
A Note On Computing Set Overlap Classes

Pierre Charbit, Michel Habib, Vincent Limouzy, Fabien De Montgolfier,

Mathieu Raffinot, Michaël Rao

To cite this version:

Pierre Charbit, Michel Habib, Vincent Limouzy, Fabien De Montgolfier, Mathieu Raffinot, et
al.. A Note On Computing Set Overlap Classes. 2007. <hal-00192579>

HAL Id: hal-00192579

https://hal.archives-ouvertes.fr/hal-00192579

Submitted on 28 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00192579

ha
l-

00
19

25
79

, v
er

si
on

 1
 -

 2
8

N
ov

 2
00

7

A Note On Computing Set Overlap Classes

Pierre Charbit1 Michel Habib1 Vincent Limouzy1

Fabien de Montgolfier1 Mathieu Raffinot⋆1 Michaël Rao2

1 LIAFA, Univ. Paris Diderot - Paris 7, 75205 Paris Cedex 13, France.
2 LIRMM, 161 rue Ada, 34392 Montpellier, France.

Abstract. Let V be a finite set of n elements and F = {X1, X2, . . . , Xm}
a family of m subsets of V. Two sets Xi and Xj of F overlap if Xi∩Xj 6=
∅, Xj \ Xi 6= ∅, and Xi \ Xj 6= ∅. Two sets X, Y ∈ F are in the same
overlap class if there is a series X = X1, X2, . . . , Xk = Y of sets of
F in which each XiXi+1 overlaps. In this note, we focus on efficiently
identifying all overlap classes in O(n +

∑m

i=1
|Xi|) time. We thus revisit

the clever algorithm of Dahlhaus [2] of which we give a clear presentation
and that we simplify to make it practical and implementable in its real
worst case complexity. An useful variant of Dahlhaus’s approach is also
explained.

1 Introduction

Let V be a finite set of n = |V| elements and F = {X1, X2, . . . , Xm} a family of
m subsets of V . Two sets Xi and Xj of F overlap if Xi ∩Xj 6= ∅, Xi \Xj 6= ∅,
and Xj \ Xi 6= ∅. We denote |F| as the sum of the sizes of all Xi ∈ F . We
define the overlap graph OG(F , E) as the graph with all Xi as vertices and
E = {(i, j) | Xi overlaps Xj}, ∀ 1 ≤ i, j ≤ m. A connected component of this
graph is called an overlap class.

In this note we focus on efficiently identifying all overlap classes of OG(F , E).
This problem is a classical one in graph clustering related topics but it also
appears frequently in many graph problems related to graph decomposition [2]
or PQ-tree manipulation [3].

An efficient O(n+|F|) time algorithm has already been presented by Dahlhaus
in [2]. The algorithm is very clever but uses an off-line Lowest Common Ancestor
algorithm (LCA) as subroutine. From a theoretical point of view, off-line LCA
queries have been proved to be solvable in constant time (after a linear time
preprocessing) in a RAM model (accepting an additional constant time specific
register operation) but also recently in a pointer machine model [1]. However,
in practice, it is very difficult to implement these LCA algorithms in their real
linear complexity. Another difficulty with Dahlhaus’s algorithm comes from that
its original presentation is difficult to follow. These two points motivated this
note. Dahlhaus’s algorithm is really clever and deserves a clear presentation,
all the more so we show how to replace LCA queries by set partitioning, which

⋆ Corresponding author. E-mail: raffinot@liafa.jussieu.fr

makes Dahlhaus’s algorithm easily implementable in practice in its real complex-
ity. We also provide a source code freely available in [4]. We eventually explain
how to simply modify Dahlhaus’s approach to efficiently compute a spanning
tree of each connected component of the overlap graph. This simplifies a graph
construction in [3].

2 Dahlhaus’s algorithm

The overlap graph OG(F , E) might have Θ(m2) edges, which can be quadratic
in O(|F|). For instance, if F = {{x1, x2}, {x1, x3}, . . . , {x1, xm}}, |E| = m(m−
1)/2 = Θ(m2).

The approach of Dahlhaus is quite surprising since that, instead of computing
a subgraph of the overlap graph, Dahlhaus considers a second graph D(F , L) on
the same vertex set but with different edges. This graph has however a strong
property: its connected components are the same than that of OG(F , E), al-
though that in the general case D(F , L) is not a subgraph of OG(F , E).

Let LF be the list of all X ∈ F sorted in decreasing size order. The ordering
of sets of equal size is arbitrarily fixed. Given X ∈ F , we denote Max(X) as the
largest Y ∈ F taken in LF order such that |Y | ≥ |X | and Y overlaps X . Note
that Max(X) might be undefined for some sets of F . In this latter case, in order
to simplify the presentation of some technical points, we write Max(X) = ∅.
Dahlhaus’s algorithm is based on the following observation:

Lemma 1 ([2]). Let X ∈ F such that Max(X) 6= ∅. Then for all Y ∈ F such
that Y ∩X 6= ∅ and |X | ≤ |Y | ≤ |Max(X)|, Y overlaps X or Max(X).

Proof. If Y does not overlap X , as |X | ≤ |Y | and Y ∩ X 6= ∅, X ⊆ Y. Thus
Y ∩ Max(X) 6= ∅. Then, if Y does not overlap Max(X), then Max(X) ⊆ Y .
But in this case, as |Y | ≤ |Max(X)|, Y = Max(X) and overlaps X . Therefore Y
overlaps X or Max(X). 2

Let us assume that we already computed all Max(X). For each v ∈ V we
compute the list SL(v) of all sets X ∈ F to which v belongs. This list is sorted
in increasing order of the sizes of the sets. Computing and sorting all lists for all
v ∈ V can be done in O(|F|) time using a global bucket sort.

Dahlhaus’s graph D(F , L) is built on those lists. Let X be a set containing v
such that Max(X) 6= ∅. Then for all consecutive pairs Y W after X in SL(v) (X
included, i.e. Y can be instanced by X) and such that |W | ≤ |Max(X)|, create
an edge (Y, W) in the graph D.

Lemma 2 ([2]). The two graphs D(F , L) and OG(F , E) have the same con-
nected components.

Proof. (⇒) Let Y, W ∈ F such that (Y, W) ∈ L. By construction there exists v
such that Y and W are consecutive on SL(v) and there exists X that appears
before Y W on SL(v) such that Max(X) 6= ∅ and such that |X | ≤ |Y | ≤ |W | ≤
|Max(X)|. By lemma 1, Y and W overlap either X or Max(X). As X and

Max(X) overlap, the sets X , Y , W , and Max(X) belong to the same overlap
class of OG(F , E). By extension, the vertices of any connected path in D(F , L)
belong to the same overlap class of OG(F , E).

(⇐) Let A, B ∈ F be two overlapping sets, i.e. (A, B) ∈ E. Let v ∈ A ∩
B. Assume w.l.o.g. that |A| ≤ |B|. Then Max(A) 6= ∅ and |Max(A)| ≥ |B|.
Therefore, in SL(v), there exits a serie of consecutive pairs Y W from A to B
that are linked in D(F , L). In consequence, A and B are connected in D(F , L).
2

Notice that the order of equally sized sets in SL lists has no importance for
the construction of a Dahlhaus’s graph. Figure 1 shows an example of an overlap
graph and a Dahlhaus’s graph.

(B)(A)

c

b

a

d

e

f

X

X

X

X

X

1

1

X11
X X 9XX

2 X3
X

4 X X 3

6

6

l

X

X

X

X

X

i

j

k

h

g

7 X 5 X 3

11 X 9

8 X

8 XX 910X
9

X10 9

X

X

X

1

X

X 4

X 5

6

7

8

a

b

c
d

e

f
g

h

i

j
k

l10X

X2 X3

X11

X9 X
X

X

X

X

X

X2

3

4

5

67
8

9

1X

X

X10

X11

(D)

X X

XX

5 3

5 3

4 2

X
X

X

X

X

X

X2

3

4

5

67
8

9

1X

X

X10

X11
7 2

(C)

X

5

3

Fig. 1. Global example: (A) input family of 11 sets; (B) Overlap graph; (C) SL
lists; (D) Dahlhaus’s graph. On (C) intervals defined by Max(X) are overlined.
Notice that Dahlhaus’s graph is not a subgraph of the Overlap graph.

Lemma 3 ([2]). Given all Max(X), X ∈ F , the graph D(F , L) can be built in
O(|F|) time and its number of edges is less than or equal to |F|.

Proof. To build the graph D(F , L) from the SL lists, it suffices to go through
each SL list from the smallest set to the largest and remenber at each step the
largest Max(X) already seen. If the size of the current set is smaller than or
equal to this value, an edge is created between the last two sets considered.

Let us now consider the number of edges of D(F , L). As at most one edge is
created for each set in a list SL, at most |F| edges are created after processing
all lists. 2

Identifying the overlap classes of OG(F , E) can therefore be done by a simple
Depth First Search on D(F , L) in O(n+ |F|) time. It remains however to explain
how to efficiently compute all Max(X).

3 Computing all Max(X)

Let LF be the list of all X ∈ F sorted in decreasing size order. The order of sets
of equal size is not important. We consider a boolean matrix BM of size |F|×|V |
such that each row represents a set X ∈ F in the order of LF, and each column
an element v ∈ V. The value BM[i, j] is 1 if and only if vj ∈ Xi.

The first step of Dahlhaus’s algorithm is to sort the columns of BM in lexico-
graphical order, although that there is no detail in [2] on how to do it efficiently
in O(|F|) time. We postpone all explanations concerning this step to section
3.2 and we consider below that all columns of BM are lexicographically sorted.
Figure 2 shows the BM matrix for the set family of Figure 1.

X
X
X
X
X
X
X
X
X

X
X

10

11

a

3

9

5

2

1

4

8

7

6

1

1

1

1

1

1

1 1
1

1 1

1
1

1

1

1

1 1 1

1

1

1 1

1 1

i l j k b c d f g

0

0

0

0 0 0 0 0
0 0
0 0

0 0
0 0 0 0 0

0
0

0

0
0

00
0

0

0
0

0

0

0
0

0 0

0000

0

0
0

0

0

2 3 5 6 7 8 9 10 121141

1
0

left

7 12

2 6

9 12

6 8

1 6

8 12

10 11

6 9

4 5

3 5

1 2

e

0

0
0

0

0

1

1

1

h

0

0

0

0

0

1

1

1

right

Fig. 2. Example continued: BM matrix which lines are sorted by decreasing
sizes of X ∈ F and which columns are sorted in lexicographic order.

For each X ∈ F we denote left(X) (resp. right(X)) the number of the column
of BM containing the leftmost (resp. rightmost) 1 in the row of X .

Lemma 4. Let X, Y ∈ F such that Y overlaps X and let rY be the row of
Y in BM . Then there exists a row t higher than or equal to rY such that
BM[t, left(X)] = 0 and BM[t, right(X)] = 1.

Proof. As Y overlaps X , |X | ≥ 2. Let rX be the row corresponding to X in
BM. Since Y overlaps X , there exist two indices 1 ≤ i < j ≤ |V | and a row r
such that BM[rX , i] = BM[rX , j] = 1, such that one of the value of BM[r, i] and
BM[r, j] is 1 and the other 0.

We consider the highest r that satisfies these conditions.
In a first step, if BM[r, i] = 1 and BM[r, j] = 0, then, as i < j and as all

columns has been sorted in increasing lexicographical order, there must exist a

row r′ higher than r such that BM[r′, i] = 0 and BM[r′, j] = 1. We thus consider
now w.l.o.g that BM[r, i] = 0 and BM[r, j] = 1.

Among all pairs of indices i and j such that BM[rX , i] = BM[rX , j] = 1 and
that there exits r such that BM[r, i] = 0 and BM[r, j] = 1, let us consider one
pair i′ and j′, 1 ≤ i′ < j′ ≤ |V |, that is associated to the highest such r that we
denote t.

We now prove that BM[t, left(X)] = 0 and BM[t, right(X)] = 1. If BM[t, left(X)]
= 1, thus i > left(X) and as BM[t, i] = 0 and that the columns are sorted in lexi-
cographical order, there should exits an higher row r′ such that BM[r′, left(X)] =
0 and BM[r′, i] = 1, which contradicts t to be the highest such row. Thus
BM[t, left(X)] = 0. Symmetrically, the same argument holds to prove that
BM[t, right(X)] = 1. 2

Lemma 5. Let X ∈ F . Then Max(X) 6= ∅ if and only if there exists a row t
in BM such that BM[t, left(X)] = 0 and BM[t, right(X)] = 1 corresponding to a
set Y ∈ F verifying |Y | ≥ |X |.

Proof. (⇐) If a set Y corresponds to a row t in BM such that BM[t, left(X)] = 0
and BM[t, right(X)] = 1, Y obviously overlaps X . As |Y | ≥ |X |, Max(X) 6= ∅.
(⇒) Let us assume that Max(X) 6= ∅ and let rM be its row in BM. Then,
by lemma 4, there exists a row t in BM such that BM[t, left(X)] = 0 and
BM[t, right(X)] = 1 and such that t is higher than or equal to rM . As Max(X)
verifies |Max(X)| ≥ |X |, the set Y corresponding to rM is also such that |Y | ≥
|X |. 2

Lemma 6 ([2]). Let X ∈ F such that Max(X) 6= ∅. Then Max(X) corresponds
to the highest row t in BM such that BM[t, left(X)] = 0 and BM[t, right(X)] = 1.

[Notice that this row might be lower than the row corresponding to X . This is
the case for X8 and X10 since Max(X10) = X8 but also Max(X8) = X10. in our
example.]

Proof. Let us assume that Max(X) 6= ∅ and let rM be its row in BM. Then,
by lemma 4, there exists a row t in BM such that BM[t, left(X)] = 0 and
BM[t, right(X)] = 1 and such that t is higher than or equal to rM . However, as
such a row t corresponds to a set overlapping X and that Max(X) is the largest
of those sets in LF order, t = rM . 2

For example, in Figure 2, Max(X1) = X9 since left(X1) = 1, right(X1) = 6
and X9 (row 2) corresponds to the highest row with 0 on the first column and

1 on the 6th.
Dahlhaus’s approach for computing all Max(X) is to identify for each row

r corresponding to X the highest row t such that BM[t, left(X)] = 0 and
BM[t, right(X)] = 1. To do it efficiently, Dahlhaus reduces the problem to LCA
computations. We explain this reduction in the next section 3.1. We then present
another approach using class partitions in 3.2. This new approach is much sim-
pler to implement than the LCA algorithm in its real linear worst case complex-
ity. Moreover, it allows an easy computation of the lexicographical order of the
columns.

3.1 Computing all Max(X) using LCA

Let us consider all intermediate columns between all pairs of columns in BM.
In those columns, for each row, we place a point • between each motif 01 or 10.
This is shown in Figure 3 (left). We link the highest point in each intermediate
column, if it exist, in a Dahlhaus’s tree (DT) the following way:

1. the root of the tree is the highest point. There can be only one root and
there must be one root if one of the set X ∈ F differs from V . We assume
this below;

2. we recurse the following process: each new point np in the tree (root included)
splits the submatrice in two subparts according to the intermediate column
it is placed in; the left (resp. right) child of np is the highest point in the left
(right) part, if it exits. Note that the lexicographical order of the columns
of BM insures that there can be at most one highest point in each part;

3. when a subpart does not contain any new point, a leaf per BM column in
this subpart is created and attached as child to the point that created the
subpart. If this point is placed to the left (resp. right) of this column, the
child is a right (resp. left) child. Each leaf is numbered with the number of
the corresponding column in BM.

An instance of such a tree is given in Figure 3 (right).

2 3 5 6 7 8 9 10 121141 2 3 5 6 7 8 9 10 121141

X
X
X
X
X
X
X
X
X

X
X

10

11

a

3

9

5

2

1

4

8

7

6

1

1

1

1

1

1

1 1
1

1 1

1
1

1

1

1

1 1 1

1

1

1 1

i l j k b c d f g

0

0

0

0 0 0 0 0
0 0
0 0

0 0
0 0 0 0 0

0
0

0

0
0

00
0

0

0
0

0

0

0
0

0 0

0000

0

0
0

0

0
1
0

e

0

0
0

0

1

1

h

0

0

0

0

1

1

1

0

011
1

X
X
X
X
X
X
X
X
X

X
X

10

11

a

3

9

5

2

1

4

8

7

6

1

1

1

1

1

1

1 1
1

1 1

1
1

1

1

1

1 1 1

1

1

1 1

1 1

i l j k b c d f g

0

0

0

0 0 0 0 0
0 0
0 0

0 0
0 0 0 0 0

0
0

0

0
0

00
0

0

0
0

0

0

0
0

0 0

0000

0

0
0

0

0
1
0

e

0

0
0

0

0

1

1

1

h

0

0

0

0

0

1

1

1

Fig. 3. Example continued: Dahlhaus’s tree built over a BM matrix.

Proposition 1 ([2]). Let X ∈ F . Let Y ∈ F be the set corresponding to the row
of LCA(left(X), right(X)) in BM. If |Y | ≥ |X |, then Y = Max(X). Otherwise
Max(X) = ∅.

Proof. Let r be the number of the row of LCA(left(X), right(X)) in BM and let
l be the position of the column in BM that is just before the point representing
LCA(left(X), right(X)).

First, BM [r, l] = 0 and BM [r, l+1] = 1. Suppose a contrario that BM [r, l] =
1 and BM [r, l+1] = 0. As all columns of BM are sorted in lexicographical order,
there must exists an higher row r′ such that BM [r, l] = 0 and BM [r, l + 1] = 1.
and thus a point in the intermediate column between l an l +1 higher than that
in row r, which contradicts the construction of DT.

We now prove that BM [r, left(X)] = 0 and BM [r, right(X)] = 1. A con-
trario, suppose that BM [r, left(X)] = 1. Then, again, as the columns of BM
are sorted in lexicographical order, there must exists an higher row r′ such that
BM [r′, left(X)] = 0 and BM [r′, l] = 1. This again contradicts the construction
of DT. A similar argument holds for the right side.

We then prove that r is the highest row with this property. Assume a con-
trario that there exist an higher row r′ such that BM [r′, left(X)] = 0 and
BM [r′, right(X)] = 1. Then there would have been a split 01 somewhere in this
row that would have separated left(X) and right(X). This implies that there
would have been a node in DT in a row higher than or equal to r′ that would
have split left(X) and right(X), which contradicts r to be the number of the row
of LCA(left(X), right(X)).

If |Y | ≥ |X |, by Lemma 6 Max(X) 6= ∅ and the set Y that corresponds to r
is such that Y = Max(X).

If |Y | < |X |, since no row r′ higher than r can verify BM [r′, left(X)] = 0
and BM [r′, right(X)] = 1, by Lemma 5 Max(X) 6= ∅. 2

For example, X9 corresponds to the row of LCA(1, 2) = LCA(left(X11), right(X11)).
As |X9| ≥ |X |, X9 = Max(X11).

3.2 Computing all Max(X) using set partitioning

We present below an alternative approach that permits avoiding LCA queries.
Moreover, the lexicographical column order appears as a by-product.

We manipulate sorted partitions of V that we refine by each X ∈ F taken in
LF order, that is, in decreasing order of their sizes. The initial partition is the
whole set V and denoted PV . For clarity, a set in a partition is called a part. In
each partition the order of the parts is important, but the order of elements in
a same part is not. Let C = {v1, . . . , vk} be a part in a partition. Refining C by
X ∈ F consists in extracting all vi ∈ X in C and create a new part C′′ with
all those vi. The remaining vi 6∈ X in C form a new part C′ and C is replaced
in the current partition by C′C′′. If C only contains elements of X as well as
if it contains none, C remains unchanged in the partition. Refining a partition
P by a set X ∈ F consists in refining successively all parts in P . We note this
refinement P |X .

For example (continued), if P = {a}{i, j, k, l}{b}{c, d}{e, f, g, h} and X =
X4 = {d, e}, P |X = {a}{i, j, k, l}{b}{c}{d}{f, g, h}{e}.

Our approach requires 3 steps:

1. refine PV by all X ∈ F taken in LF order;

2. then compute for each X ∈ F the values of left(X) and right(X) and sort
all X ∈ F in a special order in regard with these values;

3. eventually refine PV again by all X ∈ F taken in LF order but using the
informations computed in step 2 to compute all Max(X).

We detail below each step.

Step 1 - Refining PV . Let us consider the final partition we obtain after
refining PV by each X ∈ F taken in LF order. We note this partition Pf .

Lemma 7. The elements of Pf are sorted accordingly to the lexicographical or-
der of the columns of BM.

Proof. Refining a partition consists in lexicographically sorting a row of BM
touching only the 1 in the row but also keeping the global order already defined
by the sets in the partition. Thus refining partitions from PV in LF order consists
in lexicographically ordering BM from the top row to the bottom. 2

For example (continued), on the data in Figure 1, Pf = {a}{i}{l}{j}{k}{b}
{c}{d}{h}{f, g}{e}. Note that equal columns of BM are in the same part of Pf

on which we fix an arbitrary order.

Step 2 - Computing all left(X) and right(X) values. We then compute
all left(X) and right(X) values on Pf . This can be done easily in O(|F| + n)
time by scanning each X ∈ F and keeping the minimum and maximum position
of one of its element in Pf . We also compute a data structure AM that for each
position 1 ≤ i ≤ |V | of Pf gives a list of all X ∈ F such that i = right(X). All
those lists are sorted in increasing order of left(X). The structure also allows an
element X ∈ F to be removed from the list AM [right(X)] in O(1) time. This
can be insured for instance using doubly linked list to implement each list, and
the whole structure can easily be built in O(n + m) time using bucket sorting.

Step 3 - Refining PV again and identifying all Max(X). The main idea
is the following. Assume that at a step of the refinement process in LF order we
refine a part C = {v1, . . . , vk} of a partition P by Y ∈ F and that it results two
non empty parts C′C′′.

Lemma 8. Let X ∈ F such that |X | ≤ |Y |, left(X) ∈ C′ and right(X) ∈ C′′.
Then Y = Max(X).

[Note that if |X | = |Y | then X could be before Y in LF order.]
Proof. Let r be the row corresponding to Y in BM . As left(X) ∈ C′ and
right(X) ∈ C′′, then BM [r, left(X)] = 0 and BM [r, right(X)] = 1, and Y ob-
viously overlaps X. As |X | ≤ |Y |, Max(X) 6= ∅. Moreover, the row r is the
highest such that BM [r, left(X)] = 0 and BM [r, right(X)] = 1 since otherwise
the elements of X would have been split by a set bigger that Y in the LF order.
Thus, by Lemma 6, Y = Max(X). 2

The last phase of the algorithm thus consists in refining PV again by all Y ∈ F
taken in LF order. We first initialize all values Max(X) to ∅. Each time a new
split C′C′′ appears (say between positions l and l + 1), for all v ∈ C′′ all lists
AM [v] are inspected the following way: let X be the top of one of those the
list; while left(X) ≤ l, X is popped off the list and Max(X)← Y . After having
refined with Y , if there is no more Y ′ <LF Y such that |Y ′| = |Y |, all sets of
the same size than Y are removed from the AM structure.

Lemma 9. Our algorithm correctly computes in 3 steps all Max(X), X ∈ F .

Proof. In step 1 the lexicographical order of the columns of BM is computed
as a partition Pf (Lemma 7). In step 2 all values left(X) and right(X), X ∈
F , are computed and the AM structure is built. In step 3, the correctness of
the computation relies on the following observation: for each new partition P
created after a refinement, all sets X remaining in AM are such that left(X) and
right(X) belong to the same part in P . This is obviously true since otherwise
they would have been split by a previous refinement and removed of AM . This
has for consequence that after a split of a set C in C′C′′ by a set Y , testing
if left(X) ∈ C′′ and right(X) ∈ C′′ for all sets in AM is equivalent to test if
right(X) ∈ C′′ and left(X) ≤ l, where l is the left position in P of the split
between C and C′′. Moreover, as each set taken in LF order and used for a
possible refinement is removed of AM after having processed all the sets of the
same size, when a set Y splits a part C in CC′′, all sets in AM are such that
|X | ≤ |Y |. We thus fulfill all requirements of Lemma 8 and Y = Max(X). Thus,
if a value Max(X) is assigned by our algorithm, it is assigned with the right one.

Now, suppose that a set X admits a set Y as Max(X). It is guaranteed that
a certain step of the algorithm Y has been assigned to Max(X) since that by
definition |X | ≤ |Y | which implies that X is still in AM when Y is processed
and that by Lemma 6 left(X) 6∈ Y and right(X) ∈ Y. The set Y has thus split
a part C in a partition in C′C′′ such that right(X) > l and left(X) ≤ l where l
is the left position in P of the split between C and C′′. 2

It remains to explain how a partition refinement can be efficiently implemented.
We exploit the fact that element’s order inside each part of a partition has no
importance to obtain a simple implementation: a partition is represented as a
table of size n in which each cell contains (a) an element of V and (b) a pointer
to the part of the partition in which it is contained. A part is represented by a
pair of its bounds on this table. Figure 4 shows such an implementation.
Refining a partition P by a set Y can be done in O(|Y |) the following way. Let
[i, j] be the bounds of a part C such that C 6⊂ Y (easily testable). Let k be the
number of elements of Y that belongs to the subtable [i, j], 1 ≤ k ≤ j − i. We
swap elements in the subtable [i, j] to place all k elements belonging to Y at the
end of this subtable. We then adjust the bounds of C to [i, j − k] and create a
new set [j − k + 1, j] on which the k elements of Y now point.

Theorem 1. The identification of all Max(X), X ∈ F , using partition refine-
ment can be done in Θ(n + |F|) time.

1,1 2,5 7,86,6 9,12

a i j k l b c d e f g h

Fig. 4. Example continued: implementation of P =
{a}{i, j, k, l}{b}{c, d}{e, f, g, h}.

Proof. By Lemma 9 the algorithm is correct. Steps 1 and 2 are Θ(|F|+n) time. In
step 3, the fact that all lists in AM are sorted in increasing order of left() values
insures that when a set Y splits a part C in C′C′′, identifying and popping off all
sets X such that left(X) ∈ C and right(X) ∈ C′′ can be done in Θ(|C|+ K + 1)
time, where K is the number of such sets. Removing a set out of AM is O(1)
time, thus the total of time managing AM is Θ(|F|+ n) time. 2

The whole algorithm has been implemented in its real worst case time com-
plexity and is freely available in [4].

4 Computing a subgraph of the overlap graph

In some applications like in [3] it is useful to get a spanning tree of all overlap
classes of OG(F , E). The approach of [3] is to first compute Dahlhaus’s graph
and then compute spanning trees of the connected components of the overlap
graph using a quite complex add-on. We thus explain in this section how to
simply modify Dahlhaus’s approach to compute a subgraph of the overlap graph
instead of D(F , L). The size of the subgraph is linear but it has the same con-
nected components than the overlap graph and it is thus easy from it to compute
spanning trees of the overlap graph. The idea of the modification is the following.

Lemma 10. Let X, Y ∈ F such that X∩Y 6= ∅, such that Max(X) 6= ∅ and such
that |X | ≤ |Y | ≤ |Max(X)|. Let rY be the row of Y in BM. If BM [rY , left(X)] =
0, Y overlaps X. Otherwise, (a) if BM [rY , right(X)] = 0, then Y overlaps X,
and (b) if BM [rY , right(X)] = 1, then Y overlaps Max(X).

Proof. Let rX be the row of X in BM , and r that of Max(X). If BM [rY , left(X)] =
0, as BM [rX , left(X)] = 1, that X ∩ Y 6= ∅ and that |X | ≤ |Y |, Y overlaps X .
Assume now that BM [rY , left(X)] = 1. Case (a): if BM [rY , right(X)] = 0, then,
as BM [rX , right(X)] = 1, with the same arguments that above Y overlaps X.
Case (b): if BM [rY , right(X)] = 1, then, as by Lemma 6, BM [r, right(X)] = 1
and BM [r, left(X)] = 0, and that |Y | ≤ |Max(X)|, Y overlaps Max(X). 2

We modify the construction of Dahlhaus’s graph the following way. We
still consider intervals X..Y W.. on SL(v) lists such that Max(X) 6= ∅ and
|W | ≤ |Max(X)|, but instead of creating a chain X− ..Y −W − .. in D(F , L), we
create an edge (X, Max(X)) (if it does not already exists) and a list of quintu-
ples (left(X), right(X), X, Y, Max(X)), (left(X), right(X), X, W, Max(X)), .. for

c

b

a

d

e

f

X

X

X

X

X

1

1

X11
X X 9XX

2 X3
X

4 X X 3

6

6

l

X

X

X

X

X

i

j

k

h

g

7 X 5 X 3

11 X 9

8 X

8 XX 910X
9

X10 9X X

XX

5 3

5 3

4 2

7 2

(C)

X

5

3

1(a,b,X ,X ,X)11 9

4 2 5(d,e,X ,X ,X)

1(a,b,X ,X ,X)11 9

4 2 5(d,e,X ,X ,X)

X
X

X

X

X

X

X2

3

4

5

67
8

9

1X

X

X10

X11
(D)

(A)
X

X

X

1

X

X 4

X 5

6

7

8

a

b

c
d

e

f
g

h

i

j
k

l10X

X2 X3

X11

X9

7 9

1(a,b,X ,X ,X)2 9

7 5 3

(a,b,X ,X ,X)1

(b,h,X ,X ,X)

(B)

LQ2LQ1

Fig. 5. Global example (continued): (A) input family of 11 sets; (B) LQ1 and
LQ2 lists in which right(X) and left(X) heve been replaced by Pfright(X) and
Pfleft(X) ; (C) SL lists; (D) the resulting subgraph of the overlap graph.

all the elements in the interval distinct of X and Max(X). All quintuples for
all intervals are placed in the same list LQ1. Note that if an element belongs to
2 intervals, a unique quintuple is formed with the rightest interval.

To apply Lemma 10, if suffices for each (left(X), right(X), X, Y, Max(X))
to test if Y belongs to SL(Pfleft(X)). If not, we then create an edge (X, Y).
Otherwise, we test if Y belongs to SL(Pfright(X)). If not, we also create an edge
(X, Y). However, if it does, we create an edge (Y, Max(X)).

For complexity issues we need to perform those tests at a glance for all
quintuples in LQ1. We do it in two phases. In the first phase we search for all
Y in SL(Pfleft(X)). If Y does not belong to SL(Pfleft(X)), we add the quintuplet
(left(X), right(X), X, Y, Max(X)) to a second list LQ2. In the second phase, if
LQ2 is not empty, for all (left(X), right(X), X, Y, Max(X)) in LQ2 we search Y
in SL(Pfright(X)).

We assume below that all SL(v) lists are sorted accordingly to the LF order
instead of being simply sorted by increasing sizes. To efficiently compare LQ1

with all SL(v) lists it suffices to sort the list LQ1 accordingly to left(X) and then
sort all quintuples with the same left(X) value in the LF order of Y. This can be
done in O(n + |F|) time using bucket sorting. The comparison of LQ1 and the
tables SL() can then be done in O(n + |F|) time by comparing simutaneously
|V | sorted lists. The same approach holds for LQ2. We thus have:

Theorem 2. A subgraph of the overlap graph of F having the same connected
components can be computed in O(n + |F|) time.

Proof. Lemma 10 insures that the new graph is a subgraph of the overlap graph.
To prove that they have the same connected component, it thus suffices to prove
that if two sets A and B overlap, there exists a path connecting A and B in

the subgraph. The following observation is the base of the proof: let X..Y..Z
sorted by increasing size on the same SL(v) and such that |Y | ≤ |Max(X)|,
|Max(X)| ≤ |Max(Y)| and |Z| ≤ |Max(Y)|. Then there exists a path between
all sets X, Y, Z in the new subgraph since by construction X and Max(X) are
connected, Y is connected to X or Max(X), Y is connected to Max(Y) and
eventually Z is connected to Y or Max(Y).

Now let v ∈ A ∩ B. Assume w.l.o.g. that |A| ≤ |B|. Then Max(A) 6= ∅ and
|Max(A)| ≥ |B|. Therefore, in SL(v), there exits a series (potentially empty)
of k sets A..Y1..Y2..Yk..B such that |B| ≤ |Max(Yk)|, |Yk| ≤ |Max(Yk−1)|, and
|Y1| ≤ |Max(A)|. By induction on the series using the previous observation there
exits a path from A to B in the subgraph.

The subgraph can obviouly been built in O(n + |F|) time since all steps can
be done in this time. 2

An example (continued) of the resulting subgraph is shown in Figure 5.

References

1. A. L. Buchsbaum, H. Kaplan, A. Rogers, and J. R. Westbrook. Linear-time pointer-
machine algorithms for least common ancestors, mst verification, and dominators.
In Proceedings of the thirtieth annual ACM symposium on Theory of computing
(STOC), pages 279–288. ACM Press, 1998.

2. E. Dahlhaus. Parallel algorithms for hierarchical clustering and applications to split
decomposition and parity graph recognition. J. Algorithms, 36(2):205–240, 2000.

3. R. M. McConnell. A certifying algorithm for the consecutive-ones property. In
SODA, pages 768–777, 2004.

4. M. Rao. Set overlap classes computation, source code. 2007. Freely available at
http://www.liafa.jussieu.fr/~raffinot/overlap.html.

http://www.liafa.jussieu.fr/~raffinot/overlap.html

