4 research outputs found

    Enhanced partial discharge signal denoising using dispersion entropy optimized variational mode decomposition

    Get PDF
    This paper presents a new approach for denoising Partial Discharge (PD) signals using a hybrid algorithm combining the adaptive decomposition technique with Entropy measures and Group-Sparse Total Variation (GSTV). Initially, the Empirical Mode Decomposition (EMD) technique is applied to decompose a noisy sensor data into the Intrinsic Mode Functions (IMFs), Mutual Information (MI) analysis between IMFs is carried out to set the mode length K. Then, the Variational Mode Decomposition (VMD) technique decomposes a noisy sensor data into K number of Band Limited IMFs (BLIMFs). The BLIMFs are separated as noise, noise-dominant, and signal-dominant BLIMFs by calculating the MI between BLIMFs. Eventually, the noise BLIMFs are discarded from further processing, noise-dominant BLIMFs are denoised using GSTV, and the signal BLIMFs are added to reconstruct the output signal. The regularization parameter [Formula: see text] for GSTV is automatically selected based on the values of Dispersion Entropy of the noise-dominant BLIMFs. The effectiveness of the proposed denoising method is evaluated in terms of performance metrics such as Signal-to-Noise Ratio, Root Mean Square Error, and Correlation Coefficient, which are are compared to EMD variants, and the results demonstrated that the proposed approach is able to effectively denoise the synthetic Blocks, Bumps, Doppler, Heavy Sine, PD pulses and real PD signals

    A New Underwater Acoustic Signal Denoising Technique Based on CEEMDAN, Mutual Information, Permutation Entropy, and Wavelet Threshold Denoising

    No full text
    Owing to the complexity of the ocean background noise, underwater acoustic signal denoising is one of the hotspot problems in the field of underwater acoustic signal processing. In this paper, we propose a new technique for underwater acoustic signal denoising based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), mutual information (MI), permutation entropy (PE), and wavelet threshold denoising. CEEMDAN is an improved algorithm of empirical mode decomposition (EMD) and ensemble EMD (EEMD). First, CEEMDAN is employed to decompose noisy signals into many intrinsic mode functions (IMFs). IMFs can be divided into three parts: noise IMFs, noise-dominant IMFs, and real IMFs. Then, the noise IMFs can be identified on the basis of MIs of adjacent IMFs; the other two parts of IMFs can be distinguished based on the values of PE. Finally, noise IMFs were removed, and wavelet threshold denoising is applied to noise-dominant IMFs; we can obtain the final denoised signal by combining real IMFs and denoised noise-dominant IMFs. Simulation experiments were conducted by using simulated data, chaotic signals, and real underwater acoustic signals; the proposed denoising technique performs better than other existing denoising techniques, which is beneficial to the feature extraction of underwater acoustic signal

    Exploring the optimal potential of transient reflection method through mel-frequency ceptrums coefficient and artificial neural network for leak detection and size estimation in water distribution systems

    Get PDF
    Water pipeline systems are critical infrastructures that provide potable water to communities. The design and operation of these systems are complex and require careful consideration of various factors, such as system reliability. Regular maintenance and inspection of pipelines and other components are necessary to prevent leaks and ensure that the system operates effectively. The efficient detection and accurate estimation of leaks in water distribution systems are crucial for maintaining the integrity and functionality of the infrastructure. This research aims to unleash the full potential of the transient reflection method through the integration of Mel-Frequency Cepstral Coefficients (MFCC) and Artificial Neural Network (ANN) techniques for leak detection and size estimation in water distribution systems. By leveraging the combined power of signal processing and machine learning, this study aim to advance the state-of-the-art methodologies for leak detection and size estimation, providing more accurate and efficient approaches based on transient reflection method. The objectives of this research are to explores the application of MFCC as a signal processing technique to extract vital information from the transient reflection signals. The transient reflection signals carry valuable insights into the characteristics of the water distribution system and can aid in identifying leaks. Furthermore to investigate and select significant features derived from the transient reflection signals that reflect the nature of leak size. Finally, is to develop and validate an ANN-based model for leak size estimation that harnesses the power of the extracted TRM features. To achieve these objectives, extensive experimentation and analysis will be conducted using transient reflection method obtained from laboratory scale water distribution systems. The data will be collected from various sizes of leaks. The collected dataset will serve as the foundation for training and validating the developed ANN model. Performance evaluation metrics, such as accuracy, precision, recall, and mean squared error, will be utilized to assess the effectiveness and reliability of the leak detection and size estimation technique. The expected outcomes of this research include advancements in leak detection and size estimation techniques in water distribution systems. The integration of MFCC and ANN techniques has the potential to significantly improve the accuracy and efficiency of leak detection, leading to timely identification and mitigation of leaks. The developed estimation model can aid in assessing the severity of leaks, enabling more effective allocation of resources for repair and maintenance activities. Ultimately, the findings of this research will contribute to the enhancement of water distribution system management, promoting water conservation and minimizing the adverse impacts of leaks on infrastructure and the environment. In conclusion, this research endeavors to unleash the full potential of the transient reflection method through the integration of MFCC and ANN techniques for leak detection and size estimation in water distribution systems. By leveraging signal processing and machine learning, this study aims to advance the state-of-the-art methodologies and provide more accurate and efficient approaches to address the challenges associated with leak detection and size estimation. The outcomes of this research have the potential to significantly benefit water management authorities, utilities, and researchers working in the field of water distribution system management and conservation

    Deep Learning-Based Machinery Fault Diagnostics

    Get PDF
    This book offers a compilation for experts, scholars, and researchers to present the most recent advancements, from theoretical methods to the applications of sophisticated fault diagnosis techniques. The deep learning methods for analyzing and testing complex mechanical systems are of particular interest. Special attention is given to the representation and analysis of system information, operating condition monitoring, the establishment of technical standards, and scientific support of machinery fault diagnosis
    corecore