argument>
If Options is not empty Then

SelectedOption = User’s selection from available options;
If SelectedOption.context = Tactical Guidance Then

LastChoice = last <context, argument> pair in Trace before CurContext whose context
is a choice context; // if no such context exists LastChoice becomes <nil, nil>

NextContext = LastChoice.context;
NextArgument = LastChoice.argument;
EnactProcess(NextContext, NextArgument, Trace);

Else If SelectedOption.context = Abort Process Then
NextContext = nil;
NextArgument = nil;
EnactProcess(NextContext, NextArgument, Trace);

Else
insert(SelectedOption.context, SelectedOption.argument, Trace);
If SelectedOption.context is an executable context Then

Execute(SelectedOption.context);
NextContext = SelectedOption.context.continueFrom;
NextContextAncestor = last <context, argument> pair in Trace before NextContext;
NextArgument = NextContextAncestor.argument;
EnactProcess(NextContext, NextArgument, Trace);

Else // SelectedOption.context is a choice context
Alternatives = CurContext.alternatives
For each context c in Alternatives Do

EvaluateSituation(c, SelectedOption.argument, ResultSet);
For each model element e in ResultSet Do

Options = Options ∪ {< c, e >}
End For

End For
Options = Options ∪ {<TacticalGuidance,nil>} ∪ {<AbortProcess,nil>};
SelectedOption = User’s selection from available options
EnactProcess(SelectedOption.context, SelectedOption.argument, Trace);

End If
End If

End If
End If

19

(1) <Reconcile_Non_Identical_Activations_Of, (2:new(o1),
1:new(m))>

(2) <Reconcile_Non_Identical_Activations_Of,
(10:actionPerformed(ActionEvent),
7:actionPerformed(ActionEvent)) >

A designer may select one of the different possible decisions which are generated from
a context, ask for tactical guidance or terminate the process. If a decision
<contexti,situation_set_elementj> is selected, it is recorded in the trace
of the enacted process model and subsequently:

• If contexti is a choice context, the enactment engine: (1) retrieves the option
contexts associated with it, (2) inserts the situation_set_elementj in the
arg1 set of the initial querying set operation of each of these contexts, (3) evaluates
the situation of each of these contexts, (4) generates the possible decisions for each
of these contexts, and (5) prompts the designer to make a new selection.

• If contexti is an external action context, the enactment engine executes the file
specified by the attribute action_script of it and continues the enactment of the
process model from the context associated with contexti via the association end
continueFrom (see Figure 3).

• If contexti is an internal action context, the enactment engine executes the
sequence of the operations in its internal action and continues the enactment of the
process model as in the case of external action contexts.7

In cases where the designer asks for tactical guidance, the enactment engine identifies
the decision before the last decision recorded in the process trace and resumes
execution from the context of it. The designer may also abort the execution of the
process model at any point.

In the following, we describe how the process specification profile of our method can
be used to specify consistency rules and actions to handle their violations.

4 Detection of inconsistencies

In Reconciliation+, a consistency rule is defined as an internal action of a consistency
check context (i.e., a special kind of executable contexts as shown in Figure 3). This
action is essentially a query which retrieves the model elements that violate the
conditions required by the rule. Thus, the specification of consistency rules is
procedural. The consistency check context which incorporates the internal action that
defines a consistency rule represents the decision to check the rule. It also specifies the
conditions under which this decision may be made. These conditions are specified by
the situation of the context.

7 Plan contexts are not used in the current process model of Reconciliation+ and therefore the

description of their enactment is beyond the scope of this paper.

20

Furthermore, the internal actions of consistency check contexts are restricted not to
include any modification operations. This restriction guarantees that the execution of a
consistency rule will not modify the contents of the underlying models. Also, the last
operation of such actions must be a save operation that records the model elements
which violate the rules (see stereotype SaveOperation in Figure 3) in order to
make them available to subsequent stages of the enactment of the reconciliation
process.

Figure 6 shows the internal action IdentifyMessagesWithoutCounterparts
that defines the consistency rule CR1. As discussed in Section 1, CR1 requires that if a
message mi overlaps with a message mj then for each message x activated by mi there
must be a message y activated by mj that overlaps with x and vice versa. The
specification of this internal action assumes that message overlap relations are
represented by overlap objects in the trace of the Reconcilication+ process which point
to the overlapping messages and store the beliefs in their overlap (see the object
10:actionPerformed(ActionEvent)↔7:actionPerformed(ActionEvent)
in Figure 7).

Figure 6: Specification of the internal action IdentifyMessagesWithoutCounterparts

To implement CR1, IdentifyMessagesWithoutCounterparts retrieves the
messages in the activations of two overlapping messages which do not have
overlapping counterparts through the execution of the following operations:

IdentifyM essagesWithoutCounterparts
<<InternalAction>>

imwnc-o1-s1
<<ModelElementSet>>

imwnc-o5
endname = message1

<<GetEndClassesWithName>>

+arg1

imwnc-o5-s1
<<ModelElementSet>>+result

imwnc-o1-s2
<<ModelElementSet>>

imwnc-o1
endname = message2

<<GetEndClassesWithName>>

+operation

+result

+arg1

inwnc-o3-s1
<<ModelElementSet>>

imwnc-o4
endname = message1

<<GetEndClassesWithName>>

+arg1

+next

imwnc-o6
<<GetActivation>>

+next +arg1

imwnc-o6-s1
<<ModelElementSet>>

+result

imwnc-o4-s1
<<ModelElementSet>>

+result

imwnc-o8-s1
<<ModelElementSet>>

imwnc-o8
endname = mapping

<<GetEndClassesWithName>>

+arg1

+result

imwnc-o2
<<GetActivation>> +arg1

+next

imwnc-o3
endname = mapping

<<GetEndClassesWithName>>

+result

+next

+next

imwnc-o7
<<SetDifference>>

+next +arg1

+next

+arg2 imwnc-o9
endname = message2

<<GetEndClassesWithName>>

+arg1
+next

imwnc-o9-s1
<<ModelElementSet>>

+result

imwnc-o2-s2
<<ModelElementSet>>

+result

+arg1

imwnc-o7-s1
<<ModelElementSet>>

+result

imwnc-o10
<<SetDifference>>

+next

+arg2

+arg1

imwnc-o12
withname : type = DMWNC_mes_set
inpackage : type = ExecutionClasses

<<SaveOperation>>

imwnc-o11-s1

+saves

imwnc-o10-s1
<<ModelElementSet>>

+result

imwnc-o11
<<SetUnion>>

+arg1

+next

+next
+result

+arg2

21

(1) imwnc-o18 − this operation retrieves one of the messages that is pointed to by
the selected overlap object (message2).

(2) imwnc-o2 − this is an operation which, by virtue of its stereotype (i.e., a
GetActivation operation), finds the messages which are directly dispatched
by a message (message2 of the selected overlap object in this case).

(3) imwnc-o3 and imwnc-o4 − these operations find the messages that overlap
with the messages dispatched by message2 and inserts them in set imwnc-o4-
s1.

(4) imwnc-o5 and imwnc-o6 − these operations find the messages which are
directly dispatched by the other message that is pointed to by the selected overlap
object (i.e., message1) and insert them in set imwnc-o6-s1.

(5) imwnc-o7 − this operation finds the messages which are dispatched by
message1 and have no counterparts in the set of messages dispatched by
message2 by computing the difference between set imwnc-o6-s1 and set
imwnc-o4-s1.

(6) imwnc-o8, imwnc-o9, and imwnc-o10 − similarly to steps 4-5 these
operations identify the messages which are dispatched by message2 and have
no counterparts in the set of messages dispatched by message1.

(7) imwnc-o11 − this operation takes the union of the messages which are
dispatched by message1 and message2 and have no overlapping
counterparts.

(8) imwnc-o12 − this operation saves the messages which are dispatched by
message1 and message2 and have no overlapping counterparts as elements
of the set DMWNC_mes_set.

Figure 7: Overlap objects - objects that represent overlap relations

IdentifyMessagesWithoutCounterparts is specified as the internal action
of the consistency check context

8 imwnc-o1 is an operation stereotyped as GetEndClassesWithName. Operations of this

stereotype retrieve the objects which are related to the elements in their arg1 set via the association
end named by their attribute endname.

39969BC20051
type : string = SequenceDiagram
OwnerNam e : string = 39EEDBEC01B3

3996B7680213
Ow nerNam e : string = 39969BC20051
type : string = Message

10:actionPerformed(ActionEvent)<->7:actionPerformed(ActionEvent)_(a)
type : string = Mapping
used_by_sim Analyser : boolean = True
used_by_overlapAssesser : boolean
b1 = 0
b4 = 0
b3 = 0.2142857
b2 = 0.6129032
b5 = 0.4798658
b6 = 0.7238937
Bo = 0.388

+message2

+mapping

3AF70CF4028E
Ow nerNam e : string = 39969BAD00F1
type : string = Message

+mapping

+message1

39969BAD00F1
OwnerNam e : string = 39EECE560266
type : string = SequenceDiagram

OptimalM orphism
type : string = Morphism
dsd = 0.7402988

+mapping

+diagram1

+diagram2

22

Check_For_Messages_Without_Counterparts_Dispatched_By (see
Figure 4). Thus, to check the consistency rule CR1 against a pair of overlapping
messages, a designer has to decide to apply this context to this pair. Note, however,
that Check_For_Messages_Without_Counterparts_Dispatched_By
may be applied only in certain parts of the reconciliation process and if the situation
associated with it is satisfied. More specifically, according to the process model of
Figure 4, this context can be applied to a pair of overlapping messages only after a
designer has selected:

1) the executable context
Find_Overlaps_Between_Sequence_Diagrams_In to detect overlaps
in the interaction diagrams to be reconciled;

2) the choice context Reconcile_Overlapping_Messages_In to start the
reconciliation of the overlapping messages detected in these interaction
diagrams; and

3) the choice context Reconcile_Non_Identical_Activations_Of to
start the reconciliation of the overlapping messages with the non-identical
activations.

The selection and application of the consistency check context
Check_For_Messages_Without_Counterparts_Dispatched_By to the
overlap object of Figure 7 (that is the object
10:actionPerformed(ActionEvent)↔7:actionPerformed(ActionE
vent)) leads to the execution of the internal action
IdentifyMessagesWithoutCounterparts which retrieves and saves in the
process trace the following set of messages without overlapping counterparts:
DMWNC_mes_set = {9:formulateQuery()}

5 Handling inconsistencies

The ways of handling inconsistencies in Reconciliation+ are specified as internal
actions of a special kind of executable contexts, called inconsistency handling contexts
(see stereotype InconsistencyHandlingContext in Figure 3).

A consistency rule is associated with one or more inconsistency handling contexts
which specify alternative ways of handling its violations. These contexts are grouped
as options of a choice context which, by virtue of the definition of its situation,
becomes selectable only if there is a record of violations of the particular consistency
rule in the trace of the reconciliation process. The alternative inconsistency handling
contexts which are available as options of this context are associated with situations
which define the particular conditions under which the alternative inconsistency
handling options may be applied.

In the following, we discuss how the situations and the actions of inconsistency
handling contexts can be specified using the process modelling profile of

23

Reconciliation+. Our discussion is based on inconsistency handling contexts that the
process model of Reconciliation+ incorporates to deal with inconsistencies which arise
as violations of the rule CR1.

Figure 8: Specification of situation ?DispatchedWithoutCounterparts

A violation of CR1 can be handled in different ways. One possibility, for instance, is
to delete the messages without counterparts from the relevant message activation. A
second possibility is to add the missing messages in the relevant activation. A third
possibility is to modify the software models so that overlapping messages that
dispatch messages without counterparts will no longer be considered as overlapping
messages. A fourth possibility is to record the inconsistency and postpone its
resolution.

The process model shown in Figure 4 includes the contexts
Add_Counterpart_For and Record_Message_Without_Counterpart,
which correspond to the 2nd and 4th of the above options. As shown in Figure 4, these
contexts are grouped as options of the choice context
Handle_Message_With_No_Counterpart. The latter context, due to the
definition of its situation ?DispatchedWithoutCounterparts (see Figure 8),
becomes available only if there are messages that violate CR1. This is because,
according to Figure 8, ?DispatchedWithoutCounterparts is satisfied only if
there is a non empty set called DMWNC_mes_set that has as elements the messages
in the activations of two overlapping messages that violate CR19 (recall from Section
4 that DMWNC_mes_set is generated by the action of the context
Check_For_Messages_Without_Counterparts_Dispatched_By).

Handle_Message_Without_Counterpart can be applied to any of the
messages in DMWNC_mes_set. These alternative applications are generated as
decisions by the process enactment engine as described in Section 3.4 and are
proposed to the designer. In the case of the overlap relation between the messages
10:actionPerformed(ActionPerformed) and

9 The set DMWNC_mes_set is represented as an object that is associated with all its elements and

exists in a special package called ExecutionClasses of the repository of the Reconciliation+ toolkit.

ActivationsOfMes2WithNoCounterparts
<<ModelElementSet>>

dbm2nc-o5-s1
<<ModelElementSet>>

dbm2nc-o6
endname = element

<<GetEndClassesWithName>>

+arg1

+result

dbm2nc-o4-s1
<<ModelElementSet>>

dbm2nc-o5
feature = name
roperator = equal_to
value = DMWNC_mes2_set
elementtype = Class

<<SelectOperation>>

+arg1

+result

+next

dbm2nc-o3-s1
<<ModelElementSet>>

dbm2nc-o4
<<GetPackageClasses>>

+arg1

+result +next

dbm2nc-o2-s1
<<ModelElementSet>>

dbm2nc-o3
feature = name
roperator = equal_to
value = ExecutionClasses
elementtype = Package

<<SelectOperation>>

+arg1

+result

+next

?DispatchedWithoutCounterpart
<<Situation>>

dbm2nc-o2
<<GetModelPackages>> +result

+next

dbm2nc-o1-s1
<<ModelElementSet>>

dbm2nc-o1
<<SetUnion>>

+operation

+next

+arg1

+arg2

+result

24

7:actionPerformed(ActionEvent) of the interaction diagrams I1 and I2 the
only decision generated from Handle_ Message_Without_Counterpart is:

<Handle_Message_Without_Counterpart, 9:formulateQuery()>

Figure 9: Specification of situation ?SameOperation

If this decision is selected, the process enactment engine checks the situations of the
two alternative contexts for handling this particular kind of inconsistencies, namely
Record_Message_Without_Counterpart and Add_Counterpart_For
to establish if they can be applied in the case of 9:formulateQuery() .

If applicable, Record_Message_Without_Counterpart can be activated to
make a persistent record of the inconsistency (i.e., a record saved after the end of the
reconciliation process). This context can be selected under any circumstances as its
situation contains no conditions in addition to those set by its ancestor context in the
process model.

Add_Counterpart_For can be selected to create a copy of a message that does
not have an overlapping counterpart and add it to the activation of the message that
overlaps with its activator. Note, however, that this way of resolving the inconsistency
makes sense only if the overlapping messages that gave rise to it indeed invoke the
same operation in the object model. Thus, the situation of Add_Counterpart_For
(i.e., the situation ?SameOperation shown in Figure 9) is specified so as to check
whether this is the case. More specifically, the unary set operation so-op2 in
?SameOperation retrieves the activator m1 of the message that caused the
violation of CR1 (i.e., 9:formulateQuery()in our example) and the message m2
that m1 overlaps with and checks if m1 and m2 have been declared in the models to
invoke the same operation (the operations invoked by m1 and m2 are identified
through the evaluation of the path expressions
activator.mapping.message1.action.operation and
activator.mapping.message2.action.operation10). If that is the case,

10 The evaluation of the sub-paths activator.mapping.message1(2)in these path expressions

locate the overlapping messages in the activations of which the message without the counterpart was
encountered. These sub-paths assume the representation of overlap morphisms and relations by the
tool that we have built to support Reconciliation+ (shown in Figure 7). The remaining sub-paths

?SameOperation
<<Situation>>

so-op2-s1
<<ModelElementSet>>

so-op2-s2
<<ModelElementSet>>

so-op2
feature = activator.mapping.message1.action.operation
roperator = equal_to
value = activator.mapping.message2.action.operation
elementtype = message

<<SelectOperation>>

+arg1

+result

so-op1-s1
<<ModelElementSet>>

so-op1
<<SetUnion>>

+operation

+result

+next

+arg1

+arg2

25

?SameOperation is satisfied and, therefore, Add_Counterpart_For can be
selected for the message 9:formulateQuery().

Figure 10: Specification of action AddMessage

The creation of a copy of this message is the result of executing the internal action
AddMessage of Add_Counterpart_For. The specification of this action is
shown in Figure 10. According to this specification, to execute AddMessage, the
process enactment engine first locates the interaction diagram of the overlapping
message of the activator of the message that Add_Counterpart_For was
selected for (i.e., the diagram I1 in our example) by executing the operations ama-o2
to ama-o6, and then adds to the set of the messages of this diagram a copy of this
message by executing the operation ama-o7.

6 Tool support

Reconciliation+ is supported by a toolkit which incorporates: (a) a tool that detects
overlaps between object interaction models, and (b) an engine which enacts the
process model of the method to drive the activity of reconciling interaction diagrams.
This toolkit has been implemented as an add-on utility for Rational Rose (a CASE tool
supporting UML) using the API of this tool [21].

The architecture of the Reconciliation+ toolkit is shown in Figure 11. As shown in this
figure, the toolkit stores the models to be reconciled as collections of UML class
models and sequence diagrams in a model repository that is accessible through the
API of Rose. The overlap morphisms which are detected by the overlap detection tool,

(*.action.operation) assume the standard representation for UML models that is established
by the UML meta-model [9].

+resultama-o2-s1
<<ModelElementSet>>

AddMessage
<<InternalAction>>

ama-o2
<<GetModelPackages>>

ama-o3-s1
<<ModelElementSet>>ama-o3

feature = name
roperator = equal_to
value = ExecutionClasses
elementtype = Package

<<SelectOperation>>

+next
+arg1

+result

ama-o1
opname : type = SetUnion

<<SetUnion>>

+operation

+next

ama-o4
<<GetPackageClasses>>

+arg1

+next ama-o4-s1
<<ModelElementSet>>

+result

ama-o1-s1
<<ModelElementSet>>+arg1

+arg2

+result

ama-o5
feature = name
roperator = equal_to
value = OptimalMorphism
elementtype = Class

<<SelectOperation>>

+next

+arg1

ama-o6-s1
<<ModelElementSet>>

ama-o7
feature = message
elementtype = SequenceDiagram

<<AddOperation>>

+adds

+modifies

ama-o5-s1
<<ModelElementSet>>

+result

ama-o6
endname = diagram1

<<GetEndClassesWithName>>

+next

+result

+next

+arg1

26

the process model of the method, and the trace of the enactment of this model are also
represented and stored as UML object models in the same repository.

Figure 11: Architecture of the Reconciliation+ toolkit

Figure 12 shows a snapshot of the overlap detection tool following its invocation to
identify overlaps between the interaction diagrams of Figure 1.

Figure 12: Overlap Detector − detection of overlap morphism between I1 and I2

Figure 13 shows a snapshot of the process enactment engine of the toolkit. This
snapshot shows a point in the enactment of the Reconciliation + process model where
the consistency check context

Toolkit

Process Enactment Engine

Process
Model(s)

UML
Model(s)

Process Enactment
Trace

Overlap Detection Tool

Rose model repository

Rose API

27

Check_For_Messages_Without_Counterparts_Dispatched_By may
be selected to check for violations of the rule CR1 by messages in the activations of
the overlapping pair of messages: 10:actionPerformed(ActionEvent), and
7:actionPerformed(ActionEvent) of the diagrams of Figure 1. As shown in
Figure 13, the process enactment engine gives a designer the options of: (a) applying
any of the contexts which become available at the current point in the enactment of the
process model (see list Next Decision), and (b) asking for tactical guidance or
equivalently go back to the previous decision point in the enactment of the process
model. Note also that the enactment engine keeps a record of the decisions that have
been made up to the current point in the enactment of a process (process trace) and
presents them to the designer (see the list Decisions made so far).

Figure 13: Process Enactment Engine

7 Case study

To evaluate Reconciliation+ we have carried out a case study. The objectives of this
study were to:
(i) measure the performance of the overlap detection algorithm that is deployed by

the method in terms of recall (i.e., the ability to detect overlap relations that
humans would identify), and precision (i.e., the ability to detect correct overlap
relations);

(ii) assess the sensitivity of the overlap detection algorithm against the granularity of
the models it is applied to; and

28

(iii) investigate the diversity of the ways that may be used to handle inconsistencies,
and assess whether the process model of the method could support the
specification of inconsistency handling contexts to implement these ways.

In this case study, we used 5 UML models built by MSc students at City University.
These models had been constructed to specify a system supporting banking
transactions through the use of ATM machines.

7.1 Recall and precision of overlap detection algorithm

To evaluate the recall and precision of the overlap detection algorithm of
Reconciliation+, we performed 50 comparisons of pairs of UML interaction diagrams
drawn from the models of our case study.

Following a manual identification of overlap relations between these interaction
diagrams, we detected overlap relations between them using the algorithm specified in
Section 2, and subsequently measured the recall and the precision of the algorithm
according to the following formulas:

Precision = | AOij ∩ MOij| and Recall = | AOij ∩ MOij|
 | AOij | | MOij|

where
� AOij is the set of the overlap relations that were detected by the overlap detection

algorithm between the messages of two interaction diagrams i and j; and
� MOij

 is the set of the manually identified overlap relations between the messages
of two interaction diagrams i and j.

Model | MO ∪ AO | #ID-Pairs Recall Precision
Mean St. Dev. Mean St. Dev.

1 77 10 1.00 0 1.00 0
2 60 11 0.86 0.20 0.99 0.03
3 74 6 0.92 0.20 0.90 0.2
4 231 15 0.87 0.08 0.98 0.05
5 87 8 0.91 0.06 1.00 0

All 529 50 0.91 0.13 0.98 0.08
Table 2: Recall and precision of overlap detection algorithm

Table 2 shows the average and standard deviation of the recall and precision measures
that we obtained for pairs of diagrams drawn from each of the five object models used
in our experiments, and from all of the models (these results were obtained for the
values of parameters α1−α6 and bt used in Section 2.3). It also shows the number of the
pairs of interaction diagrams that were compared in each model (i.e., #ID-Pairs) and
the total number of the overlap relations detected by the overlap algorithm and the
overlap relations that were manually identified between them in each case (i.e., |MO ∪
AO|). The object models that we used in our experiments and the overlap relations
identified manually by the experts and the overlap detection algorithm are available
from: http://www.soi.city.ac.uk/~gespan/imoosd_case_studies.html

29

As shown in Table 2, the overlap detection algorithm had very high precision (0.98 on
average across all models) and relatively high recall (0.91 on average across models).
Also there was a low variation in these measures across different pairs of interaction
diagrams and models (the standard deviation of the recall and precision measures
across all models were 0.13 and 0.07, respectively). Although preliminary, the above
results indicate that the overlap detection algorithm has a very low probability of
producing false overlaps and is capable of detecting a high proportion of the overlaps
indicated by human designers.

7.2 Effect of model granularity on overlap detection

To explore the effect of model granularity on our overlap detection algorithm, we also
carried out a correlation analysis of the obtained recall and precision measures against
the following measures of model granularity:

(i) the number of classes in a model (#CL) − this measure was expected to affect the
beliefs b3 and b4,

(ii) the average number of superclasses of a class in a model (#Isa*) − this measure
was expected to affect directly the beliefs b2 and b3 and implicitly b5,

(iii) the average degree of operation overriding in a model (i.e., the ratio of classes
which inherit an operation but override it − #OO) − this measure was expected to
affect directly the beliefs b1 and implicitly b5, and

(iv) the average number of dispatched messages in message activations (#AC) − this
measure was expected to affect the beliefs b6.

Model #Cl #Isa* #OO #AC
1 697 0.014 1 3.685
2 200 0.420 0.305 1.288
3 55 0.309 0.584 2.722
4 702 0.017 0.772 1.030
5 696 0.012 0.696 1.911

Correlation Coefficients
Recall 0.29 −0.28 0.76 0.96

Precision 0.74 −0.74 0.24 −0.16
Table 3: Model granularity measures and correlation with recall and precision

Table 3 presents the above granularity measures for the five models of our case study
and their correlation with the recall and precision measures obtained for these models.
As shown in the table, recall had strong positive correlations with #OO and #AC. This
was expected as the weights of the d1 and d6 distances, which were directly affected by
#OO and #AC, in establishing beliefs in overlaps were relatively higher than the
weights of the other four distances of our algorithm (see values of a1 and a6 in Section
2.3). The observed negative correlation of recall with the average number of
superclasses (#Isa*) is likely to have been the result of the small number of
superclasses that the senders and receivers of messaged had in the considered models.
It should also be noted that only the positive correlation of #AC with recall (i.e., 0.96)
was statistically significant (at α=0.10).

30

In the case of precision, positive correlations were detected only for #CL and #OO and
none of the obtained correlations was statistically significant at α=0.10. This may be
attributed to the fact that precision was very high across all models and therefore the
differences in model granularity did not have any significant effect on it.

The results of the above correlation analysis indicate that the overlap detection
algorithm is not over-sensitive to the degree of completeness and elaboration of design
models. This was expected due to the use of six different criteria that focus on
different parts of software design models for detecting overlaps. Clearly, however, our
results are only preliminary and need to be confirmed by additional experiments.

7.3 Diversity of inconsistency handling options

The third objective of our case study was to investigate the diversity of the ways that
may be used to handle inconsistencies, and to assess whether the process model of the
method could support the specification of inconsistency handling contexts to
implement these ways. In this part of the study, we selected 4 consistency rules to
check against the overlapping messages that were detected by the overlap detection
algorithm in the first part of the study. The selected rules were:

� CR1 − this was the rule specified in Sections 1 and 4;
� CR2 − this was a rule that required the operations invoked by two overlapping

messages to have the same name;
� CR3 − this was a rule that required the operations invoked by two overlapping

messages to be defined in the same class; and
� CR4 − this was a rule that required the operations invoked by two overlapping

messages to have the same number and types of parameters.

The above rules were selected since they capture the main forms of possible
discrepancies in the specifications of operations which are invoked by overlapping
messages.

CR1 CR2 CR3 CR4
Violations 40 3 2 23
No need to be resolved 10 0 1 9
Need to be resolved 29 3 1 14
Alternative resolutions 6 2 1 4

Table 4: Inconsistencies and alternative ways of handling them

Table 4 shows the number of the detected violations of each of these rules, the number
of the cases where we found that it was necessary to resolve the detected
inconsistency, and the number of the different alternative ways that we advocated for
resolving the inconsistencies of the same rule. As it may be seen from the figures of
this table, some diversity was indeed observed in the ways of handling violations of
the same rule. However, due to the size of our experiments these results cannot be
generalised. Nevertheless, the case study has given rise to some interesting
observations that we discuss in the following.

31

More specifically,

� In some cases, following the violation of a consistency rule, it was realised that the
overlap relation detected by the method and checked against the rule was wrong.
In such cases, it was not necessary to take any inconsistency resolution action. The
way that was adopted to handle such inconsistencies was to record them along
with an annotation that the overlap relation that gave rise to them were wrong.

� There were cases, where the violation of a consistency rule should be tolerated as
the relevant rule should not be satisfied by particular pairs of overlapping
messages. This was, for instance, the case with some of the violations of rule CR1
in which two overlapping messages were dispatching messages with the same
signature but different activations which had not themselves been detected as
overlapping messages. In these cases, the non overlapping messages were
invoking polymorphic operations (i.e., operations defined in different classes with
the same signature and different implementations as, for example, the operations
SearchForm.actionPerformed(e: ActionEvent) and
DatabaseActionListened.actionPerformed(e: ActionEvent)
in Figure 2) and therefore the resolution of the inconsistency was not necessary.
To deal with such cases, it is, in principle, possible either to amend the conditions
of the relevant rule so as to ignore non overlapping messages that invoke
polymorphic operations, or to add inconsistency handling contexts for the rule that
ignore its violations by such messages. Although both these strategies can be
accommodated by the method, Reconciliation+ does not incorporate at its current
stage of development criteria for helping designers to decide which of the two
options is more appropriate in specific circumstances.

� The selection of the best inconsistency handling strategy in a given situation may
depend on the satisfiability (or unsatisfiability) of more than one rules. The
violation of both rule CR1 and CR2, for instance, in some cases led to the
realisation that the overlap relation that gave rise to the inconsistencies was wrong.
In these cases, the relevant inconsistencies were ignored. In other cases, however,
where CR3 was violated but CR1 was satisfied the inconsistencies were resolved
by changing the name of one of the overlapping messages. In Reconciliation+,
cases like these could be handled by specifying the situations of the inconsistency
handling contexts for a specific rule so as to check if the pair of the overlapping
messages that violated the rule has also violated another rule.

8 Related work

A considerable body of research has been concerned with the problem of detecting
inconsistencies in software models and documentation. This work has generated
techniques for detecting inconsistencies in structured and text-based [1][3][4][12]
object-oriented [2][6][15][18] state-based [7][8], and formal software models [5][17].

Some of the proposed techniques focus on object-oriented models. Glinz [6], for
example, has developed a technique that checks behavioural software models
expressed as statecharts for deadlocks, reachability and mutual exclusiveness of states.

32

Cheung et al [2] have developed a technique that checks whether the sequence of the
execution of operations that is implied by a UML statechart diagram is compliant with
the sequence of the executions of operations implied by a UML sequence diagram.
Zisman et al [18] have developed a consistency link generator which checks whether
UML software models satisfy specific consistency rules. These rules are expressed in
XML and the consistency checking is performed using a tool developed using an
XML development platform. A critical survey of all the above techniques may be
found in [16].

9 Conclusions and further work

In this paper, we have presented Reconciliation+, a method that guides designers in
reconciling object interaction diagrams specified as part of software design models.
The method detects overlaps between messages in interaction diagrams, checks
consistency rules that overlapping messages must satisfy, and provides ways of
handling violations of these rules. The rules and the ways of handling inconsistencies
are specified as parts of a process model that is enacted by the method to drive the
reconciliation activity. Reconciliation+ can be applied at the design phase of software
development following the specification of, at least, partial object-oriented software
design models defining the basic class structure and interactions of a system. The
method can be used in conjunction with development approaches which require the
development of design models prior to implementation and approaches that advocate
an incremental development of such models and/or software systems.

We have evaluated Reconciliation+ in a case study the objectives of which were to
measure the recall and precision of the overlap detection algorithm deployed by the
method, investigate its sensitivity to variations of model granularity, and investigate
the diversity of the strategies that may be needed in handling inconsistencies. This
case study has shown positive preliminary results regarding the recall and precision of
the overlap detection algorithm of the method, and has demonstrated some diversity in
the nature of inconsistency handling strategies which can be accommodated by the
method. It has also shown that the overlap detection algorithm is not prohibitively
sensitive to the degree of elaboration and completeness of the models it is applied to.
Thus, Reconciliation+ can be applied to models specified at varying levels of
completeness.

Further experimentation is, however, required to confirm these findings. Furthermore,
it is necessary to evaluate the method against some usability criteria including the
difficulty in extending its process model with new consistency rules and ways of
handling their violations, as well as with intermediate decisions (choice contexts) to
guide software designers in selecting amongst alternative inconsistency handling
options. Currently, we are evaluating the method along these lines.

Acknowledgements
The work presented in this paper has been partially funded by the EPSRC grant no.
GR/M57422.

33

References

[1] Boehm B, In H (1996), Identifying Quality Requirements Conflicts, IEEE Software, 25-35.
[2] Cheung K, Chow K, Cheung T (1998), Consistency Analysis on Lifecycle Model and Interaction Model, Proc.

of the 7th Int. Conference on Object-Oriented Information Systems, 427-441.
[3] Easterbrook S (1991), Handling Conflict between Domain Descriptions with Computer-Supported

Negotiation, Knowledge Acquisition, 3: 255-289.
[4] Emmerich W, Finkelstein F, Montangero C, Antonelli S, Armitage S (1999), Managing Standards

Compliance, IEEE Transactions on Software Engineering, 25(6): 836-851.
[5] Finkelstein A., Gabbay D, Hunter, A, Kramer, J, and Nuseibeh, B (1994), Inconsistency Handling In Multi-

Perspective Specifications, IEEE Transactions on Software Engineering, 20(8): 569-578.
[6] Glinz M (1995), An Integrated Formal Model of Scenarios Based on Statecharts, In Proc. of the 5th European

Software Engineering Conference, LNCS 989, Springer-Verlag, 254-271.
[7] Heimdahl M.P.E, Leveson N (1996), Completeness and Consistency in Hierarchical State-Based

Requirements, IEEE Transactions in Software Engineering, 22(6): 363-377.
[8] Heitmeyer C, Jeffords R, Kiskis D (1996), Automated Consistency Checking Requirements Specifications,

ACM Transactions on Software Engineering and Methodology, 5(3): 231-261.
[9] OMG, Unified Modeling Language Specification (Action Semantics) − V. 1.4. Available from:

http://www.omg.org/technology/documents/modeling_spec_catalog.htm .
[10] Papadimitriou C, Steiglitz K (1982), Combinatorial Optimisation: Algorithms and Complexity, Prentice-Hall

Inc.
[11] Pohl K (1996), Process-Centred Requirements Engineering, Advanced Software Development Series, J.

Kramer (ed), Research Studies Press Ltd., ISBN 0-86380-193-5, London.
[12] Robinson, W. and Fickas S (1994), Supporting Multi-Perspective Requirements Engineering, In Proc. of the

IEEE Conference on Requirements Engineering, IEEE Computer Society Press, 206-215.
[13] Si-Said S, Rolland C, Grosz G (1996), MENTOR: A Computer Aided Requirements Engineering

Environment, Proc. of the 8th International Conference on Advanced Information Systems Engineering, 22-43.
[14] Spanoudakis G, Constantopoulos P (1996), Elaborating Analogies from Conceptual Models, International

Journal of Intelligent Systems, 11(11): 17-974.
[15] Spanoudakis G, and Finkelstein A (1997), Reconciling requirements: a method for managing interference,

inconsistency and conflict, Annals of Software Engineering, Special Issue on Software Requirements
Engineering, 3: 459-475.

[16] Spanoudakis G, Zisman A. (2001), Inconsistency Management in Software Engineering: Survey and Open
Research Issues, Handbook of Software Engineering and Knowledge Engineering, (ed) Chang S. K, World
Scientific Publishing Co, 329-380.

[17] Lamsweerde A, Darimont R, Letier E (1998), Managing Conflicts in Goal-Driven Requirements Engineering,
IEEE Transactions on Software Engineering, 24(11): 908-926.

[18] Zisman A, Emmerich W, Finkelstein A (2000), Using XML to Specify Consistency Rules for Distributed
Documents, Proc. of 10th Int. Workshop on Software Specification and Design.

[19] Shafer G (1976), A Mathematical Theory of Evidence, Princeton University Press.
[20] http://java.sun.com/j2se/1.3/docs/guide/awt/
[21] Spanoudakis G (2000), An Algorithm for Detecting Overlaps between Models of Object Interactions,

Technical Report Series, TR-2000/03, ISSN 1364-4009, Department of Computing, City University.
[22] http://www.rational.com/products/rose/index.jsp.

