1,109 research outputs found

    Advanced Train Positioning/Communication System

    Get PDF
    In the past, in order to ensure train positioning as well as ground-to-train information exchange, railways have adopted various technologies. Over time, each new generation of equipment enriched the global information exchange but, as a consequence, necessitated higher data rate transfers. For the positioning functionality, the existing localisation systems are still limited, since most of them require an infrastructure installation with constraints such as laying equipment between the rails or having high database maintenance requirements and computational costs. Moreover, some of them accumulate errors (odometers and inertial sensors) or offer limited coverage in shadowed areas (GNSS, etc.). Currently, in railway applications, a widely used localization system is based on proprioceptive sensors embarked in the train. This on-board system is coupled to the use of balises located at ground between the rails. These balises are kilometre markers. They are used to compensate for the drift of the localization information computed using the proprioceptive sensors alone, when the train moves. The balises provide absolute localization information whenever the train passes over them. They can also provide spot communication during the short period of time when trains are passing over them. In the first part of this chapter, techniques for achieving train positioning and data exchanges between trains and infrastructure are introduced. In the second part, a new balise is proposed. Particular attention is paid to the contribution of this new solution in terms of localization error and communication performances

    Performance Analysis and Enhancement of Multiband OFDM for UWB Communications

    Full text link
    In this paper, we analyze the frequency-hopping orthogonal frequency-division multiplexing (OFDM) system known as Multiband OFDM for high-rate wireless personal area networks (WPANs) based on ultra-wideband (UWB) transmission. Besides considering the standard, we also propose and study system performance enhancements through the application of Turbo and Repeat-Accumulate (RA) codes, as well as OFDM bit-loading. Our methodology consists of (a) a study of the channel model developed under IEEE 802.15 for UWB from a frequency-domain perspective suited for OFDM transmission, (b) development and quantification of appropriate information-theoretic performance measures, (c) comparison of these measures with simulation results for the Multiband OFDM standard proposal as well as our proposed extensions, and (d) the consideration of the influence of practical, imperfect channel estimation on the performance. We find that the current Multiband OFDM standard sufficiently exploits the frequency selectivity of the UWB channel, and that the system performs in the vicinity of the channel cutoff rate. Turbo codes and a reduced-complexity clustered bit-loading algorithm improve the system power efficiency by over 6 dB at a data rate of 480 Mbps.Comment: 32 pages, 10 figures, 1 table. Submitted to the IEEE Transactions on Wireless Communications (Sep. 28, 2005). Minor revisions based on reviewers' comments (June 23, 2006

    Timing Acquisition Performance Metrics of Tc-DTR UWB Receivers over Frequency-Selective Fading Channels with Narrow-Band Interference: Performance Analysis and Optimization

    No full text
    International audienceThe successful deployment of Impulse Radio (IR) Ultra Wide Band (UWB) wireless communication systems requie that they coexist and contend with a variety of interfering signals co–located over the same transmission band. In fact, if on the one hand the large transmission bandwidth of IR–UWB signals allows them to resolve multipath components and exploit multipath diversity, on the other hand it yields some new coexistence challenges for both unlicensed commercial and military communication systems, which are required to be robust to unintentional and intentional jammers, respectively. In particular, the design and analysis of low–complexity receiver schemes with good synchronization capabilities and high robustness to Narrow–Band Interference (NBI) is acknowledged as an important issue in IR–UWB research. Motivated by this consideration, in [1] we have recently proposed a low–complexity receiver design, the so–called Chip–Time Differential Transmitted–Reference (Tc–DTR) scheme, and have shown that it is more robust to NBI than other non–coherent receiver schemes available in the literature. In this paper, we aim at generalizing the results in [1] and at developing the enabling analytical tools for the analysis and design of timing acquisition algorithms for non–coherent receivers over frequency–selective fading channels with NBI. Furthermore, we move from the proposed analytical framework to tackle the optimization problem of devising optimal signature codes to reduce the impact of NBI on the performance of the Tc–DTR synchronizer. Analytical frameworks and findings are substantiated via Monte Carlo simulations

    Experimental Investigation Of Ultrawideband Wireless Systems: Waveform Generation, Propagation Estimation, And Dispersion Compensation

    Get PDF
    Ultrawideband (UWB) is an emerging technology for the future high-speed wireless communication systems. Although this technology offers several unique advantages like robustness to fading, large channel capacity and strong anti-jamming ability, there are a number of practical challenges which are topics of current research. One key challenge is the increased multipath dispersion which results because of the fine temporal resolution. The received response consists of different components, which have certain delays and attenuations due to the paths they took in their propagation from the transmitter to the receiver. Although such challenges have been investigated to some extent, they have not been fully explored in connection with sophisticated transmit beamforming techniques in realistic multipath environments. The work presented here spans three main aspects of UWB systems including waveform generation, propagation estimation, and dispersion compensation. We assess the accuracy of the measured impulse responses extracted from the spread spectrum channel sounding over a frequency band spanning 2-12 GHz. Based on the measured responses, different transmit beamforming techniques are investigated to achieve high-speed data transmission in rich multipath channels. We extend our work to multiple antenna systems and implement the first experimental test-bed to investigate practical challenges such as imperfect channel estimation or coherency between the multiple transmitters over the full UWB band. Finally, we introduce a new microwave photonic arbitrary waveform generation technique to demonstrate the first optical-wireless transmitter system for both characterizing channel dispersion and generating predistorted waveforms to achieve spatio-temporal focusing through the multipath channels

    Whitepaper on New Localization Methods for 5G Wireless Systems and the Internet-of-Things

    Get PDF
    • …
    corecore