57 research outputs found

    Context-Patch Face Hallucination Based on Thresholding Locality-Constrained Representation and Reproducing Learning

    Get PDF
    Face hallucination is a technique that reconstruct high-resolution (HR) faces from low-resolution (LR) faces, by using the prior knowledge learned from HR/LR face pairs. Most state-of-the-arts leverage position-patch prior knowledge of human face to estimate the optimal representation coefficients for each image patch. However, they focus only the position information and usually ignore the context information of image patch. In addition, when they are confronted with misalignment or the Small Sample Size (SSS) problem, the hallucination performance is very poor. To this end, this study incorporates the contextual information of image patch and proposes a powerful and efficient context-patch based face hallucination approach, namely Thresholding Locality-constrained Representation and Reproducing learning (TLcR-RL). Under the context-patch based framework, we advance a thresholding based representation method to enhance the reconstruction accuracy and reduce the computational complexity. To further improve the performance of the proposed algorithm, we propose a promotion strategy called reproducing learning. By adding the estimated HR face to the training set, which can simulates the case that the HR version of the input LR face is present in the training set, thus iteratively enhancing the final hallucination result. Experiments demonstrate that the proposed TLcR-RL method achieves a substantial increase in the hallucinated results, both subjectively and objectively. Additionally, the proposed framework is more robust to face misalignment and the SSS problem, and its hallucinated HR face is still very good when the LR test face is from the real-world. The MATLAB source code is available at https://github.com/junjun-jiang/TLcR-RL

    Joint-SRVDNet: Joint Super Resolution and Vehicle Detection Network

    Get PDF
    In many domestic and military applications, aerial vehicle detection and super-resolutionalgorithms are frequently developed and applied independently. However, aerial vehicle detection on super-resolved images remains a challenging task due to the lack of discriminative information in the super-resolved images. To address this problem, we propose a Joint Super-Resolution and Vehicle DetectionNetwork (Joint-SRVDNet) that tries to generate discriminative, high-resolution images of vehicles fromlow-resolution aerial images. First, aerial images are up-scaled by a factor of 4x using a Multi-scaleGenerative Adversarial Network (MsGAN), which has multiple intermediate outputs with increasingresolutions. Second, a detector is trained on super-resolved images that are upscaled by factor 4x usingMsGAN architecture and finally, the detection loss is minimized jointly with the super-resolution loss toencourage the target detector to be sensitive to the subsequent super-resolution training. The network jointlylearns hierarchical and discriminative features of targets and produces optimal super-resolution results. Weperform both quantitative and qualitative evaluation of our proposed network on VEDAI, xView and DOTAdatasets. The experimental results show that our proposed framework achieves better visual quality than thestate-of-the-art methods for aerial super-resolution with 4x up-scaling factor and improves the accuracy ofaerial vehicle detection

    Face Hallucination via Deep Neural Networks.

    Get PDF
    We firstly address aligned low-resolution (LR) face images (i.e. 16X16 pixels) by designing a discriminative generative network, named URDGN. URDGN is composed of two networks: a generative model and a discriminative model. We introduce a pixel-wise L2 regularization term to the generative model and exploit the feedback of the discriminative network to make the upsampled face images more similar to real ones. We present an end-to-end transformative discriminative neural network (TDN) devised for super-resolving unaligned tiny face images. TDN embeds spatial transformation layers to enforce local receptive fields to line-up with similar spatial supports. To upsample noisy unaligned LR face images, we propose decoder-encoder-decoder networks. A transformative discriminative decoder network is employed to upsample and denoise LR inputs simultaneously. Then we project the intermediate HR faces to aligned and noise-free LR faces by a transformative encoder network. Finally, high-quality hallucinated HR images are generated by our second decoder. Furthermore, we present an end-to-end multiscale transformative discriminative neural network (MTDN) to super-resolve unaligned LR face images of different resolutions in a unified framework. We propose a method that explicitly incorporates structural information of faces into the face super-resolution process by using a multi-task convolutional neural network (CNN). Our method not only uses low-level information (i.e. intensity similarity), but also middle-level information (i.e. face structure) to further explore spatial constraints of facial components from LR inputs images. We demonstrate that supplementing residual images or feature maps with additional facial attribute information can significantly reduce the ambiguity in face super-resolution. To explore this idea, we develop an attribute-embedded upsampling network. In this manner, our method is able to super-resolve LR faces by a large upscaling factor while reducing the uncertainty of one-to-many mappings remarkably. We further push the boundaries of hallucinating a tiny, non-frontal face image to understand how much of this is possible by leveraging the availability of large datasets and deep networks. To this end, we introduce a novel Transformative Adversarial Neural Network (TANN) to jointly frontalize very LR out-of-plane rotated face images (including profile views) and aggressively super-resolve them by 8X, regardless of their original poses and without using any 3D information. Besides recovering an HR face images from an LR version, this thesis also addresses the task of restoring realistic faces from stylized portrait images, which can also be regarded as face hallucination

    Facial Attribute Capsules for Noise Face Super Resolution

    Full text link
    Existing face super-resolution (SR) methods mainly assume the input image to be noise-free. Their performance degrades drastically when applied to real-world scenarios where the input image is always contaminated by noise. In this paper, we propose a Facial Attribute Capsules Network (FACN) to deal with the problem of high-scale super-resolution of noisy face image. Capsule is a group of neurons whose activity vector models different properties of the same entity. Inspired by the concept of capsule, we propose an integrated representation model of facial information, which named Facial Attribute Capsule (FAC). In the SR processing, we first generated a group of FACs from the input LR face, and then reconstructed the HR face from this group of FACs. Aiming to effectively improve the robustness of FAC to noise, we generate FAC in semantic, probabilistic and facial attributes manners by means of integrated learning strategy. Each FAC can be divided into two sub-capsules: Semantic Capsule (SC) and Probabilistic Capsule (PC). Them describe an explicit facial attribute in detail from two aspects of semantic representation and probability distribution. The group of FACs model an image as a combination of facial attribute information in the semantic space and probabilistic space by an attribute-disentangling way. The diverse FACs could better combine the face prior information to generate the face images with fine-grained semantic attributes. Extensive benchmark experiments show that our method achieves superior hallucination results and outperforms state-of-the-art for very low resolution (LR) noise face image super resolution.Comment: To appear in AAAI 202
    • …
    corecore