6 research outputs found

    A Practical Set-Membership Proof for Privacy-Preserving NFC Mobile Ticketing

    Get PDF
    To ensure the privacy of users in transport systems, researchers are working on new protocols providing the best security guarantees while respecting functional requirements of transport operators. In this paper, we design a secure NFC m-ticketing protocol for public transport that preserves users' anonymity and prevents transport operators from tracing their customers' trips. To this end, we introduce a new practical set-membership proof that does not require provers nor verifiers (but in a specific scenario for verifiers) to perform pairing computations. It is therefore particularly suitable for our (ticketing) setting where provers hold SIM/UICC cards that do not support such costly computations. We also propose several optimizations of Boneh-Boyen type signature schemes, which are of independent interest, increasing their performance and efficiency during NFC transactions. Our m-ticketing protocol offers greater flexibility compared to previous solutions as it enables the post-payment and the off-line validation of m-tickets. By implementing a prototype using a standard NFC SIM card, we show that it fulfils the stringent functional requirement imposed by transport operators whilst using strong security parameters. In particular, a validation can be completed in 184.25 ms when the mobile is switched on, and in 266.52 ms when the mobile is switched off or its battery is flat

    Cryptographic Tools for Privacy Preservation

    Get PDF
    Data permeates every aspect of our daily life and it is the backbone of our digitalized society. Smartphones, smartwatches and many more smart devices measure, collect, modify and share data in what is known as the Internet of Things.Often, these devices don’t have enough computation power/storage space thus out-sourcing some aspects of the data management to the Cloud. Outsourcing computation/storage to a third party poses natural questions regarding the security and privacy of the shared sensitive data.Intuitively, Cryptography is a toolset of primitives/protocols of which security prop- erties are formally proven while Privacy typically captures additional social/legislative requirements that relate more to the concept of “trust” between people, “how” data is used and/or “who” has access to data. This thesis separates the concepts by introducing an abstract model that classifies data leaks into different types of breaches. Each class represents a specific requirement/goal related to cryptography, e.g. confidentiality or integrity, or related to privacy, e.g. liability, sensitive data management and more.The thesis contains cryptographic tools designed to provide privacy guarantees for different application scenarios. In more details, the thesis:(a) defines new encryption schemes that provide formal privacy guarantees such as theoretical privacy definitions like Differential Privacy (DP), or concrete privacy-oriented applications covered by existing regulations such as the European General Data Protection Regulation (GDPR);(b) proposes new tools and procedures for providing verifiable computation’s guarantees in concrete scenarios for post-quantum cryptography or generalisation of signature schemes;(c) proposes a methodology for utilising Machine Learning (ML) for analysing the effective security and privacy of a crypto-tool and, dually, proposes a secure primitive that allows computing specific ML algorithm in a privacy-preserving way;(d) provides an alternative protocol for secure communication between two parties, based on the idea of communicating in a periodically timed fashion

    Enhancing Privacy Protection:Set Membership, Range Proofs, and the Extended Access Control

    Get PDF
    Privacy has recently gained an importance beyond the field of cryptography. In that regard, the main goal behind this thesis is to enhance privacy protection. All of the necessary mathematical and cryptographic preliminaries are introduced at the start of this thesis. We then show in Part I how to improve set membership and range proofs, which are cryptographic primitives enabling better privacy protection. Part II shows how to improve the standards for Machine Readable Travel Documents (MRTDs), such as biometric passports. Regarding set membership proofs, we provide an efficient protocol based on the Boneh-Boyen signature scheme. We show that alternative signature schemes can be used and we provide a general protocol description that can be applied for any secure signature scheme. We also show that signature schemes in our design can be replaced by cryptographic accumulators. For range proofs, we provide interactive solutions where the range is divided in a base u and the u-ary digits are handled by one of our set membership proofs. A general construction is also provided for any set membership proof. We additionally explain how to handle arbitrary ranges with either two range proofs or with an improved solution based on sumset representation. These efficient solutions achieve, to date, the lowest asymptotical communication load. Furthermore, this thesis shows that the first efficient non-interactive range proof is insecure. This thesis thus provides the first efficient and secure non-interactive range proof. In the case of MRTDs, two standards exist: one produced by the International Civil Aviation Organization (ICAO) and the other by the European Union, which is called the Extended Access Control (EAC). Although this thesis focuses on the EAC, which is supposed to solve all privacy concerns, it shows that both standards fail to provide complete privacy protection. Lastly, we provide several solutions to improve them

    Anonymous Point Collection - Improved Models and Security Definitions

    Get PDF
    This work is a comprehensive, formal treatment of anonymous point collection. The proposed definition does not only provide a strong notion of security and privacy, but also covers features which are important for practical use. An efficient realization is presented and proven to fulfill the proposed definition. The resulting building block is the first one that allows for anonymous two-way transactions, has semi-offline capabilities, yields constant storage size, and is provably secure

    Efficient Zero-Knowledge Proofs and Applications

    Get PDF
    Zero-knowledge proofs provide a means for a prover to convince a verifier that some claim is true and nothing more. The ability to prove statements while conveying zero information beyond their veracity has profound implications for cryptography and, especially, for its applicability to privacy-enhancing technologies. Unfortunately, the most common zero-knowledge techniques in the literature suffer from poor scalability, which limits their usefulness in many otherwise promising applications. This dissertation addresses the problem of designing communication- and computation-efficient protocols for zero-knowledge proofs and arguments of propositions that comprise many "simple" predicates. In particular, we propose a new formal model in which to analyze batch zero-knowledge protocols and perform the first systematic study of systems for batch zero-knowledge proofs and arguments of knowledge. In the course of this study, we suggest a general construction for batch zero-knowledge proof systems and use it to realize several new protocols suitable for proving knowledge of and relationships among large batches of discrete logarithm (DL) representations in prime-order groups. Our new protocols improve on existing protocols in several ways; for example, among the new protocols is one with lower asymptotic computation cost than any other such system in the literature. We also tackle the problem of constructing batch proofs of partial knowledge, proposing new protocols to prove knowledge of a DL that is equal to at least k-out-of-n other DLs, at most k-out-of-n other DLs, or exactly k-out-of-n other DLs. These constructions are particularly interesting as they prove some propositions that appear difficult to prove using existing techniques, even when efficiency is not a primary consideration. We illustrate the applicability of our new techniques by using them to construct efficient protocols for anonymous blacklisting and reputation systems

    A non-interactive range proof with constant communication

    No full text
    Abstract. In a range proof, the prover convinces the verifier in zeroknowledge that he has encrypted or committed to a value a ∈ [0,H] where H is a public constant. Most of the previous non-interactive range proofs have been proven secure in the random oracle model. We show that one of the few previous non-interactive range proofs in the common reference string (CRS) model, proposed by Yuen et al. in COCOON 2009, is insecure. We then construct a secure non-interactive range proof that works in the CRS model. The new range proof can have (by different instantiations of the parameters) either very short communication (14 080 bits) and verifier’s computation (81 pairings), short combined CRS length and communication (log 1/2+o(1) H group elements), or very efficient prover’s computation (Θ(log H) exponentiations)
    corecore