25,883 research outputs found

    Sensorless Battery Internal Temperature Estimation using a Kalman Filter with Impedance Measurement

    Full text link
    This study presents a method of estimating battery cell core and surface temperature using a thermal model coupled with electrical impedance measurement, rather than using direct surface temperature measurements. This is advantageous over previous methods of estimating temperature from impedance, which only estimate the average internal temperature. The performance of the method is demonstrated experimentally on a 2.3 Ah lithium-ion iron phosphate cell fitted with surface and core thermocouples for validation. An extended Kalman filter, consisting of a reduced order thermal model coupled with current, voltage and impedance measurements, is shown to accurately predict core and surface temperatures for a current excitation profile based on a vehicle drive cycle. A dual extended Kalman filter (DEKF) based on the same thermal model and impedance measurement input is capable of estimating the convection coefficient at the cell surface when the latter is unknown. The performance of the DEKF using impedance as the measurement input is comparable to an equivalent dual Kalman filter using a conventional surface temperature sensor as measurement input.Comment: 10 pages, 9 figures, accepted for publication in IEEE Transactions on Sustainable Energy, 201

    Performance Analysis of Channel Extrapolation in FDD Massive MIMO Systems

    Full text link
    Channel estimation for the downlink of frequency division duplex (FDD) massive MIMO systems is well known to generate a large overhead as the amount of training generally scales with the number of transmit antennas in a MIMO system. In this paper, we consider the solution of extrapolating the channel frequency response from uplink pilot estimates to the downlink frequency band, which completely removes the training overhead. We first show that conventional estimators fail to achieve reasonable accuracy. We propose instead to use high-resolution channel estimation. We derive theoretical lower bounds (LB) for the mean squared error (MSE) of the extrapolated channel. Assuming that the paths are well separated, the LB is simplified in an expression that gives considerable physical insight. It is then shown that the MSE is inversely proportional to the number of receive antennas while the extrapolation performance penalty scales with the square of the ratio of the frequency offset and the training bandwidth. The channel extrapolation performance is validated through numeric simulations and experimental measurements taken in an anechoic chamber. Our main conclusion is that channel extrapolation is a viable solution for FDD massive MIMO systems if accurate system calibration is performed and favorable propagation conditions are present.Comment: arXiv admin note: substantial text overlap with arXiv:1902.0684

    Hybrid 3D Localization for Visible Light Communication Systems

    Full text link
    In this study, we investigate hybrid utilization of angle-of-arrival (AOA) and received signal strength (RSS) information in visible light communication (VLC) systems for 3D localization. We show that AOA-based localization method allows the receiver to locate itself via a least squares estimator by exploiting the directionality of light-emitting diodes (LEDs). We then prove that when the RSS information is taken into account, the positioning accuracy of AOA-based localization can be improved further using a weighted least squares solution. On the other hand, when the radiation patterns of LEDs are explicitly considered in the estimation, RSS-based localization yields highly accurate results. In order to deal with the system of nonlinear equations for RSS-based localization, we develop an analytical learning rule based on the Newton-Raphson method. The non-convex structure is addressed by initializing the learning rule based on 1) location estimates, and 2) a newly developed method, which we refer as random report and cluster algorithm. As a benchmark, we also derive analytical expression of the Cramer-Rao lower bound (CRLB) for RSS-based localization, which captures any deployment scenario positioning in 3D geometry. Finally, we demonstrate the effectiveness of the proposed solutions for a wide range of LED characteristics and orientations through extensive computer simulations.Comment: Submitted to IEEE/OSA Journal of Lightwave Technology (10 pages, 14 figures

    The Morphology of the Thermal Sunyaev-Zel'dovich Sky

    Get PDF
    At high angular frequencies the thermal Sunyaev-Zel'dovich (tSZ) effect constitutes the dominant signal in the CMB sky. The tSZ effect is caused by large scale pressure fluctuations in the baryonic distribution in the Universe so its statistical properties provide estimates of corresponding properties of the projected 3D pressure fluctuations. It's power spectrum is a sensitive probe of the density fluctuations, and the bispectrum can be used to separate the bias associated with pressure. The bispectrum is often probed with a one-point real-space analogue, the skewness. In addition to the skewness the morphological properties, as probed by the well known Minkowski Functionals (MFs), also require the generalized one-point statistics, which at the lowest order are identical to the skewness parameters. The concept of generalized skewness parameters can be extended to define a set of three associated generalized skew-spectra. We use these skew-spectra to probe the morphology of the tSZ sky or the y-sky. We show how these power spectra can be recovered from the data in the presence of arbitrary mask and noise templates using the well known Pseudo-Cl (PCL) approach for arbitrary beam shape. We also employ an approach based on the halo model to compute the tSZ bispectrum. The bispectrum from each of these models is then used to construct the generalized skew-spectra. We consider the performance of an all-sky survey with Planck-type noise and compare the results against a noise-free ideal experiment using a range of smoothing angles. We find that the skew-spectra can be estimated with very high signal-to-noise ratio from future frequency cleaned tSZ maps that will be available from experiments such as Planck. This will allow their mode by mode estimation for a wide range of angular frequencies and will help us to differentiate them from various other sources of non-Gaussianity.Comment: 18 pages, 10 figures, submitted to MNRA

    Sequential Quantiles via Hermite Series Density Estimation

    Full text link
    Sequential quantile estimation refers to incorporating observations into quantile estimates in an incremental fashion thus furnishing an online estimate of one or more quantiles at any given point in time. Sequential quantile estimation is also known as online quantile estimation. This area is relevant to the analysis of data streams and to the one-pass analysis of massive data sets. Applications include network traffic and latency analysis, real time fraud detection and high frequency trading. We introduce new techniques for online quantile estimation based on Hermite series estimators in the settings of static quantile estimation and dynamic quantile estimation. In the static quantile estimation setting we apply the existing Gauss-Hermite expansion in a novel manner. In particular, we exploit the fact that Gauss-Hermite coefficients can be updated in a sequential manner. To treat dynamic quantile estimation we introduce a novel expansion with an exponentially weighted estimator for the Gauss-Hermite coefficients which we term the Exponentially Weighted Gauss-Hermite (EWGH) expansion. These algorithms go beyond existing sequential quantile estimation algorithms in that they allow arbitrary quantiles (as opposed to pre-specified quantiles) to be estimated at any point in time. In doing so we provide a solution to online distribution function and online quantile function estimation on data streams. In particular we derive an analytical expression for the CDF and prove consistency results for the CDF under certain conditions. In addition we analyse the associated quantile estimator. Simulation studies and tests on real data reveal the Gauss-Hermite based algorithms to be competitive with a leading existing algorithm.Comment: 43 pages, 9 figures. Improved version incorporating referee comments, as appears in Electronic Journal of Statistic

    Primordial Non-Gaussianity from a Joint Analysis of Cosmic Microwave Background Temperature and Polarization

    Get PDF
    We explore a systematic approach to the analysis of primordial non-Gaussianity using fluctuations in temperature and polarization of the Cosmic Microwave Background (CMB). Following Munshi & Heavens (2009), we define a set of power-spectra as compressed forms of the bispectrum and trispectrum derived from CMB temperature and polarization maps; these spectra compress the information content of the corresponding full multispectra and can be useful in constraining early Universe theories. We generalize the standard pseudo-C_l estimators in such a way that they apply to these spectra involving both spin-0 and spin-2 fields, developing explicit expressions which can be used in the practical implementation of these estimators. While these estimators are suboptimal, they are nevertheless unbiased and robust hence can provide useful diagnostic tests at a relatively small computational cost. We next consider approximate inverse-covariance weighting of the data and construct a set of near-optimal estimators based on that approach. Instead of combining all available information from the entire set of mixed bi- or trispectra, i.e multispectra describing both temperature and polarization information, we provide analytical constructions for individual estimators, associated with particular multispectra. The bias and scatter of these estimators can be computed using Monte-Carlo techniques. Finally, we provide estimators which are completely optimal for arbitrary scan strategies and involve inverse covariance weighting; we present the results of an error analysis performed using a Fisher-matrix formalism at both the one-point and two-point level.Comment: 25 Pages, 4 Figure
    • ā€¦
    corecore