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Abstract

This thesis is concerned with signal processing for improving the performance
of wireless communication receivers for well-established cellular networks such
as the GSM/EDGE and WCDMA/HSPA systems. The goal of doing so, is to
improve the end-user experience and/or provide a higher system capacity by
allowing an increased reuse of network resources.

To achieve this goal, one must first understand the nature of the problem and
an introduction is therefore provided. In addition, the concept of graph-based
models and approximations for wireless communications is introduced along
with various Belief Propagation (BP) methods for detecting the transmitted
information, including the Turbo principle.

Having established a framework for the research, various approximate detection
schemes are discussed. First, the general form of linear detection is presented
and it is argued that this may be preferable in connection with parameter es-
timation. Next, a realistic framework for interference whitening is presented,
allowing flexibility in the selection of whether interference is accounted for via a
discrete or a Gaussian distribution. The approximate method of sphere detec-
tion and decoding is outlined and various suggestions for improvements are pre-
sented. In addition, methods for using generalized BP to perform approximate
joint detection and decoding in systems with convolutional codes are outlined.
One such method is a natural generalization of the traditional Turbo principle
and a generalized Turbo principle can therefore be established.

For realistic wireless communication scenarios, a multitude of parameters are
not known and must instead be estimated. A general variational Bayesian EM-
algorithm is therefore presented to provide such estimates. It generalizes pre-
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viously known methods for communication systems by estimating parameter
densities instead of point-estimates and can therefore account for uncertainty in
the parameter estimates. Finally, an EM-algorithm for band-Toeplitz covariance
estimation is presented as such an estimate is desirable for noise and interference
whitening. Using simulations, the method is shown to be near-optimal in the
sense that it achieves the unbiased Cramer-Rao lower-bound for medium and
large sample-sizes.



Resumé

Denne afhandling omhandler brugen af signalbehandling til forbedring af tr̊ad-
løse kommunikationsmodtagere i veletablerede cellebaserede netværk som an-
vendt i bl.a. GSM/EDGE og WCDMA/HSPA. Målet med dette er at forbedre
slutbrugerens oplevelse og/eller levere en højere systemkapacitet ved hjælp af
øget genbrug af ressourcer.

For at opn̊a dette m̊al m̊a man først forst̊a problemets natur og en introduk-
tion til s̊adanne systemer er derfor inkluderet. Yderligere gives en introduktion
til grafbaserede modeller og approksimationer indenfor tr̊adløs kommunikation
sammen med diverse metoder baseret p̊a Belief Propagation (BP), deriblandt
Turbo princippet.

Efter at have etableret rammen for forskningen præsenteres diverse metoder til
approksimativ detektion. Først introduceres den generelle form for lineær de-
tektion og der argumenteres for at denne form kan være at foretrække f.eks. i
forbindelse med parameter estimation. Derefter præsenteres en praktisk metode
til hvidtning af støj og interferens, hvilket giver modtageren fleksibilitet i ud-
vælgelsen af om interferens skal modelleres som værende diskret eller Gaussisk
fordelt. Den approksimative metode til kugledetektion og -dekodning beskrives
og diverse forbedringer til denne foresl̊as. Herefter introduceres metoder for
generaliseret BP i systemer med foldningskoder. En af disse metoder ligger i
direkte forlængelse af det traditionelle Turbo princip, hvilket gør det muligt at
formulere et generaliseret Turbo princip.

I realistiske tr̊adløse kommunikationssystemer er en masse parametre ukendte og
for at estimere disse beskrives en general variationel Bayesiansk EM-algoritme.
Denne metode generaliserer hidtil kendte metoder indenfor kommunikationssys-
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temer ved at estimere parametrenes sandsynlighedstæthedsfunktion i stedet for
det traditionelt anvendte punktestimat, hvilket gør det muligt at tage højde
for usikkerhed i parameterestimatet. Endeligt præsenteres en EM-algoritme til
estimation af b̊and-Toeplitz kovariansmatricer, da et s̊adant estimat er af inter-
esse til hvidtning af støj og interferens. Det p̊avises ved hjælp af simuleringer
at metoden er nær-optimal for middelstore samt store observationssæt, da den
opn̊ar den nedre Cramer-Rao grænse for variansen af centrale estimatorer.



Preface

The work presented in this thesis was carried out at Informatics and Math-
ematical Modelling, Technical University of Denmark and at Nokia Denmark
A/S in partial fulfillment of the requirements for acquiring the Ph.D. degree in
electrical engineering.

The goal of this thesis is to provide a unifying framework of the research carried
out in the Ph.D. study during the period Sep. 2003 - Nov. 2006, excluding a
leave of abscence from Jan. 2006 - Mar. 2006.

Copenhagen, November 2006

Lars P. B. Christensen

Thesis was successfully defended on the 21/06/2007 with the committee con-
sisting of

Assoc. Prof. Ole Winther, Technical University of Denmark

Prof. Bernard H. Fleury, Aalborg University, Denmark

Prof. Hans-Andrea Loeliger, ETH Zürich, Switzerland



vi



Contributions

The following publications have been produced during the research study

• [Chr05a] L. P. B. Christensen, A low-complexity joint synchronization
and detection algorithm for single-band DS-CDMA UWB communications,
EURASIP Journal on Applied Signal Processing, UWB - State of the Art,
Issue 3, Pages 462-470, 2005.

• [Chr05b] L. P. B. Christensen, Minimum symbol error rate detection in
single-input multiple-output channels with Markov noise, IEEE SPAWC
Workshop, 2005.

• [CL06] L. P. B. Christensen and J. Larsen, On data and parameter
estimation using the variational bayesian EM-algorithm for block-fading
frequency-selective MIMO channels, IEEE ICASSP, 2006.

• [Chr07] L. P. B. Christensen, An EM-algorithm for band-Toeplitz covari-
ance matrix estimation, IEEE ICASSP, 2007.

All of the above papers are included with this thesis as appendices. In addition,
various more or less novel/useful, but as of yet unpublished, ideas and methods
conceived during the research study are outlined below.

• Section 3.4.1: Minimum-phase prefiltered sphere detection and its connec-
tion to the QL factorization.

• Section 3.4.2: Cluster sphere detection



viii

• Section 3.5: GBP for improved Turbo equalization in systems with con-
volutional codes. Based on this, a generalized Turbo principle employing
GBP is introduced.

• Section 4.1.3: Exploiting full posteriors for e.g. parameter estimation, not
only marginals.



Acknowledgements

First of all, I would like to thank Nokia Denmark A/S and the Modem System
Design group for sponsoring the Ph.D. study. A special thanks goes to Izydor
Sokoler and Dr. Søren Sennels for being committed to setting up the Ph.D.
study despite challenges to this. I would also like to thank Dr. Niels Mørch
for letting me roam around freely in the group, providing me with valuable
hands-on experience with real-life algorithms for wireless systems.

During the research study, supervisors involved with the project have been Dr.
Thomas Fabricius, Assoc. Prof. Jan Larsen and Dr. Pedro Højen-Sørensen and
I would like to thank them all for guiding me through the study and providing
valuable input. A special thanks to Pedro for careful reading of this manuscript
and many interesting discussions on the topics of this thesis and my sometimes
far-fetched ideas. Also thanks to Assoc. Prof. Ole Winther and Prof. Lars
K. Hansen for many interesting talks over the years on inference and general
signal processing. I would also like to thank the communications and signal
processing group at University of California, San Diego for welcoming me during
my research visit there. Additionally, I would like to thank Prof. Lars K.
Rasmussen for interesting discussions during his research visit at DTU, providing
me with a better understanding of loop-correction for GBP.

Finally, I would like to thank my wife Mette for her support and love over the
years, in particular when research did not turn out as I had hoped for.



x



Ackronyms

AWGN Additive White Gaussian Noise
BER Bit Error Rate
BP Belief Propagation
BPSK Binary Phase Shift Keying
CDMA Code Division Multiple Access
CRC Cyclic Redundancy Check
DFE Decision Feedback Equalization
DFT Discrete Fourier Transform
EDGE Enhanced Data rate for GSM Evolution
EM Expectation Maximization
FBA Forward/Backward Algorithm
FDMA Frequency Division Multiple Access
FER Frame Error Rate
FFT Fast Fourier Transform
GBP Generalized BP
GMSK Gaussian Minimum Shift Keying
GSM Global System for Mobile Communications
HSPA High-Speed Packet Access
IIR Infinite Impulse Response
LAN Local Area Network
LDPC Low-Density Parity-Check
LLR Log-Likelihood Ratio
MMSE Minimum Mean-Square Error
LTI Linear Time-Invariant
MAP Maximum A-Posteriori
MIMO Multiple-Input Multiple-Output



xii

ML Maximum Likelihood
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Notation

General Notation

x Column vector
xi Element i of x

X Matrix
IM Identity matrix of size M × M
0M×N All-zero matrix of size M × N
[X]i,j Element xij of X

[X]:,j The j’th column of X

p (·) Probability density of continuous variable
P (·) Probability of discrete variable
〈f (·)〉q·(·) Average of function f (·) over posterior distribution q· (·)

E [·] Ensemble average
CN (µ,Σ) Complex-valued Gaussian distribution with mean µ and co-

variance Σ

CW−1 (α,Σ) Complex-valued inverse-Wishart distribution with α
degrees-of-freedom and covariance Σ

X 2
α Chi-Square distribution with α complex-valued degrees-of-

freedom

Scalar Operators

| · | Absolute value
mod (x, y) The value of x taken modulo y

Vector Operators

diag (·) Diagonal matrix given by the vector
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Matrix Operators

(·)∗ Complex conjugation

(·)T
Matrix transpose

(·)H
Hermitian matrix transpose

| · | Matrix determinant
tr {·} Matrix trace, i.e. sum of diagonal elements
‖ · ‖ Matrix 2-norm
rank (·) Matrix rank
⊗ Kronecker product
diag (·) Vector given by diagonal of the matrix

Set Operators

X\Y The set found by removal of Y from X
min (·) Minimum of the set
|·| Cardinality of the set
X
⋃
Y Union of the sets X and Y

X
⋂
Y Intersection of the sets X and Y
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Chapter 1

Introduction and Motivation

During the last decade, people around the world have embraced wireless com-
munications. Today, nearly everybody in the developed world has a mobile
phone or a computer with wireless LAN and the list of potential uses for wire-
less communications continue to grow. The increasing demand for a better,
faster and cheaper wireless experience makes it important for existing systems
to be continually optimized in order to improve user experience and remain
competitive with upcoming systems. The target of this project is to improve
the performance of existing 2G-3.5G cellular systems, such as the GSM/EDGE
and WCDMA/HSPA systems deployed throughout Europe and much of the
world, within the scope of the already well-established standards and allocated
frequency resources.

The performance of a cellular system is a subjective measure, including such
quantities as achievable bit-rate, coverage, quality of service and network ca-
pacity, all of which depend heavily upon a multitude of variables. However, the
scope of this work is only on improvements that can be attributed to the physical
layer processing, i.e. processing of signals to and from the antenna sub-system
and its effects on objective performance measures such as the Bit Error Rate
(BER) or Frame Error Rate (FER). On the other hand, improvements in the
physical layer performance will generally improve overall network performance,
but in what manner and by how much is a complicated question to answer and
is therefore outside the scope of this project.
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Besides the goal of providing improved performance, a possible solution must
take into account the cost, power and size constraints that an implementation
will enforce. This is especially important for the design of a mobile phone as it
is highly constrained with respect to both cost, power and size. For example, it
may be that a huge gain can be demonstrated by performing optimal processing
using multiple antennas, but such a setup is almost guaranteed to be unfeasible
due to excessive cost, power and size.

1.1 Introduction to Cellular Systems

The application considered in this thesis is cellular communication systems and
a quick introduction to the overall functionality of these systems is therefore
given here. As implied by the name, a cellular system provides communication
services by splitting a given geographical area into cells, each of which has a
base-station serving that particular area. The concept of dividing the coverage
area into cells is illustrated in Figure 1.1.

However, for communication to take place some amount of resources must be
allocated to a particular stream of information. One example of such a resource
is the available pool of frequencies in a FDMA network that must somehow be
divided between all communication taking place. Conceptually, only one stream
of information can occupy a given resource at a time and this will therefore put
an upper limit on the total amount of information that can be handled by the
system, i.e. its capacity. Fortunately, the idea that resources can only be used
once is not the whole truth as there exists a trade-off between the reuse of
resources and the achievable bit-rate on a given communication link. Again
considering the frequency resources, an example of this strategy for increased
capacity can be illustrated by Figure 1.1. The operator of this cellular net-
work could assign a different frequency resource for every cell in a given area
and thereby possibly completely eliminating interference between cells or, in the
other extreme, use every frequency resource in all cells causing significant inter-
ference, but also potentially a major capacity increase. Similar trade-offs exist
for all the possible resources available to the network, e.g time-slots in TDMA
and codes in CDMA. A different, more traditional strategy for increasing the
capacity is to split a cell into smaller cells where required, but this can be costly
and is only practical down to a certain cell-size. Operators are therefore natu-
rally interested in being able to tighten the reuse of resources in their network
as much as possible and thereby increasing the network capacity or improve the
link performance for a given reuse.

To help minimize the interference from the reuse of resources, the network em-



1.1 Introduction to Cellular Systems 3

1

2

3

4

5

6

7

Figure 1.1: Concept of cellular communications.

ploys an adjustable transmission power level known as power-control. Thus
when a user is close to a base-station, less power is transmitted to that user and
the resulting interference-level to other parts of the system is thereby lowered.
Therefore, if a receiver can be designed so that it can handle greater levels of
noise and interference, the power-control will simply reduce the power allocated
to that stream of information and thereby freeing up the power resource. This
then results in higher through-put for users in the network or the possibility of
adding more users, i.e. increasing the network capacity.

Besides maximizing capacity, the network should provide as wide coverage as
possible in rural areas where the network is typically not capacity-limited, using
as few base-stations as possible. For this to be possible, the cell-size should
be as large as possible while still maintaining the required bit-rate within a
given power budget. In this scenario, the challenge is not so much dealing with
interference, but instead extracting the information from a signal with very little
power in a noisy environment.

The already mentioned challenges are difficult enough even for an ideal AWGN
channel, but radio propagation conditions are typically far from ideal, including
significant signal reflections and power fluctuations. Furthermore, users move
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around between the cells and support for speeds upwards of 250 km/h are typ-
ically required producing significant frequency offsets, i.e. Doppler shifts. The
goal of this thesis is therefore to try to meet these challenges and provide possible
solutions that can improve the performance of such cellular systems.

1.2 Methods of Improving Cellular Performance

Various techniques for improving the physical layer performance of cellular sys-
tems can be put into two main categories: Methods requiring changes to the
transmitted signal and methods that don’t. Examples of the first category are
pre-coding of the information in the transmitter and introducing higher-order
modulation schemes carrying more bits per symbol. Such methods can be ef-
fective, but has the drawback of requiring modifications to the standards and
providing backwards compatibility can limit its practical use. The EDGE and
HSPA extensions to GSM and WCDMA are examples of this strategy, but this
has the drawback of requiring new standards and hardware in order to handle
the extensions, all of which adds cost to the network and terminals.

A different strategy, appearing to be getting more focus lately, is that of im-
proving the performance of the receivers employed in the system to allow for a
higher degree of resource reuse and possibly better coverage as well. This has
the advantage of not requiring any changes to the transmitted signal and can
therefore be introduced gradually as networks and terminals are being updated
and/or replaced.

However, improving the performance of a receiver under the influence of inter-
ference and noise is no easy task. One option is to use multiple receive antennas
to effectively provide a better quality signal. Unfortunately, this comes at the
price of increased cost, power and possibly size. This may not be a major con-
cern for some applications, but for a mobile phone it can be critical. The focus
of this thesis is therefore on improving the receiver performance for a fixed num-
ber of antennas, typically one, by improved processing of the observation signal
coming from the antenna sub-system.



Chapter 2

Preliminaries

This chapter builds the basic framework in which the research has been carried
out. First, the used system model is presented along with its graph representa-
tion. Next, the general topic of inference in graphs is introduced along with its
application to the communication system model, including the Turbo principle.

2.1 Generic System Model

The wireless communication systems of interest are all of the classical narrow-
band type operating at a given carrier frequency and the equivalent complex
baseband model therefore applies. For a general reference on this topic, see e.g.
[Pro95, TV05]. Essentially, this permits the use of traditional linear models for
many of the real-life effects on the actual signal.

A schematic overview of the system model is shown in figure 2.1. The transmit
structure is split into separate channel encoding and modulation, but more gen-
eral models with joint encoding and modulation can be constructed to account
for various forms of pre-coding, but this is outside the scope of this thesis and
has therefore been omitted. In addition, many alternative methods of map-
ping encoded bits onto a transmitted signal exist, but the linear, memoryless
modulation outlined here is either used by the systems of interest or is a good
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Figure 2.1: Generic wireless system model used throughout the thesis.

approximation and this is therefore the focus of this thesis. In the following it
is assumed that user 1 is the only desired user as this is typically the case for
a mobile terminal, but the framework can easily be modified to support more
than one desired user.

Assuming Ni information bits should be conveyed to the receiver as given by
the binary vector i ∈ {0, 1}Ni , the task of the channel encoder is to map this

information to a new encoded vector c ∈ {0, 1}
Ni
r where 0 < r ≤ 1 is the rate

of the code. It is often assumed that the input to the encoder is i.i.d. with a
uniform distribution, but as the information bits typically come from a source
encoder, residual redundancies are likely to be present and thereby violating the
assumptions. Additional gains can therefore be achieved by jointly performing
the source decoding with the data estimation, but this has the drawback of
increased complexity and dependence on the specific type of source and source
encoding and this option is therefore not pursued further. The systems of inter-
est typically utilize convolutional codes and it is therefore assumed throughout
this thesis that the encoder is a binary convolutional code of rate r having
constraint length Nc.

Next, the order of the encoded bits are typically permuted by an interleaver
to help make the bits appear as independent as possible to the next block, the
modulator. Here, bits are collected into blocks of Q bits and mapped onto
a complex-valued symbol in the set Ω out of |Ω| = 2Q possible symbols. For
example, if Q = 4 one could choose to map the bits onto e.g. a 16-QAM or a 16-
PSK constellation set. Due to the symbol mapping, the number of transmitted
symbols will be Nx = Ni

rQ
.
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Finally, the symbols x(k) belonging to the k’th user are filtered by a pulse-
shaping filter to help control the bandwidth of the transmitted signal. A typical
choice of pulse-shaping filter is the Root-Raised Cosine (RRC) filter due to its
theoretical properties and flexibility, but any filter can in principle be used. The
spreading codes used in CDMA systems can be seen as nothing more than a
special pulse-shaping filter. This will enforce special properties of the overall
pulse-shaping filter that can be exploited, e.g. orthogonality between different
codes may be achieved at the expense of excess bandwidth.

The signal is now transmitted across the wireless link by the antenna sub-system.
This is accounted for by the time-varying multipath channel that models the
effects of reflections and signal fading. However, real-life issues such as timing,
frequency-offsets and other RF impairments are not included in this thesis as
these effects are typically not a limiting factor in the systems of interest. As
discussed previously, interference from other users may occur and the model
therefore includes a total of K users. In addition, thermal noise will be present
as modeled by the AWGN source n ∼ CN

(
0, σ2I

)
.

In the receiver, the signal from the antenna sub-system r is filtered to produce
y in such a way that all available information about the transmitted bits is
preserved in y. Although the text-book answer would be to perform matched-
filtering at this point, a real-life implementation depend on the actual system
and the environment in which it operates. However, as all operations between
the pulse-shaping and the receive filtering are linear operations, the overall trans-
fer function is linear and can be expressed as

y = Hx + ǫ (2.1)

The transfer matrix H ∈ CM×N is the overall frequency-selective MIMO channel
matrix, x ∈ ΩN is the collection of transmitted symbols from the first K ′ ≥ 1
users and ǫ ∈ CM is the overall noise term containing any remaining users
plus filtered AWGN noise. Equation (2.1) looks deceptively simple, but further
explanation will follow below in order to better understand it.

Finally, the task of the data estimator in figure 2.1 is to determine the posterior
distribution of the information given the observations, as taking decisions based
on this distribution will minimize the probability of error [Poo88]. However, for
most interesting communication systems, finding this distribution is unfeasible
and approximations must be used instead. Such approximations are the topic
of this thesis.

Returning to (2.1), the overall channel matrix H is effectively a linear convolu-
tion with temporal dispersion LT , where T is the symbol duration. Further, it
is assumed that the overall channel coefficients are constant over the considered
block of data, i.e. the model is a block-fading model. If the rate of change in the
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channel coefficients is so rapid that the block-fading approximation is not valid,
this can be accounted for by e.g. a Gaussian state-space model for the channel
coefficients [NP03, KFSW02], but this is not considered further in this thesis.
For notational convenience, the ramp-up and ramp-down periods of the linear
convolution are disregarded as they are typically not of major importance for
the overall performance. However, a real-life implementation must take these
boundary conditions into account. Based on these assumptions, the resulting
structure for the overall channel matrix is

H =














HL−1 · · · H1 H0 0
. . . 0 0

0 HL−1
. . . H1 H0

. . .
...

...
... 0

. . .
... H1

. . . 0
...

...
...

. . . HL−1

...
. . . H0 0

0 0
. . . 0 HL−1 . . . H1 H0














(2.2)

The sub-matrices Hl ∈ CNr×K′Nt are the lag l channel matrices with Nr and Nt

being respectively the number of receive and transmit dimensions per symbol.
Finally, based on the size of the sub-matrices, the size of the overall channel
matrix is given by M = (Nx − L + 1)Nr and N = NxK ′Nt.

The interference term in the overall noise ǫ has the same structure as (2.2),

only now with an overall channel matrix H(I) having sub-matrices H
(I)
l ∈

CNr×(K−K′)Nt determining the transfer function from users {K ′ + 1, · · · ,K}
to the overall noise. The overall noise can therefore be expressed as

ǫ = H(I)x(I) + ñ (2.3)

where x(I) holds the symbols from users {K ′ + 1, · · · ,K} and ñ is the thermal
noise after receive filtering. Assuming that all transmitted symbols in the overall
noise term are i.i.d., zero-mean and unit-power, we have

Σ , E
[
ǫǫH

]
= H(I)

(

H(I)
)H

+ Σñ (2.4)

where Σñ , E
[
ññH

]
is the covariance of ñ determined by the receive filter. It

is then straight-forward to show that Σ is a block-banded block-Toeplitz matrix
with block-bandwidth L − 1. The Signal-to-Noise Ratio (SNR) of this system
is defined as

SNR ,
tr{HHH}

Mσ2
(2.5)

Under the assumption that ǫ ∼ CN (0M×1,Σ), the likelihood of the symbols
given the parameters is

p (y | x,H,Σ) ∝ |Σ|−1e−(y−Hx)HΣ−1(y−Hx) (2.6)
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For finite systems, the assumption that ǫ is Gaussian only holds for K ′ = K, but
it can serve as a valuable approximation for weak interfering users when K ′ <
K. The vast majority of detectors/decoders are most easily derived operating
under the influence of AWGN and an equivalent system model fulfilling this
requirement is therefore desired. One way of achieving this is to approximate ǫ

as being Gauss-Markov with a memory of Nm symbols, i.e. the block-bandwidth
of Σ−1 is limited to Nm. The closest distribution in the KL-divergence to
the original distribution is then found by simply setting elements outside the
bandwidth of the inverse to zero [KM00]. By defining the whitening matrix F

by the Cholesky factor FHF , Σ−1 and letting ỹ , Fy and H̃ , FH, we can
rewrite (2.6) as

p
(

ỹ | x, H̃,F
)

∝ |F|2e−‖ỹ−H̃x‖2

(2.7)

Again disregarding boundary conditions, the structure of H̃ is the same as in
(2.2), but due to the Gauss-Markov assumption of the overall noise, the effective
length of the whitened channel H̃ is now L̃ , L+Nm [Chr05b]. This effectively
means that any of the considered systems can be transformed into a system of
the form

ỹ = H̃x + ǫ̃ , ǫ̃ ∼ CN (0M×1, IM ) (2.8)

where ǫ̃ , Fǫ. This form of the system model is used throughout the rest
of this thesis and a sufficient set of parameters for this system model is then
θ = {H,Σ}.

2.2 The Channel Capacity and Rate-Diversity

Tradeoff

The modern research area of information theory was born with Shannon’s
ground-breaking theory of communication [Sha48]. Here, the channel capacity
is for the first time described as the maximum amount of information carried
by a channel such that it can be reliably detected and is found to be

C = log2 (1 + SNR) [bps/Hz] (2.9)

for a scalar channel with AWGN. Designing practical communication systems
capable of achieving capacity while having arbitrarily small error probability
has been the goal ever since. As realized by Shannon, the channel capacity is
easily generalized to multipath channels by frequency-domain water-filling, but
it took nearly 50 years before it was generalized to the general MIMO channel
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as1 [Tel99, XZ04]

C = N−1
x log2

∣
∣
∣IM + σ−2HQHH

∣
∣
∣ [bps/Hz] (2.10)

assuming AWGN with Q , E
[
xxH

]
determined by water-filling. For fading

channels, the so-called ergodic channel capacity can be found by averaging over
the distribution of the channel.

For a given fixed channel at high SNR, the ML estimate of the transmitted
information has an exponentially vanishing error probability, i.e. Pe ∝ e−SNR.
However considering a fading channel, the probability of error only decays as
Pe ∝ SNR−d, where d is the diversity-order [Pro95, TV05]. For example, if
N different observations using independent fading realizations were available, a
diversity-order of N could be achieved. There are many ways of achieving this,
one possibility being the use of N receive antennas having independent fading
between them. Unfortunately, sub-optimal processing may fail to take advan-
tage of the true diversity-order of a system resulting in sub-optimal performance.
In general, maximizing the diversity-order is desired to help reliability, but it
comes at the price of a reduction in channel capacity compared with that given
in (2.10) [ZT03]. Hence, the maximum diversity-order can not be achieved at the
rate specified by (2.10) giving rise to a rate-diversity tradeoff. A good example
of this is the use of a real-valued modulation such as BPSK on a complex-valued
fading channel. To reach capacity, a complex-valued modulation must be used,
but the choice of only using half the degrees-of-freedom available results in an
increased diversity-order. An example of a similar rate-diversity tradeoff is the
choice of using space-time block codes instead of spatial multiplexing for MIMO
systems in order to have a higher diversity-order.

As mentioned, sub-optimal processing may fail to extract the available diver-
sity. A good example of this is again the scenario of using BPSK modulation
on a complex-valued fading channel. Due to the real-valued modulation, the
signal only spans half the signal-space and information should therefore only be
extracted from this sub-space. A ML receiver would achieve this whereas the
sub-optimal LMMSE detector presented in section 3.1 would not. The reason
for this problem is that the complex-valued domain is constrained in the sense
that it can only support circular complex-valued distributions, i.e. independent
and equal variance real and imaginary components over the complex space. A
BPSK modulated signal in a complex-valued channel does not fulfill this circular
constraint and the achievable diversity will therefore suffer from the incorrect
model. A simple solution to this problem is to map the system onto the uncon-
strained real-valued domain having twice the number of output dimensions, i.e.

1Channel capacity is here defined as the average channel capacity per input symbol over
the considered block of data
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[
yI

yQ

]

︸ ︷︷ ︸

yIQ

=

[
HI −HQ

HQ HI

]

︸ ︷︷ ︸

HIQ

[
xI

xQ

]

︸ ︷︷ ︸

xIQ

+

[
ǫI

ǫQ

]

︸ ︷︷ ︸

ǫIQ

(2.11)

where subscript I and Q indicates the real and imaginary part respectively,
i.e. ·I , Re {·} and ·Q , Im {·}. This representation correctly captures the
non-circular statistics of a real-valued modulation and all processing can then
be rederived for this modified system. Approximate detectors based on the
statistics of the signal can thus extract a greater share of the available diversity
in the system [GSL03]. Interestingly, similar structures in space-time block
codes can be exploited in the same manner [GOS+04].

2.3 Graph Representations and Inference

This section will provide an overview of how the considered system model can
be represented and approximated by graphs and thereby help improve the un-
derstanding of its underlying structure. The goal of doing this is to exploit
the structure of the problem in such a way that inference in these models,
e.g. determining hidden variables and parameters, is performed in an efficient
manner. This area of research is still very much active and the quest for the
ultimate representation of systems as the one depicted in figure 2.1 is still ongo-
ing. The presented graphical framework is based mainly on the work presented
in [YFW05], which again builds on decades of research on structured (local)
computation. To indicate the versatility of the presented framework, classical
methods of increasing generality that can be derived from the framework in-
clude: The FFT, forward/backward algorithm, Sum-Product algorithm, Bethe2

and Kikuchi approximations and the Generalized Distributive Law [AM00]. A
related framework is that of Expectation Propagation [WMT05], but this view
is not pursued further in this thesis.

2.3.1 Factor Graphs and Belief Propagation

A factor graph [KFL01] is a graphical way of expressing how a function of several
variables factorizes into functions dependent only on subsets of the variables.
For the purpose of this thesis, factor graphs are restricted to representing how

2This is the approximation underlying the famed Turbo principle [BGT93, MMC98]
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a joint probability distribution function factorizes, i.e.

p (x) ∝
∏

a

fa (xa) (2.12)

Here xa indicates the a’th subset of the variables and fa is a positive and finite
function of the subset, so that p (x) is a well-defined distribution. The factor
graph contains the structure of (2.12) by a circular variable node for every
variable xi and a square factor node for every function fa. If a given function
node fa depend on xi, an edge will then connect the two. An example of a
distribution factorizing in this manner is

p (x1, x2, x3, x4) ∝ fA (x1, x2) fB (x2, x3, x4) fC (x4) (2.13)

which may be represented by the factor graph shown in figure 2.2. The task

1

A

2 3

B

4

C

Figure 2.2: Factor graph example.

of computing marginals from distributions of the form given by (2.12) is what
we are interested in. For the remaining part of this thesis, it is assumed that
all variables in factor graphs are discrete. Although it is possible to have factor
graphs with both discrete and continuous variables, e.g. for jointly determining
information bits and model parameters, this is outside the scope of this thesis.
Letting S be the set of variable nodes that we wish to determine the marginal
for, the desired marginal is defined by

pS (xS) =
∑

x\xS

p (x) (2.14)

where the sum over x\xS indicates summing over all combinations of x not in
the set S. The problem with performing marginalization as shown in (2.14) is
that it requires summing over an exponentially large number of combinations.

The method of Belief Propagation (BP) can help reduce the amount of com-
putations required by exploiting the structure of the problem as represented by
the factor graph. However, this may come at the price of marginals only being
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approximate, but if the factor graph is loop-free3, results obtained through BP
are guaranteed to converge to their true values once all evidence has been dis-
tributed [KFL01]. The graph in figure 2.2 is an example of such a system that
has no loops and exact inference can therefore be performed by BP.

The BP algorithm is a message-passing algorithm based on the idea of sending
messages from nodes and to its neighbors. The message ma→i (xi) from factor
node a to variable node i indicates the relative probabilities that xi is in a given
state based on the function fa. Similarly, the message ni→a (xi) from variable
node i to factor node a indicates the relative probabilities that xi is in a given
state based on the information available to variable node i, except for that
coming from the function fa itself. The so-called beliefs, which are simply the
approximation to a specific marginal computed by BP, is given by the product
of incoming messages and any local factors, i.e.

bi (xi) ∝
∏

a∈N(i)

ma→i (xi)

ba (xa) ∝ fa(xa)
∏

i∈N(a)

ni→a (xi)
(2.15)

with N (i) indicating the set of neighbors to node i. By requiring consistency
using the marginalization condition

bi (xi) =
∑

xa\xi

ba (xa) (2.16)

the message-updates are found to be

ni→a (xi) =
∏

c∈N(i)\a

mc→i (xi)

ma→i (xi) =
∑

xa\xi

fa (xa)
∏

j∈N(a)\i

nj→a (xj)
(2.17)

The algorithm is sometimes also referred to as the sum-product algorithm due
to the lower update of (2.17).

2.3.2 Region Graphs and Generalized Belief Propagation

If the factor graph contains loops, the resulting approximation may be far from
the exact result, especially if the length of the loop is short. To illustrate this

3This means that there is no possible route from any node and back to itself
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problem, assume the factor graph in figure 2.2 also has a connection from vari-
able node 3 to factor node C as shown in figure 2.3. There is now a loop4 in the
factor graph as there is a route from variable node 3 and back to itself and BP is
therefore not guaranteed to provide exact results. The idea of Generalized Be-
lief Propagation (GBP) is now to propagate messages between regions of nodes
instead of single nodes and thereby hopefully providing a better approximation.
In figure 2.3, two regions R1 = {A, 1, 2} and R2 = {B,C, 2, 3, 4} have been

1

A

2 3

B

4

C

Figure 2.3: Example of region definition on modified factor graph.

defined. Region R2 encapsulates the loop that was causing BP problems and
GBP will therefore be exact, but this comes at the price of increased complex-
ity as the complexity scales exponentially with the region sizes. For this little
example, the complexity would scale as O

(
22 + 23

)
compared with O

(
24
)

for
exhaustive search assuming binary variables. However, the real strength of GBP
is that even for region definitions that do not encapsulate all loops in the factor
graph, the GBP algorithm is still well-defined and can provide improved results
compared with BP. Furthermore, through the choice of regions, GBP can scale
all the way from BP to exact inference by trading off complexity for improved
performance.

In defining the regions, one must ensure that all variables connected to any factor
node in the region must also be included in the region. In the example, this
results in variable node 2 being included in two regions, but in general nodes may
be included in several regions. This raises the question of how communication
among regions should be performed, but also the fact that nodes can occur in

4It could be argued that this factor graph is in fact loop-free in that merging factor nodes
B and C will eliminate the loop without causing a larger complexity. However, this kind of
loop encapsulation is not possible for general loopy graphs.
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several regions is a concern due to potential over-counting. Region graphs are by
definition directed graphs and a possible way to allow communication between
regions R1 and R2 is then to define the region R3 = R1

⋂
R2 = {2} and let R1

and R2 be connected to this region. Such a region graph, as shown in figure 2.4,
define the interactions between regions and the GBP algorithm operate on such
region graphs similarly to how the BP algorithm can be formulated on factor
graphs. As was the case for BP on loop-free factor graphs, the GBP algorithm
provides exact results when operating on loop-free region graphs [YFW05]. As
mentioned before, region R2 encapsulates the loop in the factor graph and the
resulting region graph in figure 2.4 is therefore loop-free.

A

1,2

B,C

2,3,4

2

Figure 2.4: Valid region graph for the example.

The potential over-counting of nodes in the factor graph can be dealt with
through the use of so-called counting numbers. These counting numbers indicate
the weight with which a given region is included in the overall approximation
and for the approximation to be well-behaved, the counting numbers of regions
involving a given node should sum to one. If R is the set of all regions each
having counting number cR, then the region-based approximation is said to be
valid if for all variable nodes i and factor nodes a in the factor graph, we have

∑

R∈R
cRIR (a) =

∑

R∈R
cRIR (i) = 1 (2.18)

where IR (x) is a set-indicator function being one if x ∈ R and zero otherwise.
Given the structure of the region graph, it is easy to assign counting numbers
that produce a valid approximation. If A (R) is the set of ancestors of a region
R, then defining the counting numbers as

cR = 1 −
∑

r∈A(R)

cr (2.19)

will produce a valid region graph. In figure 2.4, the counting numbers associated
to each region are also shown and it can be easily verified that the resulting
approximation is indeed valid.
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Assuming that a given region-based approximation has been specified5, a GBP
algorithm must now be constructed to yield the desired marginals similar to
how the sum-product algorithm may be used for regular BP. In fact, there are
many such algorithms each generalizing the sum-product algorithm, but here
only the so-called parent-to-child algorithm is outlined. The reader is referred
to [YFW05] for other possible algorithms.

Advantages of this algorithm are the absence of explicit reference to the count-
ing numbers of the underlying graph and, as the name implies, that it is only
necessary to define messages going from parents to their children. In this GBP
algorithm, as in regular BP, the belief at any region R can be found by the
product of incoming messages and local factors. However, to implicitly correct
the potential over-counting, it turns out that we need to include messages into
regions that are descendants of R coming from parents that are not descendants
of R. This is exactly the Markov blanket of region R, making the region con-
ditionally independent of any regions other than these. As a result of this, the
belief of region R is given by

bR (xR) ∝
∏

a∈AR

fa(xa)
∏

P∈P(R)

mP→R (xR)
∏

D∈D(R)

∏

P ′∈P(D)\E(R)

mP ′→D (xD)

(2.20)
where mP→R (xR) is the message from region P to region R and AR is the set
of local factors in region R. Furthermore, P (R) is the set of parent regions to
R and D (R) is the set of descendants with E (R) , R ∪ D (R). From (2.20),
the message-updates can be found by requiring consistency between parent and
child regions yielding

mP→R (xR) =

∑

xP \xR

∏

a∈AP \AR
fa(xa)

∏

(I,J)∈N(P,R) mI→J (xJ )
∏

(I,J)∈D(P,R) mI→J (xJ )
(2.21)

The set N(P,R) consists of the connected pairs of regions (I, J) where J is in
E(P ) but not in E(R) while I is not in E(P ). Further, D(P,R) is the set of all
connected pairs of regions (I, J) having J in E(R) and I in E(P ), but not E(R).

2.3.3 Graph Approximations and Free Energies

Up to this point, it has been assumed that a given graph had somehow been
specified as being either an exact or approximate model. First, this section will
outline the underlying cost-function that GBP, and hence also BP, minimize.
Next, the Bethe and Kikuchi methods of generating approximate graphs are
outlined.

5How such graphs may be chosen is discussed in the next section
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To determine the cost-function of GBP, define the region energy of region R as

ER(xR) = −
∑

a∈AR

ln[fa(xa)] (2.22)

where again AR is the set of local factors in region R. The posterior mean of
this energy term is called the region average energy and is naturally given by

UR(bR) =
∑

xR

bR(xR)ER(xR) (2.23)

Also, let the region entropy HR(bR) be given by

HR(bR) = −
∑

xR

bR(xR)ln[bR(xR)] (2.24)

allowing us to define the region free-energy FR(bR) as

FR(bR) = UR(bR) − HR(bR) (2.25)

Conceptually, one simply sums up the region free-energies over the entire graph
and this is then the metric to minimize. However, due to the over-counting
problem, the region free-energies must be weighted by their respective counting
number cR to give the region-based free-energy

FR({bR}) =
∑

R∈R
cRFR(bR) (2.26)

where R is the set of regions in the graph. From (2.26) it can be seen that if
the region graph is valid, every variable and factor node from the factor graph
is counted exactly once in the region-based free-energy. In [YFW05], the fixed-
points of the various GBP algorithms are shown to be fixed-points of the region-
based free-energy. What this means is that updating messages according to e.g.
(2.21) will locally minimize the region-based free-energy. Furthermore, for the
region-based free-energy minimization to make much sense, it must obey some
basic constraints. First, the region beliefs bR(xR) must be valid probabilities,
i.e. 0 ≤ bR(xR) ≤ 1 and sum to one. Additionally, marginals of the region
beliefs should be consistent meaning that a marginal should be the same no
matter what region it is derived from. If these constraints are fulfilled, the
approximation is called a constrained region-based free-energy approximation.

Similar to how the region-based free-energy was found by a weighted sum over
the region free-energies, the region-based entropy can be defined in the same way
from the region entropies. In [YFW05], it is argued that a good region graph
approximation should achieve its maximum region-based entropy for uniform
beliefs as the exact region graph must have this property. If a specific region
graph fulfills this criteria, it is called a maxent-normal approximation.
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2.3.4 The Bethe Approximation

An important class of free-energy approximations are those generated by the
Bethe method also known simply as Bethe approximations [YFW05]. The
region-based approximation generated by this method consists of two types of
regions: The set of large regions RL and the set of small regions RS . Any region
in RL contains exactly one factor node and all variable nodes connected to this
factor node. On the other hand, regions in RS consists of only a single-variable
node and are used to connect large regions having variable intersections. The
counting numbers guaranteeing a valid region graph are given by

cR = 1 −
∑

S∈S(R)

cS (2.27)

where S(R) is the set of super-regions of R, i.e. regions having R as a subset.
Further, all Bethe approximations can be shown to be maxent-normal [YFW05].
Due to the construction of small regions handling the interactions between re-
gions, only single-variable marginals are exchanged and GBP therefore falls back
to standard BP on factor graphs. In [YFW05], the Bethe method is generalized
to allow multiple factor nodes to be in a region in the large set and similarly
regions in the small set are allowed to contain full intersections between regions.
This way of generating the region graph is termed the junction graph method
and is essentially similar to the generalized distributive law [AM00], which for
tree graphs falls back to the famed junction tree algorithm.

2.3.5 The Kikuchi Approximation

In the Kikuchi approximation, we use the so-called cluster variation method for
generating the regions and associated counting numbers. We start out by a set
of large regions R0 such that every factor and variable node is in at least one
region in R0. Furthermore, no region in R0 must be a sub-region of another
region in R0. Having defined R0, the next level of regions R1 is determined by
all possible intersections between regions in R0, but again making sure that no
region in R1 is a sub-region of another region in R1. Finally, regions in R0 are
connected to their respective sub-regions in R1. This process continues until
level K where there are no more intersections and the region graph is then given
by R = R0 ∪R1 ∪ · · ·RK . The counting numbers required to make this a valid
region graph is given by (2.27) as for the Bethe approximation.

Unfortunately, region graphs generated by this method are not guaranteed to be
maxent-normal. Furthermore, it is argued in [YFW05] that for the free-energy
approximation to be good, it should not only be valid and maxent-normal,
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but also have counting numbers summing to one when summed over the entire
graph. This criteria is not even guaranteed by the Bethe approximation, except
for the special case of the graph being loop-free. At present, designing good
region-based free-energy approximations that obey even one of these criteria
is more of an art than science, but the framework of region-based free-energy
approximations is indeed very general and intuitively seems to be a fruitful path
for future research. In section 3.5, methods for approximate joint detection and
decoding in convolutionally encoded systems is presented based on GBP on
region graphs.

2.3.6 Helping GBP Converge in Loopy Region Graphs

As for BP, the GBP algorithm is only guaranteed to converge to the exact
result when the region graph is loop-free and may even fail to converge for
region graphs having multiple loops. A common heuristic for managing this is
to let the new message be a convex6 combination of the update and the last
message, either directly on the messages or in the logarithmic domain. There
does not appear to be any known theoretical justification for this, but for the
systems of interest it seems to work best in the log-domain, i.e.

mnew
P→R(xR) = [mupdate

P→R (xR)]w1 [mold
P→R(xR)]w2 (2.28)

where w2 = 1 − w1 and 0 ≤ w1 ≤ 1 is used for convex combining with w1

being a weight factor used to control the update. In fact, this can be seen to
be a first-order IIR filter in the log-messages with the IIR filter being provably
stable. Obviously, as the weight w1 approaches zero the updates become less
important and thereby slowing the convergence of the overall algorithm. On
the other hand, doing so stabilizes many, if not all, loopy region graphs as the
couplings in the graph are relaxed. Hence, in some sense this scheme seems
very similar to that of annealing in that it might be possible to prove that exact
inference may be accomplished by letting the convergence rate go to zero and
thus effectively perform an exhaustive search [GG84].

An observation that may justify the filtering in log-domain is the over-counting
of messages occurring due to loops: If a message m has counted some evidence
not once, but q times, the message m1−q should be used instead. This would in
fact suggest that the filtering in (2.28) does not necessarily have to be convex,
but this raises the question of stability in the log-domain filtering.

Developing a sound theoretical framework for achieving a high probability of
convergence for GBP in loopy region graphs while retaining an acceptable com-

6A convex combination is a weighting of terms, where all weights are positive and sums to
one
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plexity remains an open research area. However, the applications of such a
framework seem to be numerous as it would be applicable to e.g. general Turbo
setups and LDPC codes. In [Yui02], a guaranteed convergent alternative to
GBP is presented, but this also comes at the price of much slower convergence.
In [LR04, LR05], a filtering scheme operating over the iterations in a Turbo
setup is derived assuming that messages are Gaussian and it is shown to pro-
vide improved performance. Interestingly, the derived filter is equivalent to the
convex IIR filter in (2.28) and based on the Gaussian assumption, an analytical
expression for w1 is further provided. Other evidence that such loop-correction
schemes may help convergence and hence performance is given in [CC06], where
loop-correction is applied to the BP decoding of LDPC codes. Generalizing
such ideas to general region graphs and designing methods capable of adap-
tively compensating for loops while retaining an acceptable complexity seems
to be an interesting topic for future research.

2.4 Disjoint Detection and Decoding: The Turbo

Principle

Determining the exact posterior of the information p (i | y) as shown in figure
2.1 is practically impossible. Even in the unrealistic scenario of known system
model and parameters, exact inference would be unfeasible as exhaustive search
is the only known method providing exact results in general. This section will
therefore describe traditional disjoint detection and decoding performed under
the assumption of known system model and parameters and how this can be
generalized by the Turbo principle. A common building block of such schemes is
the Forward/Backward Algorithm (FBA) used for efficient detection/decoding
in systems with memory and this particular algorithm is therefore shortly dis-
cussed based on the BP framework introduced earlier.

The idea of disjoint detection and decoding is to separate the two coupled op-
erations by assuming that the other is non-existing and thus resulting in a
structure as shown in figure 2.5. First, the input ỹ is fed into the detector
which produces either exactly or approximately the posterior q (cπ) based on
the assumption that the coded and interleaved bits cπ are independent apriori.
Next, the decoder operates on a deinterleaved version of the posterior called
q (c), but in order for the decoder to be simple the input must be independent,
i.e. the posterior must factorize as shown in the figure. Therefore, only the
marginal posterior is used as this minimizes the KL-divergence7 under the con-
straint of full factorization. Based on these marginals, the decoder determines

7DKL (q‖p) ,
〈

ln
p

q

〉

q
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DET.DEC.

Figure 2.5: Disjoint detection and decoding.

the approximate posterior distribution of the information bits q (i).

The problem with this disjoint scheme is that the detector does not utilize
knowledge about the code and the decoder does not use knowledge of the chan-
nel. Hence, not all the available structure in the system is taken advantage of
and this situation is what the Turbo principle improves upon [BGT93, KST04].
Ideally, the detection and decoding should be performed jointly, but due to com-
plexity constraints this is unfeasible and the basic idea of the Turbo principle is
then to iterate between the two disjoint components as illustrated by figure 2.6.

For this to be possible, the detector should be able to accept prior information
about the coded bits generated by the decoder. Typically, the decoder can
directly produce the desired output and most detectors can be modified to accept
priors without too much extra complexity. Instead of propagating the actual
bit probabilities between the two components, so-called Log-Likelihood Ratios
(LLR) can be more convenient. The LLR λi of a bit ci is defined as

λi , ln

(
P (ci = 1 | y)

P (ci = 0 | y)

)

(2.29)

and is therefore just another way of parameterizing the distribution of a bit.
To indicate that a fully factorized distribution q (c) =

∏

i q (ci) is represented
using LLRs, the notation qλ (c) is used. In figure 2.6, it is also shown how the
prior input qλ,pr (c) to any of the components is subtracted (in LLR domain)
from the posterior output qλ,p (c) and thereby generating the so-called extrinsic
information qλ,e (c). This extrinsic information represents the additional infor-
mation about the coded bits gained by exploiting the structure in the signal at
that point, i.e. the channel structure in the detector and the code structure in
the decoder. From a graph point of view, the Turbo principle can be seen to
be a Bethe approximation [MMC98] and performing BP on this graph will then
be equivalent to the structure in figure 2.6. The fact that it is the extrinsic
information that should be propagated comes directly from the BP updates in
(2.17): Messages going in the opposite direction of a message being updated
should not be included in the update. The Turbo framework takes this into
account by dividing out the previous information (subtracting the component
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Figure 2.6: Turbo-based detection and decoding.

prior in LLR domain) and thereby forming the component extrinsic information.
Due to the uniform prior used by the detector in the first iteration, resulting in
qλ,pr (cπ) = 0, stopping the Turbo iterations after the first decoding will result
in the traditional disjoint result. The Turbo principle can therefore be seen as
a generalization of the traditional disjoint detection and decoding in figure 2.5.

An important building block for detection and decoding in systems with memory
is the FBA [BCJR74], which is simply a special case of the BP algorithm. For
disjoint detection and decoding, the algorithm is optimal in the sense that it can
determine any desired posterior exactly in an efficient manner by exploiting the
Markov structure of a multipath channel or a convolutional code. To illustrate
the algorithm, a factor graph for the detection problem can be constructed as
shown in figure 2.7, but a factor graph for decoding of convolutional codes will
have the same structure. It should be noted that the factor graph is loop-free
meaning that using BP on this graph will be exact. In the graph, xn is a
variable sufficient to describe the state of the system at time n and assuming
the channel has a temporal length of L̃T , a total of L̃ symbols is therefore
required. The most efficient way of distributing the evidence in this graph is
by starting at any one point and propagating messages to the ends and back
again. This is exactly what the FBA does by defining a forward variable αn

holding information from observations going from left to right, i.e. {ỹ1, · · · , ỹn}
and a backward variable βn going in the opposite direction holding information
from observations {ỹn+1, · · · , ỹN}. In the framework of the BP algorithm, the
message leaving variable node n and going to the factor node to the right of it
would be αn under the assumption that all nodes to the left of xn have been
updated in a sequential manner. Similarly, the message going in the opposite
direction at the same place would be βn. Due to the exclusion of messages going
in the opposite direction in (2.17), the forward and backward variables will not
interact and can therefore be computed separately. The complexity per symbol

scales with the set-size of xn and is therefore O
(

Nr2
K′L̃NtQ

)

where K ′Nt is the
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Figure 2.7: Factor graph for Markov model.

effective number of independent users/streams included in the discrete Markov
model and Q is the number of bits per symbol. Although this algorithm exploits
the Markov structure of the system, the complexity of this detector often makes
its implementation unfeasible and approximations must be used instead as will
be discussed in chapter 3. For decoding of binary convolutional codes, the
complexity per information bit scales as O

(
r−12Nc

)
where r is the rate of the

code and Nc is the constraint length. Typical real-life values for r and Nc

lead to a complexity which is usually implementable and no approximations
are therefore required. If the target is not to minimize the information BER
but FER, the Viterbi algorithm [Vit67] should be used instead, which again
can be seen as a special case of the FBA. Some cellular systems of interest to
this thesis use Turbo codes [BGT93] instead of convolutional codes, but these
codes are constructed from convolutional codes and the FBA is therefore also
used as a component in its decoding. Systems may also employ block codes like
LDPC, Reed-Solomon or CRC codes or combinations of all these mentioned
coding schemes. Such component codes may also employ the BP algorithm for
decoding [MN97, EKM06], but this is outside the scope of this thesis.

Although only described here for iterative exchange of information in a disjoint
detector and decoder setup commonly known as Turbo equalization, the Turbo
principle is a general way of separating various components from each other
such that inference in each component becomes manageable. For example, if
the information bits originated from a source encoder, e.g. a voice codec, the
Turbo principle could be extended to iterate not only between the detector and
the decoder, but also include the source decoder in the iterations.

2.5 Summary

This chapter has introduced the signal model that is used throughout this the-
sis. The model is quite general in the sense that it supports most of the features
of interest in today’s coded multiuser MIMO systems operating in a multipath
environment. For simplicity, the channel model is assumed to be block-fading,
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but all methods presented throughout this thesis naturally generalize to a time-
varying Gaussian state-space channel model, if desired. Furthermore, the fun-
damental channel capacity along with the associated rate-diversity tradeoff has
been introduced including a IQ-split system model capable of capturing any
non-circular properties of the signals.

Next, the concept of representing the system by a factor graph is introduced
along with the sum-product algorithm for computing marginals on such graphs.
As a generalization of this idea, the region graph is introduced along with a GBP
algorithm for computing region marginals and methods for constructing various
region graph approximations, namely the Bethe and Kikuchi approximations.
In addition, a heuristic method for helping GBP converge in otherwise non-
convergent loopy region graphs is presented, but the drawback of this method
is slower convergence.

To see how this can be used for disjoint detection and decoding, the now well-
known Turbo principle is outlined. The exchange of marginals, called extrinsic
information in the Turbo framework, is a direct result of the underlying Bethe
approximation leading to a manageable complexity. Having established these
methods for detection and decoding, the stage is now set for improving both the
individual components of the Turbo scheme, but also going beyond the Turbo
framework using more advanced graph approximations.



Chapter 3

Approximate Detection and

Decoding

As optimal detection and decoding is most often infeasible due to the exponen-
tially scaling complexity, this chapter describes various methods of approximate
detection and decoding that has been investigated during the research study.

3.1 MMSE Detection and Subtractive Exten-

sions

The MMSE detector is, as the name implies, designed to minimize the mean-
squared error of the detected signal. The underlying idea of this is, that had
the transmitted symbols been Gaussian instead of discrete, the MMSE detector
would be optimal. This is a result of the optimality of processing first- and
second-order statistics in linear Gaussian models with Gaussian noise, see e.g.
[Poo88].

Considering the model in (2.1)1, the starting point is to assume that the trans-

1Noise whitening will be automatically included in the result
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mitted symbols are Gaussian and thus specify a prior on the symbols as

x ∼ CN (µx,Σx) (3.1)

Using the traditional assumption that the transmitted symbols are i.i.d. with
equal probability and unit power, the resulting prior has µx = 0N×1 and Σx =
IN . However, if priors are in fact available as in the case of Turbo equalization,
the MMSE detector will be able to exploit this extra information [TSK02].

Due to the fact that the Gaussian prior is conjugate2, the symbol posterior x̂ is
also Gaussian, i.e.

x̂ ∼ CN (µx̂,Σx̂) (3.2)

with covariance and mean easily found to be given by

Σx̂ =
(
HHΣ−1H + Σ−1

x

)−1

µx̂ = Σx̂

(
HHΣ−1y + Σ−1

x µx

)

= ΣxH
H
(
HΣxH

H + Σ
)−1

(y − Hµx) + µx

(3.3)

As a result of the Gaussian assumption, the posterior mean µx̂ is both the
MAP and MMSE symbol estimate and Σx̂ describe the covariance around this
estimate. As in [TSK02], marginals can be generated from this, but (3.3) pro-
vides the sufficient statistics of the full posterior distribution and not only the
marginals. In fact, the posterior for all detectors should posess a Markov3 struc-
ture as the multipath channel results in HHH being a banded matrix. For this
detector, the posterior will not only be Markov, but Gauss-Markov due to (3.2)
and Σ−1

x̂ is therefore a banded matrix.

When used as a component in Turbo equalization, only posterior marginals
are required as discussed in section 2.4 and it could therefore be argued that
there is no need for the full posterior. However, when incorporating parameter
estimation with detection and decoding, the full posterior may in fact be of use
as discussed in section 4.1.3.

If desired, other linear and non-linear detectors can be formulated based on
this. For example, using Σ = σ2IM and letting σ2 → 0, the Zero-Forcing
(ZF) solution is recovered. Another interesting option is to extend the above
framework so as to provide subtractive interference cancelation schemes such
as the MMSE-DFE with input priors and probabilistic output. Such schemes
typically formulate the linear filtering of (3.3) as a forward and a backward filter
and then subtract interference terms after some temporal delay, but may also
operate across other dimensions, e.g. users in a multiuser scenario. Methods

2A conjugate prior results in a posterior of the same form as the prior
3Assuming the channel structure is not violated by the noise or prior
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such as these are iterative by nature and may actually be viewed as BP on
approximate graphs [BC02]. This view is not explicitly considered further in
this thesis, but prefiltered sphere detection as described in section 3.3 can be
considered a generalization of this idea with interference being subtracted once
a sufficient level of confidence in a symbol has been reached.

3.2 Detection with Whitening

The basic idea of modeling weak interferers as Gaussian noise was introduced
in connection with the system model in section 2.1 and is as such a straight-
forward method of interference rejection. However, more details are required to
understand how practical implementations of this scheme can be constructed.

In the generic system model, the whitening filter F was found by Cholesky
factorization of the inverse noise covariance Σ−1 limited to have a bandwidth
of Nm symbols. However, even for known symbols x, estimating Σ from the
signal ǫ = y−Hx is no easy task as the sample covariance matrix ǫǫH is rank-
one. This problem can be overcome by enforcing a banded Toeplitz structure to
the estimate as the true covariance matrix is known to be of this form [Chr07].
However, the complexity of such inherently iterative schemes may be too great
and alternative methods operating on a smaller, better conditioned covariance
matrix is of interest.

A way of achieving this is to process only a sliding-window of the received signal
at a time and let the Forward/Backward Algorithm (FBA) handle interactions
between the overlapping sections [Chr05b]. Let ǫn

n−Nm
be the sliding-window

at time n from the noise signal ǫ. The length of the take-out window is Nm + 1
symbols and the window moves in steps of one symbol time T . As Nm is typically
small compared to the number of observations, the covariance of ǫn

n−Nm
can be

reliably estimated as

ΣNm
, E

[

ǫn
n−Nm

(
ǫn

n−Nm

)H
]

≃
1

N

N∑

n=1

ǫn
n−Nm

(
ǫn

n−Nm

)H
(3.4)

Furthermore, due to the properties of the sliding-window, the resulting covari-
ance estimate will be well-behaved having a Toeplitz structure (see e.g. [Chr07]
and references therein). In [Chr05b], the FBA is derived for optimal detection
for such a system. The main result of this is that a special whitening filter
can be derived from ΣNm

such that the ordinary FBA without overlap in the
observations can be applied, but due to the memory of the noise the effective
channel length grows from L to L + Nm. However, by employing the smaller
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covariance matrix of (3.4) in the covariance estimation, the band-constraint is
effectively imposed on the covariance matrix itself and not its inverse. Hence,
even assuming perfect covariance estimates, this scheme is not equivalent to
filtering with the true F, but as Nm becomes ”large” compared to the true
bandwidth of the covariance matrix, it will approach the result obtained from
filtering with F. This is a result of Σ−1

Nm
approaching the diagonally centered

sub-matrices of Σ−1 as ΣNm
captures more and more of the structure in Σ. The

Figure 3.1: Relation between Σ and ΣNm
and their respective inverses.

relation between the two covariances Σ and ΣNm
and their respective inverses

is illustrated by figure 3.1 with fully drawn lines indicating Σ and dotted lines
ΣNm

. As previously mentioned in the section on the generic system model,
Σ−1 is only strictly Toeplitz when disregarding the boundary conditions, i.e.
for infinite systems, and the same limitation also applies to the ”sliding” of the
inverse covariance Σ−1

Nm
in the right-hand side of figure 3.1.

To illustrate the potential of the described whitening solution in the presence
of interference, simulations of a GSM link is shown in figure 3.2. The Carrier-
to-Interference Ratio (CIR) is defined as the ratio between the desired signal
power C and the total interference power I =

∑

i Ii. The left-hand side of the
figure shows the BER for a single interferer (K = 2) and the right-hand side
shows performance for two interferers (K = 3) having a 10dB power difference.
The used channel model is the so-called TUx multipath model [3GP] defined for
GSM and resulting in an overall channel of length L = 7. The simulations are
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done using perfect parameter knowledge, i.e. perfect knowledge of channel and
covariance. Although classical sampling theory suggests that the oversampling
factor Nsps does not have to be higher than one [Pro95], it may be advantageous
to use oversampling in practice due to various challenges such as synchroniza-
tion, excess bandwidth in transmit pulseshaping, adjacent channel interference,
etc. The difference in performance in figure 3.2 going from Nsps = 1 to Nsps = 2
is due to the additional channel diversity that may be exploited from the excess
bandwidth of the transmitted signals. Another point that should be stressed
here is the IQ-split of the covariance matrix as introduced in section 2.2. As
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Figure 3.2: BER of a GSM link in the presence of interference, Nm = 3, K ′ = 1,
SNR=40dB.

mentioned earlier, this method is capable of greatly increasing the achievable
diversity for real-valued modulations such as the GMSK4 modulation used in
GSM.

However, the important point here is the difference in performance between dif-
ferent detectors for the same setup. The FBA derived for an AWGN channel,
also known simply as the BCJR algorithm due to the authors of [BCJR74], is
indicated by BCJR in the figure. Due to the AWGN assumption of the de-
tector, performance lacks greatly compared to the two detectors incorporating
knowledge of the noise covariance, i.e. MMSE and whitening. It should also
be noted how whitening consistently outperforms the MMSE detector, but the
drawback of whitening is naturally its potentially much larger complexity due to
using the FBA on a channel of length L̃ = L + Nm. If the increased complexity
is allowed, whitening can potentially outperform any other detector having an
equal or smaller set of discrete signals in its model, e.g. the MMSE, as whiten-
ing performs optimal inference in the discrete set of signals. Another advantage

4The GMSK modulation used in GSM may be well-approximated by a π
2
-BPSK modulation
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of this is, that it does so without the need for additional parameter estimates
compared with the MMSE, e.g. channel coefficients of interfering signals. This
is important in a real-life implementation as reliably estimating channel coeffi-
cients of all interfering users is often virtually impossible. The real strength of
whitening is therefore the capability of scaling the set of discrete signals in the
model all the way from the Gaussian MMSE and to full discrete joint detection.
A natural extension of this is then to further approximate the detection in the
discrete set by the use of suboptimal detectors and thus provide an even more
flexible detection framework. A possible solution for approximate detection in
the discrete set is discussed next.

3.3 Sphere Detection and Decoding

An intriguing method of reduced-complexity approximate inference is by sphere
detection and decoding (see e.g. [HV05a, HV05b, DEGC03, AEVZ02] and ref-
erences therein). The basic idea of this method is to consider all possible trans-
mitted signals as points in a multi-dimensional space and then simply search
for the point closest to the received signal point with the added constraint that
searching is only carried out inside a sphere around the received signal point.
This has the advantage of potentially eliminating a lot of candidates from the
otherwise exhaustive search, but also the risk of not finding any points inside
the sphere if the radius is too small.

To illustrate the principle of sphere detection and decoding, figure 3.3 shows
the detection problem for a frequency-flat real-valued 2x2 MIMO channel using
BPSK modulation. It can be seen how the lattice of possible transmission points
on the left becomes skewed by transmission through the channel matrix H̃. The
task is now to determine the point closest to the received point at the center
of the red circle and thus determining the MLSE symbol solution. This also
illustrates the difficulty of choosing a good radius for the search: If the radius is
reduced much compared to the one in the figure, no points will be found whereas
increasing the radius will include more points in the sphere and thus having a
higher complexity.

Once a given radius of the sphere has been specified, the points inside the sphere
can be determined by a bounding technique relying on a triangular representa-
tion of the channel matrix by either a QR or QL factorization. Let H̃ = Q̃R̃

where Q̃ is unitary and R̃ upper triangular. Due to the AWGN assumption,
the metric to minimize for MLSE is

C (x̂) = ‖ỹ − H̃x̂‖2 = ‖ẏ − R̃x̂‖2 ≤ r2 (3.5)
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with ẏ , Q̃H ỹ and r being the radius of the sphere. This modified system is
effectively determined by the upper triangular matrix R̃ making it possible to
bound one dimension at a time. Taking the 2x2 MIMO system as an example,
we have

C (x̂) =
∥
∥
∥ẏ − R̃x̂

∥
∥
∥

2

=

∥
∥
∥
∥

[
ẏ1

ẏ2

]

−

[
r̃11 r̃12

0 r̃22

] [
x̂1

x̂2

]∥
∥
∥
∥

2

= |ẏ1 − r̃11x̂1 − r̃12x̂2|
2

+ |ẏ2 − r̃22x̂2|
2

(3.6)

Using C (x̂) ≤ r2, we readily determine the bound for x̂2 as

ẏ2 − r

r̃22
≤ x̂2 ≤

ẏ2 + r

r̃22
(3.7)

Next, fixing the first dimension, which in this case is x̂2, allows us to set

(+1,+1)

(+1,-1)

(-1,+1)

(-1,-1)

(+1,+1)

(+1,-1)

(-1,+1)

(-1,-1)

r

ỹ1
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Figure 3.3: Example of sphere detection for a simple real-valued 2x2 MIMO
system with BPSK modulation.

up bounds for the next in the same way and so on until all dimensions have
been included. Although only directly applicable to real-valued modulations5,
the outlined bounding technique has a straight-forward generalization to the
complex-valued domain involving circle intersections instead of a circle inter-

secting a line as in (3.7). Assuming H̃ ∈ CM×N and letting p , rank
(

H̃
)

, the

bounding technique described can only provide bounds for p dimensions and
p ≥ N must therefore apply if all symbol dimensions should be bounded. In the
case of p < N , bounds can only be provided for p dimensions and exhaustive
search in the remaining N − p dimensional subspace is therefore required to
guarantee the MLSE solution.

5This includes complex modulations that may be decomposed as a superposition of orthog-
onal real modulations, e.g. rectangular QAM modulations
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Turning the attention towards predicting the radius of the sphere, we rewrite
(3.5) using ỹ = H̃x + ǫ̃ as

C (x̂) = ‖Q̃H ǫ̃ + R̃ (x − x̂)‖2 ≃ ‖ǫ̃‖2 (3.8)

with the approximation being good when the MLSE solution is close to the
transmitted signal, i.e. at high SNR. As ǫ̃ ∼ CN (0, I), the squared norm is
‖ǫ̃‖2 ∼ X 2

M where X 2
M indicates a Chi-Square distribution with M complex-

valued degrees-of-freedom. Based on this, one could then choose to select the
radius such that there is a certain probability ε that the transmitted point is
not in the sphere, i.e.

P
(
‖ǫ̃‖2 > r2

)
= ε (3.9)

Due to the Chi-Square distribution of ‖ǫ̃‖2, this can be easily accomplished by
look-up tables for the distribution. For high SNR regimes, this method works
very well and huge reductions compared to exhaustive search can be achieved,
but as the SNR decreases so does the pruning of the search space. This is a
result of the sphere constraint becoming less strict as a relatively large radius
is needed to provide a high probability of having any points inside the sphere.

An advantage of the sphere detection and decoding framework described so
far is, that if any points are found inside the sphere, the MLSE solution is
guaranteed to be in this set of points. However, a major drawback is that the
bounds determined as in (3.7) tend to be very loose in the first dimensions. A
natural solution to this problem is to generalize the single radius constraint to
a set of increasing radii [GH03], but this has the drawback of not guaranteeing
the MLSE solution. However, a great reduction in complexity is achievable by
this and the resulting BER can come arbitrarily close to MLSE performance by
accepting a higher complexity.

Interestingly, the multipath model of (2.2) makes sphere detection possible with-
out performing a full QR or QL factorization. The easiest way to illustrate this
is by including the ramp-up and -down parts of the channel matrix in H̃, now
making it block lower triangular instead of upper. To match the structure of H̃,
a QL factorization is therefore considered instead of a QR factorization. If the
block size is one, no QL factorization is required at all, but in general we have

H̃ =
(

Q̃0 ⊗ I
)

L̃ (3.10)

where H̃0 = Q̃0L̃0 is the lag 0 channel matrix of the multipath channel. This
effectively makes it possible to apply the sphere constraint of (3.7) on top of
the Viterbi algorithm and thereby guaranteing the MLSE solution by searching
only inside the sphere [VHM06].

Until this point, only the search for the MLSE solution has been discussed in con-
nection with sphere detection and decoding, but in a coded system a soft-input
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soft-output detector is usually the goal and not the MLSE solution. However,
the desired bit posterior may be approximated from the evaluated points in-
side the sphere [HtB03, VHK04], but if there are too few points evaluated the
approximation can naturally be poor.

3.4 Improved Sphere Detection

This section presents two ideas that may help the understanding and perfor-
mance of current state-of-the-art sphere detectors known to the author. The
ideas should not be thought of as final results that are ready for publication,
but more as potentially fruitful future research paths.

3.4.1 Minimum-phase Prefiltering and the QL Factoriza-

tion

A classical result of Linear Time-Invariant (LTI) systems is the spectral fac-
torization theorem stating that any spectrum can be factorized into minimum-
phase components [SK01]. The finite-length equivalent of this is given by the
Cholesky factorization of any covariance matrix [ADC95]. Further, the spectral
factorization for LTI systems has an extension stating that any filter may be
factorized into an all-pass filter and the minimum-phase filter given by spec-
tral factorization. This is a crucial result in connection with Reduced-State
Sequence Estimation (RSSE), as it can be shown that a minimum-phase filter
has the highest possible energy concentration in the first taps [EQ88, DHH89].
A common trick is therefore to filter the incoming signal with the conjugate
of the all-pass filter associated with the channel, resulting in a minimum-phase
channel. As the energy is concentrated in the first taps, the minimum-phase
characteristic gives the best possible starting point for taking early decisions.
However, the generalization of this result to finite-length systems appear to be
unknown6 and this section will try to argue that such an extension exists as
given by the QL factorization of the channel matrix.

The channel matrix of interest here has a structure as given in (2.2), including
the ramp-up and -down parts if desired. To simplify things, a block-size of 1
is assumed to recover the classical LTI system, but all arguments have natural
block-level extensions allowing for larger block-sizes. The system size is assumed
H ∈ CM×N with a channel length of L symbols and M = N + L − 1. The QL

6At the time of writing, the author has not been able to find any references on this.
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factorization of this channel is uniquely given by

H = QL (3.11)

where Q ∈ CM×M is unitary and L ∈ CM×N is the lower triangular positive
definite Cholesky factor, i.e.

HHH = LHL (3.12)

Due to boundary conditions, the matrix HHH is not guaranteed to be Toeplitz,
but the finite channel length limits its to bandwidth L and the same is therefore
also true for L. Letting N → ∞ while keeping L fixed, it can be shown that
the columns (or rows) of L must be shifted versions of each other and is exactly
given by the spectral factorization [ADC95]. An intuitive argument for this is
that any given column interacts in the same way with its neighboring columns as
the boundary effects have vanished. Turning the attention to the all-pass filter,
the matrix equivalent of this must be a unitary matrix as this is the only ”filter”
leaving the spectrum/covariance unchanged. As Q is the only unitary matrix
relating H and L, this must represent the all-pass filter associated with the
spectral factorization. Again, for N → ∞ the argument of vanishing boundary
effects can be invoked and all columns of Q must therefore be shifted versions of
each other and tend to the all-pass filter. For finite systems, boundary conditions
will influence the result and Toeplitz structures are therefore not guaranteed.
However, for large enough systems, results will approach their asymptotic values
in the middle of the system where boundary conditions are less significant.

This apparent connection between minimum-phase prefiltering and the QL fac-
torization of convolutive channels makes it possible to directly link the area of
minimum-phase prefiltered RSSE to that of sphere detection. Through the con-
nection with the QL factorization, a theoretically sound method of exploiting
minimum-phase prefiltering in sphere detection can be constructed generating
tighter bounds. Hence, sphere detection on multipath channels can be seen to
be very similar to that of RSSE with the difference being that decisions are not
made until a given degree of certainty has been achieved as determined by the
radii used. An intriguing idea is then to construct a unifying framework of the
two worlds by combining the pruned state-space search of sphere detection with
the decision-feedback world of RSSE and related methods, see e.g. [BC02]. The
author believes this to be a fruitful topic of future research.

3.4.2 Cluster Sphere Detection

At present, the sphere detection framework appear to be an attractive can-
didate for high to medium SNR regimes, but may fail to provide the desired
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performance for low to medium SNR scenarios when limited to a realistic com-
plexity. A major reason for this failure can be seen from the Singular Value
Decomposition (SVD) of the channel matrix

H̃ = ŨΣ̃ṼH (3.13)

where Ũ = [ũ1, · · · , ũM ] ∈ CM×M and Ṽ = [ṽ1, · · · , ṽN ] ∈ CN×N are uni-
tary matrices holding the left and right singular vectors of the channel and the
diagonal matrix Σ̃ ∈ RM×N contains the singular values [σ̃1, · · · , σ̃m], where
m , min ({M,N}). The singular values are non-negative and in decreasing
order, i.e. [σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃m]. Multiplying symbols onto the channel matrix
can therefore be expressed as

H̃x = ŨΣ̃ṼHx =

m∑

i=1

(
σ̃iṽ

H
i x
)
ũi (3.14)

where each term of the sum in (3.14) is a subspace component of the overall
result. The strength of each of these subspace components is determined by the
projection of x onto ṽi scaled by σ̃i. Hence, if σ̃2

i is small compared to the noise
variance, which in this model is unity, little information can be carried by this
subspace or sub-channel [Tel99]. Let signal points xx and xy have difference

vector dx,y , xx − xy. Assuming that dx,y has a large portion of its energy
in directions with small singular values, the signal points will then be clustered
close to each other relative to the noise standard deviation.

Figure 3.4 illustrates this problem by letting vectors h̃1 and h̃2 approach each
other and thereby reducing σ̃2. Selecting the radius based on the noise statistics
is therefore likely to give a sphere that includes both points close to the center
as they are ”close” relative to the selected radius. As both points are almost
equally likely to have produced the observation, this artifact is therefore not a
failure in the radius selection, which correctly predicts the set of points that
must be evaluated to get an accurate posterior. However, for multi-dimensional
systems with higher-order modulations, these clustering effects are problematic
due to the near-exhaustive search that inherently must be carried out inside
such a cluster of candidate points in order to produce an accurate posterior.

A possible solution to this problem is to approximate clusters of points as being
Gaussian instead of consisting of a number of discrete points. Such an ap-
proximation would have several appealing properties, the first being that if no
Gaussian approximation is made, the sphere detection framework described so
far is recovered. Furthermore, for SNR → ∞ no reasonable system exists that
will experience the clustering effect and traditional sphere detection is therefore
also recovered here. For SNR → 0, only a single Gaussian cluster exists result-
ing in the Gaussian approximation of (3.3), which is known to be asymptotically
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optimal [PV97]. In between these two extremes, the approximation is a hybrid
of discrete and Gaussian components depending on the criteria used for defining
the clusters.

(+1,+1)

(+1,-1)

(-1,+1)

(-1,-1)

r ỹ1

ỹ2

Figure 3.4: Illustration of sphere detection for a poorly conditioned channel
with low to medium SNR.

Let Xn denote the set of signal points included in the n’th Gaussian cluster
given by its mean µn ∈ CN and covariance Σn ∈ CN×N . Assuming that Ncl

clusters exist, then X ,
⋃Ncl

n=1 Xn is the collection of all signal points included
through Gaussian clusters. The posterior of this approximate system will then
have terms coming from the discrete signal points and terms from the Gaussian
components, i.e. the posterior is of the form

p (x̂ | ỹ,θ) ∝ p (ỹ | x̂,θ) p (x̂)

= p (ỹ | x̂,θ)




∑

x̂d∈ΩN\X
P (x̂d) δ (x̂ − x̂d) +

Ncl∑

n=1

Znp (x̂ | µn,Σn)





(3.15)

where δ (·) is the Kronecker delta function. The left-most sum in (3.15) is the
discrete contribution to the posterior and this part should be well-approximated
by the already described sphere detection framework by searching over the dis-
crete space ΩN\X . The terms in the right-most sum of (3.15) are the Gaussian
components given by

p (x̂ | µn,Σn) = |πΣn|
−1e−(x̂−µn)HΣ−1

n (x̂−µn) (3.16)

The normalization constant Zn in (3.15) scales each individual Gaussian com-
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ponent so that integrating over it recovers the associated discrete prior, i.e.

Zn =
∑

x̂d∈Xn

P (x̂d) (3.17)

This makes sure that no matter the approximation used, the overall hybrid prior
is proper and integrates to one.

The approximation of (3.15) assumes knowledge of the Gaussian clusters and
determining these while keeping the complexity low is an open problem of this
method. Clearly, simply evaluating all points is not an option as this would
be equivalent to exhaustive search. Returning to the difference vector dx,y, we
define the difference set D such that dx,y ∈ D if

‖H̃dx,y‖
2 = ‖R̃dx,y‖

2 ≤ r2
D (3.18)

Here, r2
D is the maximum squared distance allowed inside a single cluster and

should be chosen based on the noise statistics so that there is ”little” impact of

the approximation, e.g. r2
D ≃ E

[

‖ǫ̃‖2
]

= M . The condition of (3.18) is a sphere

detection problem and the set D can therefore be determined efficiently by this
method. However, performing the clustering based on D and determining the
mean and covariance of each of these clusters in an efficient manner is still an
open problem of this approximate method.

3.5 Approximate Joint Detection and Decoding

using GBP

Until now, this chapter has dealt only with detectors that can be employed
in a Turbo-based receiver and not considered any other approximations to the
problem of joint detection and decoding. However, based on the region-based
free-energy approximations described in section 2.3.2, this section will present
methods for performing approximate joint detection and decoding of convolu-
tional coded signals over multipath channels, i.e. the system model shown in
figure 2.1. As the well-known concept of Turbo equalization for such a prob-
lem is equivalent to the Bethe approximation, the basic idea is to use a more
advanced graph approximation to hopefully provide better performance with-
out incurring the exponential complexity of an exhaustive search. A similar
approach was taken in [PA06] for joint detection and decoding, but instead of
convolutional codes, LDPC coding was considered.
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3.5.1 The Modified Cluster Variation Method

The basic concept of this method is based on the cluster variation method for
constructing a Kikuchi approximation as described in section 2.3.5. An example
of a region graph generated by this method for the system of interest is shown
in figure 3.5. Here, the top-level regions in R0 each contain one observation and

Figure 3.5: Region graph found by the cluster variation method for convolu-
tionally coded signal over multipath channel.

the corresponding set of information bits required for conditional independence
of the observation, e.g. ỹ1 is given by the set of information bits I0,1. Naturally,
the sets of information bits associated with each of the observations depend on
the rate of the code, the interleaver and the length of the channel, but given
these parameters the graph is deterministic and can be predetermined. The
next levels of regions are then found by the cluster variation method until no
regions intersect in the final K’th layer. The counting numbers for regions in
R0 are all set to one and the remaining counting numbers are found by (2.27),
guaranteeing a valid region graph. Due to the Markov structure in both the
convolutional code and the channel, the set-size of regions in the top-level is no
larger than NcLQ, i.e. |I0,j | ≤ NcLQ for all j, where Nc is the constraint length
of the code, L is the length of the channel in symbols and Q is the number of
bits per symbol. Furthermore, as a result of the cluster variation method using
intersections to form regions, we have

|Ii,j | ≤ NcLQ − i ,∀j (3.19)

The maximum number of levels in the region graph is therefore NcLQ, i.e.
K ≤ NcLQ − 1. Only counting the top-level regions, this method will there-
fore have a complexity in the order of O(r−12NcLQ) per information bit per
iteration whereas the complexity of a Turbo equalization iteration would be
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O(r−12Nc + 2LQ). Due to the many connections between layers, the region
graph will generally be far from loop-free and the computed beliefs are therefore
only approximations. However, by merging of top-level regions this approximate
joint detection and decoding scheme can scale all the way to exact inference, but
as the complexity of the GBP algorithm scales exponentially in the region size,
doing so results in a greatly increased complexity culminating in an exhaustive
search when all top-level regions are merged into one.

Figure 3.6: Example of a loopy region graph generated by the modified cluster
variation method.

As mentioned in section 2.3.3, the beliefs should be constrained in the sense
that marginals should be consistent no matter what region they are derived
from. For this to be possible, the region graph must allow regions containing
the same variables to communicate their intersection, i.e. they must have at
least an indirect connection with the intersection being a subset. Let’s consider
the example in figure 3.6 where the regions in R1 and R2 are found according to
the cluster variation method. However, the right-most top-level region will not
be connected at all for this method as its intersection with the other top-level
regions is a sub-region of a region in R1 and the marginal of i2 will therefore not
be consistent. The cluster variation method is therefore modified to tackle this
problem by connecting any unconnected variables to regions at lower levels, or
create such required regions as necessary, so that communication can take place.
We will call this the modified cluster variation method and for the example, us-
ing this modified method will result in the creation of the dotted connection. It
seems obvious that the unconnected region should be connected in this simple
example, but in the general case one should realize that any unconnected vari-
able should be connected to other regions involving the same variable, either
directly or indirectly. When using this modified cluster variation method, the
counting numbers are found as usual and in the example, counting numbers
associated with each region are shown next to that region.
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Figure 3.7: Comparison of LLRs for the modified cluster variation method and
Turbo equalization, SNR = 3dB, w1 = 0.1

An important observation from figure 3.6 is that the region graph has a loop and
that the resulting marginals are therefore not exact. For this simple example,
it is possible to simply merge the regions in R1 resulting in a loop-free region
graph, but this is not a general solution as this results in an exponentially
increasing complexity. Generally, region graphs constructed by this method will
have many loops as can be seen from figure 3.5. Unlike the graph approximation
underlying the Turbo principle, the resulting loop length from using this method
does not increase with system size as this will simply produce a wider graph in
figure 3.5. Hence, increasing the system size will not make it more probable that
GBP converges and heuristic loop-correction as proposed in section 2.3.6 must
instead be relied upon to make the GBP algorithm convergent. Unfortunately,
this results in slower convergence, which is only practical up to a certain point
and it therefore seems that this method is not a generally viable solution.

However, to show that the method does in fact work when employing sufficient
loop-correction, a simple system using a rate r = 1

2 convolutional code with
generator polynomial g(D) = [1, 1 + D] is considered resulting in a constraint
length of Nc = 2. The system transmits blocks consisting of Ni = 12 information
bits and random interleaving is employed. This is then mapped onto BPSK
symbols and transmitted over a multipath channel of length L = 2 given by
h = [1, 1√

2
]T . For this system, loop-correction using the convex IIR filtering

in (2.28) with w1 = 0.1 seems to provide convergence with probability one. In
figure 3.7, the LLRs computed by the GBP algorithm on the region graph found
by the modified cluster variation method is plotted against the exact value found
by exhaustive search for 500 blocks. Also shown for comparison is the result
found by traditional Turbo equalization for the same realizations of interleavers
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and observations and it can be seen that GBP generally improves the quality of
the marginals compared to that achieved by Turbo equalization. Although not
shown here, the LLRs derived from GBP generally also result in a BER closer
to that of the exact result, but marginals being closer to the exact result is in
itself a desired quality, e.g. for parameter estimation as discussed in chapter 4.

It would be interesting to try out this method for larger systems having higher
constraint and channel lengths, but as the complexity scales as O(r−12NcLQ)
this is only feasible for small values of NcLQ. However, the perhaps biggest
obstacle to such an approach seems to be the slow convergence coming from the
loop-correction required to guarantee convergence. However, using the cluster
variational method to form the region graph appear to yield good results for
some special detection problems [SWS04].

3.5.2 The Generalized Turbo Principle

Inspired by the failure of the modified cluster variation method due to an exces-
sive amount of short loops in the region graph, a natural way of avoiding such
loops is to take a closer look at the Turbo principle. Focusing on Turbo equal-
ization, the structure of the underlying graph approximation can be illustrated
as shown in figure 3.8. Here, the lower and upper Markov chains represent
respectively the channel and convolutional code, with the crossing connections
representing the interleaved exchange of extrinsic information. An important
property of this structure is that for random interleaving, the probability of
short loops decreases with the system size, i.e. the interleaver length [XES01].
This is a general property of the Turbo principle and is one of the main reasons
why this framework has been so successful. However, for smaller sized systems
the over-counting resulting from loop-feedback can result in inferior performance
and non-convergence and it is for such systems that we will try to improve upon
the Turbo principle.

In fact, under the assumption of random interleaving, the graph structure
asymptotically approaches a tree [AV01, XES01] and the Turbo principle is
therefore asymptotically optimal. For finite systems, loops of finite length will
exist and it is for such systems that we will try to improve upon the Turbo
principle.

Unlike the modified cluster variation method where the notion of Markov chains
is lost, we will now explicitly preserve the two Markov chains, i.e. as given
by the channel and convolutional code. In fact, the structure in figure 3.8
can be viewed as two Markov chains which intersect each other in a manner
determined by the interleaver. The Turbo principle then lets these two Markov
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chains exchange single-variable beliefs in the form of extrinsic information at
the intersection points. The general idea is now to modify the exchange of
information so that not only single-variable beliefs are exchanged, but entire
region beliefs. This idea of exchanging region beliefs between components, in
this example between Markov chains, readily generalizes to any scheme where
the Turbo principle can be employed and will therefore be called the generalized
Turbo principle. Random interleaving in such a system will scale the loop-length
with the system size in the same manner as for the ordinary Turbo principle
and thus providing the same desirable features leading to a high probability
of convergence. In the framework of region graphs, the graph approximation
underlying such an approach can be seen to be a junction graph as the exchange
of information is no longer accomplished by single-variable beliefs, but by multi-
variable beliefs [YFW05]. In essence, one thereby exchanges not single-variable
beliefs (or scalar-valued extrinsic information) between components, but multi-
variable beliefs (or vector-valued extrinsic information) over the defined regions.

Detection

Decoding

Interleaving

Figure 3.8: Illustration of the underlying graph structure of Turbo equalization.

For the Turbo equalization system considered, such a method should be able
to capture more of the dependency between the two Markov chains. To ac-
complish this, regions should ideally capture the full intersection between the
Markov chains as represented by a maximum of NcLQ information bits leading
to a complexity of O(r−12NcLQ) instead of O(r−12Nc +2LQ) for ordinary Turbo
equalization. However, an interesting option is to only capture the strongest cou-
plings between the Markov chains and thus establishing a framework in which
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one can tradeoff performance for lower complexity. In such a framework, con-
straining the exchange of beliefs to being single-variable beliefs recovers the
traditional Turbo principle.

Setting up the region graph starts out as in the cluster variation method, i.e.
defining regions in R0 to be the observations and associated information bits.
Here it should be noted that as in the cluster variation method, the number
of information bits required in each region in R0 is a maximum of NcLQ bits.
The next level R1 will be defined so as to handle the channel interactions as can
be accomplished by choosing regions to be the intersections between any two
neighboring regions in R0, i.e. in the time-domain Markov chain. Similarly, re-

Figure 3.9: Region graph structure for generalized Turbo equalization.

gions in R−1 represent the convolutional code Markov chain and are also found
as intersections between any two neighboring regions in R0. However, neigh-
boring regions should here be seen from the convolutional code Markov chain
point-of-view and determining which regions are neighbors of a region is there-
fore uniquely given by the code rate and the interleaver. An illustration of this
method of constructing the region graph is shown figure 3.9. Here, the definition
of regions in R−1 is not explicitly shown due to regions being determined by
intersections of regions in R0 as given by the interleaver and code rate, making
an illustration of this difficult. In addition, care must be taken not to include a
given coupling in both R1 and R−1, resulting in a direct feedback-effect in the
graph and thereby guaranteeing that the GBP algorithm will be non-convergent.
Furthermore, as in the modified cluster variation method, marginals should be
made consistent by requiring communication between regions containing the
same variable. If required, this can be achieved by adding appropriate regions
in e.g. R−1 and the region graph will therefore be given by the set of regions
R = R0 ∪R1 ∪R−1 with counting numbers given by (2.27). Using the notation



44 Approximate Detection and Decoding

−20 −10 0 10 20
−20

−15

−10

−5

0

5

10

15

20

Exact LLR

G
B

P
 L

LR

−20 −10 0 10 20
−20

−15

−10

−5

0

5

10

15

20

Exact LLR

T
ur

bo
 L

LR

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

Delta LLR

A
pp

ro
x.

 P
D

F

Exact−GBP

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

Delta LLR

A
pp

ro
x.

 P
D

F

Exact−Turbo

Figure 3.10: Comparison of traditional and generalized Turbo equalization,
SNR = 3dB, w1 = 0.5

in [YFW05], the resulting region graph is a junction graph with large regions
RL = R0 and small regions RS = R1 ∪R−1. The counting numbers of regions
in RL must be one due to the fact that every region contains at least one factor
node. The counting numbers of regions in RS are given by cR = 1 − dR where
dR is the number of neighboring large regions, which for this type of junction
graph is always 2, i.e. cR = −1 for R ∈ RS .

As for the modified cluster variation method, significant book-keeping is re-
quired to construct the appropriate region graph for a given system, but as
real-life systems are likely to use fixed coding schemes, the graph structure can
be predetermined and put into a look-table. In figure 3.10, the LLRs achieved
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for the same setup as in the modified cluster variation method is shown including
an approximate distribution of the LLR errors from the GBP algorithm and the
traditional Turbo principle. From this it can be seen that the generalized Turbo
method provides similar results as achieved with the modified cluster variation
method, but due to the longer loops in the region graph much less relaxation
using the convex IIR method is required for convergence. In fact, convergence
becomes less and less of a problem as the system size grows as is also the case for
the traditional Turbo principle. The generalized Turbo principle was conceived
very late in the research study and as a result of this, only the simulation in
figure 3.10 is included here. However, the author firmly believes in the general-
ity of this principle and hopes that this framework will provide a platform for
future research.

3.6 Summary

This chapter has outlined several methods for approximate detection and decod-
ing. First, the general form of linear detection is outlined as the full posterior
provided by this may be of interest, e.g. for parameter estimation. Next, a
practical method for performing whitening of noise/interference is described,
providing flexibility and robustness to the remaining discrete signal set. Fur-
thermore, the sphere detection and decoding framework is presented and a pre-
viously unknown connection between the QL factorization of the channel matrix
and minimum-phase prefiltering is introduced. This establishes an unrecognized
coupling between sphere detection and traditional RSSE, where sphere detec-
tion can be seen as a dynamic variant of RSSE with decisions taken only when a
specified level of certainty has been achieved. Finally, the concept of using GBP
on region graphs for approximate joint detection and decoding in systems with
convolutional codes has been introduced. A modified cluster variation method
is presented for this, but an excessive number of short loops in the graph makes
convergence troublesome. As a result of this, the Turbo principle’s method of
generating long loops in the underlying graph is reused in a region graph setting.
This gives rise to a generalized Turbo principle were region beliefs are exchanged
between components instead of single-variable beliefs, as is the case for the tra-
ditional Turbo principle. Due to time constraints it has not been possible to
fully investigate the proposed method by simulations before the thesis deadline,
but a simple simulation is provided to indicate the improved performance offered
by such an approach.
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Chapter 4

Parameter Estimation

For realistic communication systems, parameters assumed known until now must
be estimated. In noisy channels, parameters can never be perfectly estimated
and this chapter describes how parameter estimation in the generic system model
can be integrated with the probabilistic detection and decoding framework pre-
sented in previous chapters. The content of this chapter is based primarily on
the work published in [CL06, Chr07].

4.1 The Variational Bayesian EM Framework

The Variational Bayesian EM-algorithm (VBEM) is a recent [Mac97, Att00,
BG03, Bea03] generalization of the classical EM-algorithm [DLR77, NH99] to
a Bayesian setting. What this means is that we wish to estimate the posterior
distribution of the model parameters instead of simply determining its maxi-
mum, as targeted by the EM-algorithm, and use this additional information to
update the symbol posterior in the next iteration. Such an approach can have
several beneficial properties as the estimated uncertainty of the parameter esti-
mate is taken into account. Parameter estimation based on point-estimates, as
performed by the EM-algorithm for e.g. channel estimation, seems fairly well-
known in the communications society whereas generalizations of this taking
uncertainty into account appear little known. In [TM03], the correct strategy
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of averaging the likelihood function over the distribution of the channel esti-
mate is considered, but the complexity of the resulting method seems unfeasible
in general as the Markov structure of the channel is destroyed. The EM- and
VBEM-algorithms avoid this problem by a bounding technique, which in turn
averages over the log-likelihood function instead.

In a truly Bayesian framework, hidden variables and parameters are considered
random variables with a given distribution that should be integrated out to
produce the marginal likelihood of the model as

p (y) =

∫

p
(

y, x̂, θ̂
)

dx̂dθ̂ (4.1)

with x̂ and θ̂ being the unknown symbol and parameter set respectively. How-
ever, for most interesting models the integral in (4.1) is unfeasible and approx-
imations must be made instead. Using Jensen’s inequality, we can lower-bound
the marginal log-likelihood as

ln [p (y)] = ln





∫

q
(

x̂, θ̂
) p
(

y, x̂, θ̂
)

q
(

x̂, θ̂
) dx̂dθ̂





≥

∫

q
(

x̂, θ̂
)

ln




p
(

y, x̂, θ̂
)

q
(

x̂, θ̂
)



 dx̂dθ̂

(4.2)

where q
(

x̂, θ̂
)

is a free distribution used to approximate the posterior p
(

y, x̂, θ̂
)

.

Maximizing the lower-bound w.r.t. the free distribution q
(

x̂, θ̂
)

yields the exact

posterior and determining this requires an exhaustive search over the joint dis-
tribution. A solution to this difficult problem is offered by constraining the free
distribution to factorize in a convenient way and then maximize the lower-bound
w.r.t. one component at a time. We know from section 3 how to compute the

symbol posterior given the parameters, i.e. p
(

x̂ | y, θ̂
)

, and classical estimation

theory tells us1 how to determine the parameter posterior given the transmitted

symbols, i.e. p
(

θ̂ | y, x̂
)

. A natural choice of factorization is therefore between

the symbols and the parameters by requiring

q
(

x̂, θ̂
)

= qx̂ (x̂) qθ̂

(

θ̂
)

(4.3)

This factorization provides the intriguing solution of maximizing the lower-
bound w.r.t. one of the distributions while fixing the other and vice versa. The

1The is only strictly true for noise known to be AWGN
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individual maximization steps are given by the associated fixed-point equations
found by taking the functional derivatives and equating to zero [Att00, Bea03].
The general result of this is that all but the component currently being updated
should be integrated out in the log-domain as

V BE : qx̂ (x̂) ∝ e
〈ln[p(y,x̂|θ̂)]〉

q
θ̂
(θ̂)

V BM : qθ̂

(

θ̂
)

∝ p
(

θ̂
)

e
〈ln[p(y,x̂|θ̂)]〉

qx̂(x̂)

(4.4)

This effectively eliminates the notion of the E- and M-steps in the EM-algorithm
as both are now expectations, but to maintain legacy the hidden variable and
parameter updates are often called the VBE- and VBM-step respectively. If the

parameter posterior qθ̂

(

θ̂
)

is further constrained to be a delta function, the EM-

algorithm is recovered and the VBEM-algorithm can therefore be considered a
generalization thereof.

From a communications point of view, this method boils down to performing
the detection and decoding separately from the parameter estimation and then
iterate between the two. A nice property of this approximation is that any
detection and decoding scheme designed for known parameters can be utilized,
but a potential problem is that the VBEM-algorithm can only guarantee con-
vergence to a local maximum of p (y). Hence, there is a risk of getting stuck
in a local maximum that may be far from optimal and initialization of the
VBEM-algorithm is therefore equally important as for the EM-algorithm. In
the communication systems of interest, this issue is handled by a training set,
which hopefully starts the VBEM-algorithm sufficiently close to the optimum.

Until now, the VBEM-algorithm has been described in a very broad sense.
Narrowing the focus to the system model of section 2.1, we have2

y = Hx + ǫ

= Xh + ǫ
(4.5)

with the lower equation being beneficial for channel estimation as the convolu-
tional structure in H has been put into the symbol matrix X instead. In this
manner, h fully describes H and similarly for x and X. The true noise covari-
ance is given by Σ , E

[
ǫǫH

]
and the parameter set for this model is therefore

θ = {h,Σ}. However, there is currently no known general non-iterative method
of jointly estimating ĥ and Σ̂ for known symbols and the free distribution is
therefore further constrained to factorize as

q
(

x̂, θ̂
)

= qx̂ (x̂) q
ĥ

(

ĥ
)

qΣ̂

(

Σ̂
)

(4.6)

2The model used here is based on y as the whitened signal ỹ is undefined when the noise
covariance is unknown
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The overall VBEM-algorithm for this system model will therefore consist of a

VBE-step
Detection and decoding

VBM-step

Channel 

Estimation

Covariance 

Estimation

Figure 4.1: The individual components of the VBEM-algorithm for the system
model.

VBM-step for parameter estimation, which consist of the channel and covariance
estimators, and a VBE-step for symbol estimation. This separation into three
separate components is illustrated in figure 4.1, where the distribution being
updated is shown exiting the block updating it. The complexity of the VBEM-
algorithm is comparable to that of the EM-algorithm, but tends to require more
iterations to fully converge.

4.1.1 The VBM-step

First considering the channel estimate, it is shown in [CL06] that having the

Gaussian prior h ∼ CN (µh,Σh) results in a Gaussian posterior ĥ ∼ q
ĥ

(

ĥ
)

=

CN
(
µ

ĥ
,Σ

ĥ

)
due to the prior being conjugate. The covariance and mean of this

Gaussian posterior is given by

Σ
ĥ

=

(〈

X̂H
〈

Σ̂−1
〉

q
Σ̂(Σ̂)

X̂

〉

qx̂(x̂)

+ Σ−1
h

)−1

µ
ĥ

= Σ
ĥ

(〈

X̂
〉H

qx̂(x̂)

〈

Σ̂−1
〉

q
Σ̂(Σ̂)

y + Σ−1
h µh

)
(4.7)
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where, like for the linear detector in section 3.1, the mean µ
ĥ

is both the MAP
and MMSE channel estimate due to the factorization of (4.6). The posterior

average
〈

X̂
〉

qx̂(x̂)
is simply the posterior mean of the symbols and it can there-

fore easily be found from qx̂ (x̂). The second-order moment in (4.7) is a little
more complicated and will be discussed in section 4.1.3.

For ML noise covariance estimation, a necessary and sufficient statistic is the
sample covariance matrix

Ŝǫ̂ ,

〈

ǫ̂ǫ̂H
〉

qx̂(x̂)q
ĥ(ĥ)

=

〈(

y − X̂ĥ
)(

y − X̂ĥ
)H
〉

qx̂(x̂)q
ĥ(ĥ)

=

yyH − yµH

ĥ

〈

X̂
〉H

qx̂(x̂)
−

(

yµH

ĥ

〈

X̂
〉H

qx̂(x̂)

)H

+
〈

X̂H
(
µ

ĥ
µH

ĥ
+ Σ

ĥ

)
X̂
〉

qx̂(x̂)

(4.8)

where the following relations for the Gaussian channel estimate have been ex-
ploited in (4.8)

〈

ĥ
〉

q
ĥ(ĥ)

= µ
ĥ

〈

ĥĥ
H
〉

q
ĥ(ĥ)

= µ
ĥ
µH

ĥ
+ Σ

ĥ

(4.9)

As mentioned in section 3.2 in connection with whitening-based detection, a
major problem with the formulation of (4.8) is that it may be ill-conditioned,
possibly even rank-one. In [Chr05b], this problem is circumvented by breaking
the covariance down as described in section 3.2, but another and potentially
better method is to exploit the known structure of the noise covariance to pro-
vide a constrained estimate. Such a method capable of operating directly on
(4.8) will be described in section 4.2.

Due to the inverse-Wishart conjugate prior Σ ∼ CW−1 (Nν , NνSΣ) applied
for the noise covariance matrix, the required moment of the noise covariance
posterior is given by3

〈

Σ̂−1
〉

q
Σ̂(Σ̂)

= (No + Nν)
(

NoŜǫ̂ + NνSΣ

)−1

(4.10)

and the inverse-Wishart conjugate prior can therefore be interpreted as in-
serting Nν virtual noise observations {ǫν}

Nν

ν=1 having sample covariance SΣ ,

N−1
ν

∑Nν

ν=1 ǫνǫH
ν with Nν = 0 recovering the ML solution. As a result of this, it

is only the channel estimate that needs to have a full distribution as only (4.10)

3Here the generalization to No independent vector observations is considered
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is required to produce the whitened signal ỹ , F̂y where F̂ is the Cholesky
factor of (4.10). The VBE-step is therefore expressed in terms of the whitened
system model ỹ , F̂X̂ĥ+ F̂ǫ̂ = F̂Ĥx̂+ F̂ǫ̂ as this eliminates the need for a full
noise covariance distribution.

4.1.2 The VBE-step

The only missing component of the VBEM-algorithm is now the symbol estima-
tion, which is traditionally performed by detection and decoding schemes such
as those described in chapter 3, but the VBM-step provides a Gaussian channel
distribution and this should be exploited. For all detectors, the symbol posterior
coming from the VBE-step can be expressed as

qx̂ (x̂) ∝ e
−〈f(ỹ,x̂,F̂,ĥ)〉

q
ĥ
(ĥ)

+ln[p(x̂)]
(4.11)

where f
(

ỹ, x̂, F̂, ĥ
)

is a function specific to the detector used and p (x̂) is the

symbol prior. Most detectors rely on a negative log-likelihood term similar in
structure to that used in optimal linear and non-linear detection, i.e.

f
(

ỹ, x̂, F̂, ĥ
)

= ‖ỹ − F̂X̂ĥ‖2 (4.12)

but some detectors may e.g. brake it up into smaller independent sums resulting
in approximate detection.

The interesting point here is, that the log-likelihood function should be averaged
over the distribution of the channel estimate yielding

〈

f
(

ỹ, x̂, F̂, ĥ
)〉

q
ĥ(ĥ)

= ‖ỹ − F̂X̂µ
ĥ
‖2

︸ ︷︷ ︸

EM

+ tr
{

X̂HF̂HF̂X̂Σ
ĥ

}

︸ ︷︷ ︸

Penalty

(4.13)

with the penalty term being a positive quantity added due to the uncertainty of
the channel estimate. The expression in (4.13) can be used directly in detectors
based on discrete state-space models, such as the FBA, as modified metrics.

Considering detectors based on Gaussian symbol assumptions, the matrix chan-
nel formulation of the negative log-likelihood is desired, resulting in

〈

f
(

ỹ, x̂, F̂, ĥ
)〉

q
ĥ(ĥ)

= ‖ỹ − F̂µĤx̂‖2

︸ ︷︷ ︸

EM

+ x̂HΣĤ,F̂H F̂x̂
︸ ︷︷ ︸

Penalty

(4.14)

Here, µĤ ,

〈

Ĥ
〉

q
ĥ(ĥ)

is the posterior mean of the channel matrix and ΣĤ,F̂H F̂

is the covariance of the channel matrix defined in section 4.1.3. Due to the mod-
ification of the log-likelihood function, the resulting Gaussian symbol posterior
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qx̂ (x̂) = CN (µx̂,Σx̂), traditionally given by (3.3), is now specified by

Σx̂ =
(

µH

Ĥ
F̂HF̂µĤ + ΣĤ,F̂H F̂ + Σ−1

x

)−1

µx̂ = Σx̂

(

µH

Ĥ
F̂HF̂y + Σ−1

x µx

) (4.15)

As a result of this, the modified MMSE detector given by (4.15) accounts for
the uncertainty in the channel estimate in much the same way as a zero-mean
prior is taken into account.

4.1.3 Posterior Second-Order Moments

In the VBEM-algorithm, the use of posterior second-order moments are com-
mon, i.e. terms such as

〈

X̂HAX̂
〉

qx̂(x̂)
〈

ĤHAĤ
〉

q
ĥ(ĥ)

(4.16)

Here A is an arbitrary covariance-like matrix and matrices X̂ and Ĥ are struc-
tured convolution matrices with the upper term of (4.16) being present in the
VBM-step and the lower in the VBE-step, if linear detection is used. As the
two share the same structure, only the top one will be examined, but results
will also apply to the lower one.

Defining the posterior mean of the matrix as µX̂ ,

〈

X̂
〉

qx̂(x̂)
makes it possible

to rewrite (4.16) as

〈

X̂HAX̂
〉

qx̂(x̂)
= µH

X̂
AµX̂ +

〈(

X̂ − µX̂

)H

A
(

X̂ − µX̂

)〉

qx̂(x̂)
︸ ︷︷ ︸

Σ
X̂,A

(4.17)

The left-most part of (4.17) comes from the point-estimate µX̂ and the right-
most term ΣX̂,A is the covariance expressing the uncertainty of the estimate in
the space spanned by A. The covariance matrix ΣX̂,A can be constructed from
linear combinations of scalar covariances having the form

σi,j ,

〈

(x̂i − µx̂i
)
(
x̂j − µx̂j

)∗〉

qx̂(x̂)
(4.18)

If qx̂ (x̂) = CN (µx̂,Σx̂), then clearly σi,j = [Σx̂]i,j . On the other hand, if
qx̂ (x̂) is discrete with xi ∈ Ω, then computing the covariance in (4.18) consists
of averaging over the |Ω|2 possible values of the posterior distribution.
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A point that should be stressed here is the option of using marginal posteriors
in (4.18), i.e. fully factorized posteriors of the form

qx̂ (x̂) =
∏

i

qx̂i
(x̂i) (4.19)

Using this approximation simplifies (4.18) to

σi,j =
〈

|x̂i − µx̂i
|2
〉

qx̂i
(x̂i)

, i = j (4.20)

and zero for i 6= j. This method of using marginals seems to be prevalent in the
communications society as it simplifies the design (see e.g. [OT04] and references
therein), but it does not account for the full uncertainty in the estimate and
better results can therefore be expected by exploiting full posteriors instead of
only marginals. Detectors derived based on the full factorization in (4.19) can
naturally not capture the full posterior and various correction schemes exist
trying to improve on this, see e.g. [FN02] and references therein.

4.1.4 Comparison of VBEM and EM for Parameter Esti-

mation

To indicate the advantage of the VBEM-algorithm over the EM-algorithm, a
single-user uncoded GSM-like system was simulated in [CL06] using BPSK mod-
ulation and the FBA for detection. In figure 4.2, the BER of a system using
the GSM frame format of 142 information bits and 3 tail bits at each end of
the frame is shown. However, according to the GSM frame format, the cen-
ter of every frame contains a training set of 26 known bits, which is used to
initialize the iterative algorithms. The task of the EM- or VBEM-algorithm is
now to estimate both the channel and the noise power. For reference, the BER
using known parameters and parameters estimated using ML estimation from
the training set only is also shown.

In the right of the figure, it can be seen that there is virtually no difference
between EM and VBEM. The reason is that the frame is large enough to make
the posteriors highly peaked around the ML solution. On the other hand, if
the frame length and training set is reduced to half of that specified by the
GSM specification, a gain of about 0.3dB is achieved by VBEM compared to
EM as the posteriors are now less peaked. Hence, the VBEM-algorithm is
only advantageous when the individual posteriors of the system have significant
variations around their ML/MAP solutions. If this is not the case, the VBEM-
algorithm simply falls back to the associated EM-algorithm. However, for coded
communication systems with many parameters to estimate from a limited set
of observations, the VBEM-algorithm should prove beneficial.
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Figure 4.2: GSM-like system in AWGN using a TUx channel model and non-
informative priors for parameter estimation, L=7, K’=K=1.

4.2 Band-Toeplitz Covariance Estimation

As mentioned previously in connection with whitening-based detection and the
VBEM-algorithm, estimating the full covariance matrix is difficult. This is a
result of the raw sample covariance matrix, which is also the unstructured ML
estimate, being a low-rank estimate, possibly even rank one. However, due to
the overall noise consisting of interference and filtered AWGN as given by (2.3),
the noise covariance matrix can be seen to have a block-banded block-Toeplitz
structure. In general, if a Toeplitz matrix has non-zero elements only up to and
including lag B, it is called band-Toeplitz with bandwidth B. As the overall
noise consists of interferers with a channel of length L, the bandwidth of the
noise covariance matrix is L − 1. Requiring that any estimate should have
this structure results in fewer degrees-of-freedom and thus a better determined
estimate. The problem of this idea is that the estimation becomes more difficult
as the elements of the structured covariance estimate are now coupled. In the
following, only a block-size of one is considered, i.e. band-Toeplitz covariance
estimation. However, all methods presented naturally generalize to larger block-
sizes.

A natural solution to this problem of ML band-Toeplitz covariance estimation is
to compute the gradient of the log-likelihood function and requiring it to be zero
for the structured estimate. Let Sǫ , N−1

o

∑No

i=1 ǫiǫ
H
i be the sample covariance

of No independent zero-mean complex-valued Gaussian vector observations E ,

{ǫi}
No

i=1 with ǫi ∈ CM . The log-likelihood of the covariance estimate Σ̂ǫ is then

L
(

Σ̂ǫ

)

, ln
[

p
(

E | Σ̂ǫ

)]

= −Noln
[

|πΣ̂ǫ|
]

− Notr
{

Σ̂
−1

ǫ Sǫ

}

(4.21)
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and maximizing (4.21) under the structural constraints on Σ̂ǫ will provide a
(local) ML estimate with the desired properties. To do this, the first-order
derivative is easily found to be

∂L
(

Σ̂ǫ

)

∂ĉb

= Notr

{

∂Σ̂ǫ

∂ĉb

(

Σ̂
−1

ǫ SǫΣ̂
−1

ǫ − Σ̂
−1

ǫ

)
}

(4.22)

where ĉb is the lag b correlation coefficient in Σ̂ǫ. It is now desired to find a set
of coefficients ĉ , [ĉ0, · · · , ĉB ]

T
such that (4.22) is zero for all of these B + 1

coefficients. Unfortunately, the inverses in (4.22) constitute a highly non-linear
system of equations in ĉ and solving it requires advanced optimization schemes.
However, the perhaps biggest obstacle is the constraint of non-negative defi-
niteness required for all valid covariance matrices and this additional constraint
must be incorporated into the optimization. In general, it is therefore believed
that such methods will be inferior to band-Toeplitz covariance estimation based
on the EM-algorithm, as will be described next.

4.2.1 EM-based Toeplitz Covariance Estimation

In [MS87, DMS89, FB90], an EM-algorithm is formulated based on a circulant
extension of the Toeplitz matrix. Applying this idea to the VBEM framework,
the equivalent of (4.1) for this system becomes4

p (ǫ) =

∫

p
(

ǫ, f̂ , θ̂
)

df̂dθ̂ (4.23)

Here f̂ ∈ CMz−M are hypothesized observations that make estimation easier,
similar to how transmitted symbols are hypothesized in (4.1). For a circulant

extension to be possible, Mz ≥ 2M − 1 and the complete-data ẑ ,

[

ǫT , f̂T
]T

must be restricted to being jointly Gaussian with parameter set θ̂. There is
therefore a many-to-one mapping from the complete-data ẑ to the incomplete-
data ǫ given by

ǫ =
[
IM ,0M×(Mz−M)

]

︸ ︷︷ ︸

P

ẑ (4.24)

As samples are assumed to be zero-mean, only the covariance of ẑ is required

to describe the distribution, i.e. θ̂ =
{

Σ̂ẑ

}

where Σ̂ẑ ∈ CMz×Mz is constrained

to being circulant.

4For now, No = 1 is assumed to simplify expressions
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Like in (4.2), we lower-bound the marginal log-likelihood by Jensen’s inequality
as

ln [p (ǫ)] ≥

∫

q
(

f̂ , Σ̂ẑ

)

ln




p
(

ǫ, f̂ , Σ̂ẑ

)

q
(

f̂ , Σ̂ẑ

)



 df̂dΣ̂ẑ (4.25)

As before, the free distribution is then constrained to factorize between the
hidden variables and the parameters as

q
(

f̂ , Σ̂ẑ

)

= q
f̂

(

f̂
)

q
Σ̂ẑ

(

Σ̂ẑ

)

= qẑ (ẑ) q
Σ̂ẑ

(

Σ̂ẑ

) (4.26)

where the last line is due to ẑ uniquely determining ǫ. The distribution qẑ (ẑ)
is therefore a conditional distribution resulting in the updates being

V BE : qẑ (ẑ) ∝ e
〈ln[p(ẑ|ǫ,Σ̂ẑ)]〉

q
Σ̂ẑ

(Σ̂ẑ)

V BM : q
Σ̂ẑ

(

Σ̂ẑ

)

∝ e
〈ln[p(ẑ|Σ̂ẑ)]〉

qẑ(ẑ) ∝ |Σ̂ẑ|
−1e

−tr

{

Σ̂
−1
ẑ 〈ẑẑH〉

qẑ(ẑ)

} (4.27)

As for general covariance estimation described in section 4.1.1, only the MAP
estimate

Σ̂ẑ,m , arg max
Σ̂ẑ

q
Σ̂ẑ

(

Σ̂ẑ

)

(4.28)

is required in the VBE-step. This is a result of the inverse-Wishart posterior

having the property Σ̂
−1

ẑ,m ∝
〈

Σ̂
−1

ẑ

〉

q
Σ̂ẑ

(Σ̂ẑ)
and the VBEM-algorithm there-

fore falls back to being an EM-algorithm as effectively only a point-estimate is
used. A conjugate prior on the covariance estimate has been excluded here for
simplicity, but may be incorporated as in (4.10) if desired.

Using properties of conditional Gaussian distributions, the E-step can be found
to be

qẑ (ẑ) = CN (µẑ,Σẑ) (4.29)

with

µẑ = Σ̂ẑ,mPHΣ̂
−1

ǫ,mǫ

Σẑ = Σ̂ẑ,m − Σ̂ẑ,mPHΣ̂
−1

ǫ,mPΣ̂ẑ,m

(4.30)

where Σ̂ǫ,m is the upper-left sub-matrix of Σ̂ẑ,m, i.e.

Σ̂ǫ,m , PΣ̂ẑ,mPH (4.31)
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The sample covariance of the complete-data required in the M-step is then given
by

Ŝẑ ,
〈
ẑẑH

〉

qẑ(ẑ)
= µẑµ

H
ẑ + Σẑ

= Σ̂ẑ,m + Σ̂ẑ,mPH
(

Σ̂
−1

ǫ,mSǫΣ̂
−1

ǫ,m − Σ̂
−1

ǫ,m

)

PΣ̂ẑ,m

(4.32)

where ǫǫH has been replaced by Sǫ to generalize the expression beyond No = 1.
We now have an EM-algorithm consisting of an E-step given by (4.32) and a
M-step given by (4.27) and (4.28).

However, the whole idea of using an EM-algorithm was to produce the complete-
data sample covariance so that Toeplitz estimation would be easy by requiring
the complete-data covariance estimate to be circulant. The maximization in
(4.28) should therefore only be performed over the space of circulant matri-
ces, but as it is well-known that the Discrete Fourier Transform (DFT) matrix
diagonalizes any circulant matrix, this is easy. Letting D ∈ CMz×Mz be the
normalized DFT matrix, then

Σ̂ẑ = DΛ̂ẑD
H (4.33)

where the diagonal matrix Λ̂ẑ , diag
(

λ̂ẑ

)

contains the eigenvalues of Σ̂ẑ.

Maximizing (4.28) over the space of circulant matrices is therefore done by
maximizing over it’s eigenvalues, which is easily found to be

λ̂ẑ = diag
(
DHSẑD

)
(4.34)

where diag (·) extracts the diagonal from the matrix. To summarize the EM-
algorithm including the iteration index j, the algorithm can be expressed as

E : ∆(j) = Λ̂
(j)

ẑ D̃
(

W(j)SǫW
(j) − W(j)

)

D̃HΛ̂
(j)

ẑ

M : Σ̂
(j+1)

ǫ,m = D̃Hdiag








λ̂
(j)

+ diag
(

∆(j)
)

︸ ︷︷ ︸

λ̂
(j+1)








D̃

(4.35)

with D̃ , DPH , W(j) ,

(

Σ̂
(j)

ǫ,m

)−1

and ∆(j) being the unconstrained update

to Sẑ. A nice feature of this EM-algorithm is that the constraint of the estimate
being non-negative definite is naturally fulfilled as can be seen from (4.34). Fur-
ther, as the rank of Sǫ is typically low, an efficient E-step can be implemented by
FFTs and the Toeplitz structure can be exploited for computing W(j) [DMS89].

As for any EM-algorithm, initialization is crucial and Σ̂
(0)

ǫ,m = N−1
o tr {Sǫ} IM

seems to be a reasonable choice.
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4.2.2 Extension to Band-Toeplitz Covariance Estimation

In [Chr07], the EM-algorithm is extended to band-Toeplitz estimation by further
constraining the M-step and leaving the E-step unchanged as given by (4.35).
The basic idea is then, that if the bandwidth of the desired estimate is known
to be B, the eigenvalues λ̂ẑ may span only the lowest B ”frequencies” of D, i.e.

λ̂ẑ = M
1
2
z

B∑

b=−B

ĉbdb s.t. ĉb = ĉ∗−b

= M
1
2
z

(

ĉ0d0 + 2

B∑

b=1

Re {ĉbdb}

) (4.36)

where db = d∗
−b , [D]:,mod(b,Mz). However, as the eigenvalues are real-valued

and there are only Nb , 2B+1 real-valued degrees-of-freedom in the constrained
estimate, we choose to reformulate the constraint as a real-valued decomposition,
i.e.

λ̂ẑ = Tr̂ (4.37)

Here r̂ ∈ RNb are the unknowns and T , [t0, . . . , tNb−1] is defined by

tb ,







M
1
2
z Re {db} , b = 0

2M
1
2
z Re {db} , 1 ≤ b ≤ B

−2M
1
2
z Im {db−B} , B < b < Nb

(4.38)

The upper B + 1 coefficients of r̂ will therefore hold the real part of ĉ while the
lower B coefficients are the imaginary part. In the case of real-valued covari-
ance estimation, having Nb , B + 1 is therefore sufficient to parameterize the
constrained estimate. The challenge is now, given the current ML estimate over

the space of circulant matrices λ̂ẑ, to minimize some distance measure f
(

λ̂ẑ, r̂
)

between the Toeplitz and the band-Toeplitz estimate subject to the constraint
that the resulting eigenvalues must all be non-negative, i.e. Tr ≥ 0Mz×1.

The distance measure f
(

λ̂ẑ, r̂
)

required for ML estimation is easily found by

inserting (4.37) into the M-step and is given in [Chr07] along with its derivatives
required for minimization. Furthermore, in [Chr07] the Unbiased Cramer-Rao
Lower-Bound (U-CRLB) on the variance of band-Toeplitz covariance estima-
tion is derived for comparison. Also, the Weighted Projected (WP) method of
Toeplitz covariance estimation is presented, which is a simple linear estimator
that straight-forwardly integrates with the whitening-based detector presented
in section 3.2. Basically, WP can be seen as nothing more than the covariance
matrix generalization of classical correlation-based power-spectrum estimation
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Figure 4.3: Example of band-Toeplitz estimation for varying number of obser-
vations M for B = 1, No = 1.

employing triangular windowing to guarantee a positive power-spectrum, see
e.g. [Hay96].

In figure 4.3, the WP estimator is compared with the proposed EM-based es-
timator for estimation of correlations in AWGN filtered by a first-order filter

having coefficients
[

1√
2
, 1+

√
−1

2

]T

, i.e. having bandwith B = 1, as a function

of the number of observations M . The true correlations are therefore given by

c =
[

1, 1+
√
−1√
8

]T

or equivalently r =
[

1, 1√
8
, 1√

8

]T

. From the figure, it should

be noticed how a significant reduction in MSE can be achieved with only a small
increase in bias and how the estimator approaches the U-CRLB for medium and
large sample-sizes. The case of M = 2 is a special case as there is no bandwidth
constraint and the proposed EM-algorithm therefore falls back to Toeplitz es-
timation. This is believed to be the reason for the apparent discontinuity at
that point for the proposed EM-algorithm. As a result of the added bandwidth
constraint, the number of iterations required for convergence is significantly re-
duced compared to that of Toeplitz estimation. For the above example, approx-
imately 5 iterations seem sufficient whereas upwards of 50 iterations is required
for Toeplitz estimation in the same system. Overall, the proposed estimator
is believed to achieve near-optimal performance for band-Toeplitz covariance
estimation while preserving a reasonable complexity through the use of FFTs
and efficient computations on band-Toeplitz systems of equations [DMS89]. An
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interesting option that has not been investigated further is the option of mod-
ifying the proposed method for constraining not the covariance itself, but its
inverse to being band-Toeplitz. This can be achieved by constraining not the
eigenvalues of the circulant covariance itself, but instead applying the same con-
straint on its inverse eigenvalues. Effectively, this is equivalent to the estimation
of a stationary Gauss-Markov process of a specified Markov order and such an
estimate would also fit nicely with the whitening framework.

4.3 Summary

First, this chapter has outlined the VBEM-algorithm, which is a general frame-
work for separate detection/decoding and parameter estimation. The framework
generalizes that of the EM-algorithm by exploiting the parameter posterior dis-
tribution for detection/decoding instead of the MAP estimate. However, the
VBEM-algorithm is only beneficial if the parameter posterior is less peaked
around the MAP estimate as it otherwise simply falls back to being an EM-
algorithm. A point not discussed by this thesis is model selection, i.e. selection
of parameters such as channel length etc. However, this has a natural integra-
tion with the VBEM framework by considering the model yet another unknown
that should be integrated out. Doing so has the benefit that the number of pa-
rameters in the considered models are taken into account, making such methods
less susceptible to over-fitting, see e.g. [Bea03]. From a real-life implementation
point-of-view, this makes the VBEM-algorithm even more interesting, but it
also has a higher complexity as parameter estimation must be performed in a
number of models instead of just one.

Furthermore, an EM-algorithm for band-Toeplitz covariance estimation has
been described as a generalization of an existing EM-algorithm for Toeplitz
covariance estimation. The proposed method works by modifying the existing
M-step so as to guarantee the desired bandwidth constraint of the estimate.
Comparing performance of the proposed method with the unbiased Cramer-
Rao lower-bound, the method appears to be near-optimal for medium to large
sample-sizes while having a reasonable complexity through the use of structured
computations.
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Chapter 5

Conclusion

This thesis has considered the problem of improving the performance of wireless
communication receivers through the use of advanced signal processing with the
goal of delivering improved user experience and/or system capacity. The system
model considered in this thesis directly reflects the focus on GSM/EDGE and
WCDMA/HSPA cellular systems, but methods are directly applicable to general
communication systems.

A large portion of the thesis is concerned with approximate detection and decod-
ing and various methods for this are presented. One concept described is that of
practical noise/interference whitening by breaking down the covariance matrix
to a manageable size. This allows the receiver to reliably model and estimate any
colored noise/interference which is not included in a discrete signal model and
thus provide flexibility and robustness. Next, the sphere detection and decoding
framework is presented and a previously unknown relationship between the QL
factorization of the channel transfer matrix and minimum-phase prefiltering is
outlined. This connection enables the view of sphere detection as a adaptive
variant of traditional reduced-state sequence estimation and thus opening up
for interesting possibilities in these two areas. Furthermore, methods based on
Generalized Belief Propagation (GBP) for approximate joint detection and de-
coding in systems with convolutional codes are introduced. In this framework,
a generalized Turbo principle is formulated based on the exchange of region
beliefs instead of single-variable beliefs as in the ordinary Turbo principle, but
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due to time constraints it has not been possible to fully investigate this.

The second part of this thesis is concerned with parameter estimation for the
system model considered. A general variational Bayesian EM-algorithm is in-
troduced to the communication community, generalizing the EM-algorithm by
propagating parameter distributions instead of point-estimates. By doing this,
the parameter uncertainty can be taken into account in the detection/decoding
and thus potentially improve performance. Finally, a near-optimal EM-algorithm
for performing band-Toeplitz covariance estimation is introduced. This method
is generally applicable and directly integrates with the concept of noise and
interference whitening.

5.1 Suggestions for Further Research

This thesis has presented solutions for approximate detection and decoding,
including parameter estimation for such systems. However, in the process of
writing this thesis, many new ideas and questions have become apparent and
answering these would be interesting. The author believes that several fruitful
future research directions exist based on the work presented in this thesis, i.e.

• Investigation of the generalized Turbo principle, also for other setups e.g.
decoding of Turbo codes

• General frameworks for loop-correction in GBP

• Unifying the decision-feedback framework with that of sphere detection
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1. INTRODUCTION

Over the last couple of years, the interest in ultra-wideband
(UWB) wireless communications has been growing. Among
the reasons for this increased awareness of UWB are the
promises of low-power, high-bitrate wireless connections
without the need for spectrum allocation, and the approval
of the technology by authorities as, for example, the Ameri-
can FCC [1].

UWB signals for wireless communication typically have
a bandwidth of several GHz and can be utilized in many ways
each presenting the designer with tradeoffs between cost,
power, bitrate, range, and the number of users supported.
The system considered in this paper is a single-band UWB
direct-sequence code-division multiple-access (DS-CDMA)
receiver with all signal processing done on the received sig-
nal sampled directly from an amplified and filtered antenna
signal. This enables the removal of traditional up- and down-
converters present in today’s narrowband transceivers at the
expense of increasing the required sampling rate and thus the
complexity of the signal processing. It is therefore of great
interest to reduce the complexity of such receivers to make
them feasible.

The receiver considered is fully adaptive making it possi-
ble to track changes not only in the multipath channel, but
also in the received pulse shape. This is desirable in order to
maximize performance even under conditions distorting the
received pulse shape as discussed in [2], but distortions orig-

inating from the electromagnetic propagation environment
can also be adaptively compensated for.

Combined LMMSE synchronization and detection for
DS-CDMA systems have already been studied (see, e.g.,
[3, 4, 5, 6, 7]). This paper is a continuation of [8] extended
with the synchronization method in [3], but having a low-
complexity adaptive algorithm with recursive least-squares
(RLS)-speed convergence. Furthermore, this paper uses the
channel model presented in [9] instead of the model in [8]
as the latter may prove too optimistic for typical office use
as a result of the larger dimensions typically present in office
environments.

The rest of this paper is organized as follows. Section 2
describes the system model used throughout this paper. In
Section 3, the LMMSE receiver is presented as a benchmark
of how well the adaptive receiver outlined by Section 4 per-
forms compared to the best possible linear receiver. Synchro-
nization of the receiver is covered in Section 5 and Section 6
presents simulations of the receiver. Section 7 concludes the
paper with final remarks.

2. SYSTEM MODEL

The receiver considered is the adaptive LMMSE receiver
with the system model being capable of supporting K asyn-
chronous users each operating in their respective multipath
radio channel. The desired user is, without loss of generality,
assumed to be user 1.
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2.1. Transmitted signal

The pulse shape used for transmission p(t) is of duration
Tmono and is assumed normalized to the unit energy. This
pulse shape is traditionally called a monocycle in UWB terms
and it is typically modeled as the qth derivative of a Gaussian
pulse [10], which is also the case in this paper. This makes it
possible to include the differentiation performed by the an-
tennas and further control the spectrum of the transmitted
signal. To include the effect of asynchronous operation be-
tween users, the delay τ(k) is introduced for the kth user.

Next, the binary DS spreading code c(k)(i) ∈ {−1, +1},
for i = 1, . . . ,Nc, is used to separate the different users and
provide a processing gain of Nc, where Nc indicates the num-
ber of coded monocycles transmitted for each bit of infor-
mation. Finally, the binary information given by b(k)( j) ∈
{−1, +1} is assumed to be a memoryless random source with
equal probability of +1 and −1. The modulation considered
is binary phase shift keying (BPSK) and the transmitted sig-
nal from the kth user can therefore be written as

s(k)(t) =
∞∑

j=−∞

b(k)( j)ϕ(k)
(
t − jTb − τ(k)

)

=

∞∑

j=−∞

b(k)( j)
Nc−1∑

i=0

c(k)(i)p
(
t− jTb−iTmono−τ

(k)
)
.

(1)

The waveform ϕ(k)(t) has duration Tb = NcTmono holding Nc

monocycles coded by the user’s spreading code.

2.2. Radio channel

To include the effects of a realistic multipath environment,
the radio channel model given in [9] is used. The impulse
response of this model for the kth user can be written as

h(k)(t) =
L−1∑

l=0

a
(k)
l δ

(
t − lTch

)
, (2)

where Tch is the temporal spacing between the L multipath
components and δ(t) is the Dirac delta function. The ampli-

tude of the lth multipath component is given by a
(k)
l and is

assumed to be constant over time. Convolving the transmit-
ted signal of the kth user given by (1) with its respective im-
pulse response given by (2), the contribution from this user
onto the received signal can be written as

r(k)(t) =
L−1∑

l=0

a
(k)
l s(k)

(
t − lTch

)
(3)

and the received signal is therefore

r(t) =
K∑

k=1

r(k)(t) + n(t)

=

K∑

k=1

L−1∑

l=0

a
(k)
l s(k)

(
t − lTch

)
+ n(t)

(4)

with n(t) being white Gaussian noise with zero mean and
variance σ2 leading to the signal-to-noise ratio (SNR) at the
receiver being defined as

SNR =

∑L−1
l=0

∣∣a(1)
l

∣∣2

σ2
. (5)

3. THE LMMSE RECEIVER

In the receiver an antialiasing filter processes the received sig-
nal before it is uniformly sampled and fed directly into a
tapped-delay-line filter with the input given by the vector

r( j) =
[
r
(
jTb

)
, r
(
jTb + Ts

)
, . . . , r

(
jTb + (N − 1)Ts

)]T
, (6)

where N is the length of the tapped-delay-line filter with a
sample spacing of Ts. In order to be able to capture the en-
tire multipath energy spread out by the channel model, the
number of filter taps must be at least

Nfull =

⌈
Tb + (L− 1)Tch

Ts

⌉
(7)

with the operator ⌈x⌉ returning the smallest integer larger
than x. However, as the multipath energy tends to decay as
a function of the time delay, it may not be cost efficient to
capture all the multipath energy from a given bit. A reduction
in the filter length is therefore accomplished by setting

N =

⌈
ψ
Tb + (L− 1)Tch

Ts

⌉
, (8)

where 0 < ψ ≤ 1 is the filter length reduction compared to
the filter that spans the entire multipath energy of a given bit.

The transmitted bits are estimated by hard decision on
the output of the filter as

b̂(1)( j) = sgn
(

w( j)Tr( j)
)

(9)

with w( j) being the column vector holding the filter coeffi-
cients.

In order to evaluate the performance of the LMMSE re-
ceiver with perfect knowledge about the channel and user
parameters, the contribution from an unmodulated bit can
seen to be

v(k)(t) =
L−1∑

l=0

a
(k)
l ϕ(k)

(
t − lTch − τ(k)

)
(10)

and sampling this signal produces the vector

v(k)(m)

=
[
v(k)
(
mTb

)
, v(k)

(
mTb+Ts

)
, . . . , v(k)

(
mTb+(N−1)Ts

)]T
.

(11)

Although the expression of (4) includes all bits transmitted,
only a finite number of bits, L1 bits before and L2 bits after
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the current bit, will contribute energy to r( j). It is therefore
possible to express r( j) using only the relevant bits as

r( j) =
K∑

k=1

L2∑

m=−L1

b(k)( j + m)v(k)(m) + n( j) (12)

with n( j) holding the noise samples. The maximum bit offset
that contribute energy to r( j) is therefore

L1 =

⌈
(L− 1)Tch

Tb

⌉
(13)

as the number of bits in the past influencing the decision is
independent of ψ. On the other hand, the number of bits
after the current bit influencing the decision is

L2 =

⌈
ψ

(L− 1)Tch

Tb

⌉
. (14)

The LMMSE filter coefficients wo is given by the Wiener-
Hopf solution

Rwo = p ⇐⇒ wo = R−1p, (15)

where R is the covariance matrix and p the cross-correlation
vector defined as

R = E
[

r( j)r( j)T
]
,

p = E
[
b(1)( j)r( j)

]
.

(16)

Applying the expectations of (16) to (12), the covariance ma-
trix can be found to be

R =
K∑

k=1

L2∑

m=−L1

v(k)(m)v(k)(m)T + σ2I (17)

with I being the identity matrix. In a similar way, the cross-
correlation vector is found to be

p = v(1)(0). (18)

The output of the filter is

wT
o r( j) =

Desired︷ ︸︸ ︷
wT
o v(1)(0) +

Interference︷ ︸︸ ︷
eISI( j) + eMAI( j) +

Noise︷ ︸︸ ︷
en( j), (19)

where eISI( j), eMAI( j), and en( j) are the contributions at the
output from intersymbol interference (ISI), multiple-access
interference (MAI), and noise, respectively. Both eISI( j) and
eMAI( j) are approximately Gaussian as shown in [11] and
en( j) is Gaussian as the filter is linear. The BER of the
LMMSE receiver may therefore be approximated by

BERLMMSE =
1

2
erfc




√√√√
∣∣wT

o v(1)(0)
∣∣2

2
(
σ2

ISI + σ2
MAI + σ2

)


 (20)

with σ2 being the noise variance and

σ2
ISI =

∑

m �=0

∣∣wT
o v(1)(m)

∣∣2
,

σ2
MAI =

K∑

k=2

L2∑

m=−L1

∣∣wT
o v(k)(m)

∣∣2
.

(21)

4. THE ADAPTIVE LMMSE RECEIVER

Instead of implementing the LMMSE receiver by perform-
ing matrix inversion, the filter coefficients can be obtained
by adaptation of the filter using an appropriate training se-
quence. The normalized least mean square (NLMS) and RLS
algorithms are presented here only to give a better under-
standing of the nonrecursive formulation of the RLS algo-
rithm presented later in this section. For all algorithms, the
filter coefficients are initialized to the zero vector, that is,
w(0) = 0.

4.1. The NLMS algorithm

The NLMS update can be written as [12]

w( j + 1) = w( j) + κ( j)r( j)e( j), (22)

where e( j) is the a posteriori error given by

e( j) = b(1)( j)−w( j)Tr( j). (23)

The variable κ( j) controls the effective step-size and is found
as

κ( j) =
µ

a + r( j)Tr( j)
, a≪ E

[
r( j)Tr( j)

]
(24)

with µ being the step-size bound to the interval 0 < µ < 2 by
stability. The constant a is introduced to reduce the impact
of gradient noise when r( j)Tr( j) attains a small value. The
choice of the step-size parameter µ is a tradeoff between con-
vergence speed, and thus the needed number of training bits,
and the residual error resulting in an increased BER com-
pared to the value of (20).

4.2. The RLS algorithm

The RLS update can be written as [12]

w( j) = w( j − 1) +

k( j)︷ ︸︸ ︷
Φ
−1( j)r( j) ε( j) (25)

with Φ( j) being the sample covariance matrix defined by

Φ( j) =
1

j

j∑

i=1

r(i)r(i)T (26)

and

ε( j) = b(1)( j)−w( j − 1)Tr( j) (27)
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being the a priori error. In order to reduce the complexity of
the RLS update to approximately O(4N2) per bit, the follow-
ing recursion is used:

k( j) =
Φ
−1( j − 1)r( j)

1 + r( j)TΦ
−1( j − 1)r( j)

, (28)

Φ
−1( j) = Φ

−1( j − 1)− k( j)r( j)T
Φ
−1( j − 1). (29)

Initialization of the inverse covariance matrix is done as

Φ
−1(0) =

δ

E
[

r( j)Tr( j)
] I ≃

δ

r(0)Tr(0)
I, (30)

where δ is a regularization parameter. A value of δ ≪ 1 will
cause a high degree of regularization whereas δ ≫ 1 will in-
troduce little regularization. The choice of δ is therefore a
tradeoff between reducing the noise and not constraining the
adaptation.

4.3. The nonrecursive least-squares algorithm

The nonrecursive least-squares (NLS) algorithm will now be
derived from the RLS update. Let the vector γ( j) be defined
as

γ( j) = Φ
−1( j − 1)r( j) (31)

and rewrite (29) as

Φ
−1( j) = Φ

−1( j − 1)−
γ( j)γ( j)T

δ( j)
(32)

with the scalar δ( j) being defined as

δ( j) = 1 + r( j)T
Φ
−1( j − 1)r( j)

= 1 + r( j)Tγ( j).
(33)

Using these definitions, it is possible to rewrite the RLS up-
date as

w( j) = w( j − 1) + γ( j)
ε( j)

δ( j)
. (34)

The idea is now to rewrite (31) using (32) and expand the
expression all the way back to the first iteration, that is, j = 1
resulting in

γ( j) = Φ
−1(0)r( j) +

j−1∑

i=1

1

δ(i)
γ(i)γ(i)Tr( j). (35)

However, instead of using the usual recursive formulation
of (35), having a complexity of O(4N2), the nonrecursive
version as directly outlined by (35) has a complexity of
O(3( j − 1)N) at the jth iteration. This formulation of the
RLS algorithm takes advantage of the fact that at the jth iter-
ation, the rank of the sample covariance matrix is only j − 1,
if the initialization matrix is not considered, and only j − 1
inner products are therefore needed to get γ( j).

The ratio G( j) between the complexity of the RLS and
NLS algorithms at the jth iteration is approximately

G( j) ≃
4N2

3( j − 1)N
=

4N

3( j − 1)
(36)

and the NLS algorithm is therefore beneficial if convergence
is reached in less than approximately 4N/3 iterations. Fur-
ther, the complexity reduction averaged over the performed
iterations is 2G(Nite) with Nite being the number of itera-
tions performed as the algorithm has a lower complexity in
the first iterations. Therefore, using the overall complexity as
a measure, the NLS algorithm is beneficial if convergence is
reached within approximately 8N/3 iterations.

In many signal processing problems, the rank of the co-
variance matrix is full or close to being full, leading to slow
convergence of the RLS algorithm. If this is the case, the non-
recursive implementation is not preferable over the usual
recursive implementation. However, when the rank is low
compared to the dimension of the covariance matrix, a con-
siderable reduction of complexity is possible as a result of the
higher speed of convergence. An example of such a problem
is the adaptive receiver considered in this paper.

4.4. The windowed NLS algorithm

Another interesting aspect of the nonrecursive formulation
is the possibility to limit the number of summations per iter-
ation as

γ( j) = Φ
−1(0)r( j) +

j−1∑

i= j−D

1

δ(i)
γ(i)γ(i)Tr( j), i > 0, (37)

where D is the number of terms included, resulting in a com-
plexity of O(3DN) per iteration when disregarding the ini-
tialization matrix. The algorithm now performs a minimiza-
tion of the squared error over a sliding rectangular window
of size D, that is,

arg min
w( j)




j∑

i= j−D−1

∣∣ε(i)
∣∣2


, i > 0. (38)

The algorithm is therefore termed the windowed NLS
(WNLS) algorithm. Window functions other than the rect-
angular one specified here can of course also be used if de-
sired. The algorithm can be considered a kind of a general-
ization of the NLMS and RLS algorithms as D = 0 equals
the NLMS algorithm and D = j − 1 equals the RLS algo-
rithm. Values of D in between these two extremes provide al-
gorithms with convergence speed scaling with D as the algo-
rithm estimates the sample covariance matrix over the win-
dow. It should also be noticed that when j ≤ D+1, the WNLS
algorithm is equivalent to the NLS algorithm.

5. SYNCHRONIZATION OF THE ADAPTIVE
LMMSE RECEIVER

The task of synchronizing the receiver with the transmitter
and staying synchronized over time is an often-overlooked



70 Appendix A

466 EURASIP Journal on Applied Signal Processing

topic compared to modulation and demodulation. However,
as this is absolutely crucial to the performance of the sys-
tem, a method of synchronizing the adaptive LMMSE re-
ceiver is presented here based on the same principles as used
in [3].

The type of synchronization considered is the initial syn-
chronization including both bit and frame synchronization
over the UWB multipath channel in [9]. However, the prob-
lem of tracking changes between the transmitter and the
receiver is not considered. It is therefore assumed that the
clocks of the receiver and transmitter are the same except for
an unknown offset and that the channel is stationary.

5.1. Bit synchronization

Firstly, bit synchronization can be established by taking ad-
vantage of the adaptive nature of the receiver. If at first the
AWGN channel is observed, it can be noted that if the re-
ceiver is not synchronized to the transmitter, extending the
filter length by one bit length can capture all energy from a
desired bit. The adaptive algorithm will therefore automati-
cally suppress coefficients outside of the correct bit interval
and bit synchronization is therefore automatically achieved,
but this comes at the expense of increasing the filter length
to twice its original size. Increasing the filter length by a bit
length in the UWB multipath channel will, in a similar way as
in the AWGN channel, ensure that at least the same energy is
captured as if the systems were synchronous. It is then possi-
ble to estimate the timing offset between the transmitter and
receiver by observing the converged filter coefficients and use
this to correct the timing in the receiver [7]. In this manner,
the receiver will be able to take full advantage of the increased
filter length to capture a larger part of the multipath energy,
but this correction is not included in this paper.

The increase in filter length may be modeled by a larger
value of ψ given by

ψ′ = ψ + ψb, (39)

where ψ determines the filter length of the fully synchronous
system and ψb represents the increase needed to accommo-
date a full bit length and is given by

ψb =
TmonoNc

TsNfull
=

Nc

Nc + (L− 1)Tch/Tmono
. (40)

The AWGN channel therefore requires ψb = 1 as argued ear-
lier and in the case of the UWB multipath channel, the value
of ψb will typically be much less than unity and the increase
in complexity will therefore be small. This is a direct conse-
quence of the fact that the energy spread in the UWB channel
is typically much larger than the bit period.

5.2. Frame synchronization

In order for the receiver to lock onto the transmitted in-
formation, the bits are arranged into a frame consisting of
N f bits. In the beginning of the frame, a known length Nt

maximal-length sequence is inserted acting as a synchroniza-
tion burst to make the adaptation possible. The remaining
Nd = N f−Nt bits of the frame are the information bits. How-
ever, as the receiver has no knowledge of when to look for the
synchronization sequence, this ambiguity can be modeled by
placing the start of the synchronization burst at a position Ns

unknown to the receiver.
To acquire correct synchronization, the receiver will now

have to estimate Ns. This is done by searching all possible po-

sitions of the synchronization burst and select the estimate N̂s

that leads to the smallest mean square error (MSE) averaged
over the performed iterations, that is,

arg min
N̂s

Nt∑

j=1

∣∣b(1)( j)−w( j − 1)Tr
(
j + N̂s

)∣∣2
. (41)

The receiver now uses the converged coefficients at the es-
timated position to detect the transmitted bits. Since the
current bit influences the observation window as long as
−L2 ≤ es ≤ L1, it is not required that the synchronization

error es = Ns − N̂s be zero in order to correctly detect a bit.
Still, having es = 0 maximizes the received energy and thus
makes it desirable to minimize |es|.

6. SIMULATION AND DISCUSSION

A number of simulations have been performed to assess the
performance of the described UWB receiver in the multipath
channel specified in [9].

The used monocycle is the 7th derivative of a Gaussian
pulse with a pulse width Tmono = 0.67 nanosecond, as the
spectrum of this pulse propagating in free space is a good
match for the FCC regulations [1] giving a bandwidth in the
order of 3 GHz [13]. The number of samples per monocy-
cle was set to 13 yielding Ts = 51.3 picoseconds in order to
provide good rejection of aliasing at half the sample rate. It
may however be possible to reduce this high sampling rate by
taking advantage of the aliasing in the form of sub-Nyquist
sampling [8].

The system simulated consists of K sample-asyn-
chronous users each using a length Nc = 15 large-set Kasami
spreading code, making it possible for up to approximately
15 users to simultaneously use the system. The users do not
need to have knowledge about the spreading codes used in
the system, as the receiver requires only the training sequence
to adapt. All users are assumed received at the same power
level.

The channel model employs a tap spacing of Tch = 2
nanoseconds with the total number of taps being L = 100
[9]. This results in the number of filter coefficients being
Nfull = 4056 if the entire energy spread in the channel is
to be covered. The channel impulse response is fixed dur-
ing adaptation and BER measurements, but to help average
out the stochastic nature of the channel model, simulations
are averaged over 10 different channels. The reason for us-
ing only 10 different channels is that it is computationally
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Figure 1: Convergence of the receiver (Nc = 15, ψ = 1, SNR = 20 dB). (a) K = 1 and (b) K = 15.

intractable to average out the entire channel and that this
number of channels drawn from the model produces results
being within ±0.5 dB of the results obtained by performing
the much larger number of simulations needed to average
out the channel distribution.

For NLMS, a step-size of µ = 1 was selected, as a smaller
step-size will produce unacceptable slow convergence. In the
case of RLS, the value δ = 100 was chosen to minimize the
effect of regularization as it is of higher importance not to
constrain the adaptation when many users are active in the
UWB multipath channel.

For a more in-depth description of the effects of these
adaptation parameters on the performance of the system in
both the AWGN and UWB multipath channel, the interested
reader is referred to [13].

6.1. Convergence

The convergence behavior of the receiver is important in or-
der to determine the number of training bits necessary and
verify that the filter coefficients converge to the LMMSE so-
lution.

Observing the convergence plotted in Figure 1, it should
be noted how the addition of users makes the receiver con-
verge more slowly as the dimension of the problem scales
with the number of users. In the case of 15 users using the
NLMS adaptation, the speed of convergence becomes very
slow and does not reach convergence within the simulated
iterations. The RLS algorithm manages to converge much
faster as a result of its knowledge of the estimated inverse
covariance matrix, but increasing the number of users also
impacts it.

In Figure 2a, the convergence of the WNLS algorithm is
plotted showing how the performance scales from NLMS to

RLS when increasing the window length, as its knowledge of
the estimated inverse covariance matrix grows with the win-
dow length.

6.2. BER simulations

A series of Monte Carlo simulations have been performed
to estimate the BER performance of the receiver under the
assumption that the receiver has knowledge of the timing
parameter τ(1). The number of iterations performed is kept
fixed at Nite = Nfull and a total of 100 bit errors must occur
before a BER value is accepted.

From Figure 3 it can be seen that under both light- and
full-load conditions of 1 and 15 users, respectively, the RLS
algorithm is capable of providing reasonably good perfor-
mance even in the case of restricting the filter length to ap-
proximately ψ = 0.2. In the case of only a single user, the RLS
algorithm comes very close to the LMMSE receiver, but it is
not quite capable of reaching the bound when the load is in-
creased to 15 users. The NLMS algorithm has been left out,
as its general performance is unsatisfying [13], which is also
clear from the slow convergence depicted in Figure 1.

6.3. Synchronization

By inserting the needed parameters in (40), the filter length
can be seen to increase by ψb = 0.048 in order to let the filter
span an extra bit length. Focusing on the case of ψ = 0.2
this results in ψ′ = 0.248 leading to L1 = 20 and L2 = 5.
The BER performance of the receiver with this extended filter
length is plotted in Figure 3 under the assumption of being
synchronized with the desired user.

The performance of the joint synchronization and de-
tection is shown in Figure 4 assuming Nd = 500. Further,
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Figure 2: Convergence of the WNLS algorithm and the average MSE as a function of synchronization error (Nc = 15, ψ′ = 0.248, δ = 100).
(a) K = 15, SNR = 20 dB and (b) K = 1, SNR = 10 dB, Nite = Nt = 127.
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Figure 3: The BER in the UWB multipath channel when the receiver is synchronized to the desired user (Nc = 15, Nite = Nfull = 4056,
RLS δ = 100). (a) K = 1 and (b) K = 15.
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Figure 4: Performance of the presented joint synchronization and detection scheme using the NLS algorithm (Nc = 15,ψ′ = 0.248, δ = 100).
(a) Nite = Nt = 127 and (b) Nite = Nt = 255.

Figure 2b plots the average MSE as a function of the
synchronization error showing how on average the syn-
chronization error is minimized by (41). However, the syn-
chronization error may be nonzero and the performance of
the receiver therefore degrades, as the captured energy be-
comes less. This, along with the fact that in the two cases
shown only Nite = 127 and Nite = 255 iterations are per-
formed, explains why the BER in Figure 4 degrades com-
pared to that of Figure 3, especially when more users are
added. This performance degradation is the price paid by
using this low-complexity type of joint synchronization and
detection. However, the achieved performance is the same as
could be reached by using the RLS algorithm, but in the ex-
ample where Nite = 127, the NLS algorithm lowers the com-
plexity by a factor of G(Nite) ≃ 10 resulting in approximately
20 times the overall complexity reduction.

7. CONCLUSION

A method for performing joint synchronization, channel
estimation, and multiuser detection for single-band DS-
CDMA UWB communications has been presented based on
the principles in [3, 8]. Simulations of the receiver show good
results in the UWB multipath channel in [9] using RLS adap-
tation, but the complexity of the RLS adaptation is very high.
To help alleviate this problem, a novel algorithm termed the
WNLS algorithm is derived, potentially lowering the compu-
tational complexity while preserving the performance of the
RLS algorithm.
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ABSTRACT

Minimum symbol error rate detection in Single-Input Multi-

ple-Output(SIMO) channels with Markov noise is presented.

The special case of zero-mean Gauss-Markov noise is ex-

amined closer as it only requires knowledge of the second-

order moments. In this special case, it is shown that opti-

mal detection can be achieved by a Multiple-Input Multiple-

Output(MIMO) whitening filter followed by a traditional

BCJR algorithm. The Gauss-Markov noise model provides

a reasonable approximation for co-channel interference, ma-

king it an interesting single-user detector for many multi-

user communication systems where interference from other

transmitters has a limiting effect.

1. INTRODUCTION

Interference from other users is a limiting factor in many

real-life communication systems. The optimal solution is to

jointly detect the desired and interfering users, but this has

a complexity scaling exponentially with the number of in-

terferers. Approaching the optimal performance with lower

complexity is therefore of great interest and much work has

been done within this field of research.

The idea followed in this work is to only detect the de-

sired user and model the rest as noise. The solution to

this problem of single-user minimum symbol error rate de-

tection in channels with memory, today known simply as

the BCJR algorithm after its inventors, is derived in [1] for

memoryless noise. In [2] and [3], a Markov model of the

noise is assumed and the optimal symbol-by-symbol and

sequence detectors are derived, but only for Single-Input

Single-Output(SISO) channels.

However, optimal representation of communication sig-

nals may require multiple observations per symbol. This is

the case, if the signal has a bandwidth beyond the Nyquist

frequency giving rise to a cyclostationary signal after digi-

tal sampling [4]. Another example is, if multiple antennas

are available in the receiver. The resulting redundancy in

the signal should therefore be exploited to better reject the

interfering signal.

This work was supported by Nokia Denmark.

The presented framework is easily extended to include

MIMO channels and/or multi-user detection by extending

the discrete state-space, but this is outside the scope of this

paper. Group detection of some streams/users and letting

the remaining be approximated as Markov noise is also an

option. Furthermore, the probabilistic nature of the detector

makes it a good match for iterative decoding and parameter

estimation schemes.

Section 2 presents the signal model and Section 3 de-

rives the optimal symbol-by-symbol detector for SIMO chan-

nels with memoryless noise in order to establish the for-

malism that Section 4 extends to Markov noise. Next, the

special case of SIMO channels with Gauss-Markov noise is

looked into in Section 5. Section 6 contains simulation re-

sults of the presented detector using a GSM physical layer

to highlight the benefit of the detector under the influence

of co-channel interference.

2. SIGNAL MODEL

The received signal is assumed to have Nd receive dimen-

sions and the received signal in the dth dimension is mod-

eled as

rd (t) =

∞∑

n=−∞

hd (t − nT ) sn + ǫd (t) (1)

with T being the symbol period and ǫd (t) being the

noise process of the dth receive dimension. The nth com-

plex symbol sn belongs to the constellation set Ω and the

number of constellation points is |Ω|. Further, it is assumed

that the constellation points have unit average power, i.e.

Ω = {+1,−1} for binary modulation leading to |Ω| = 2.

The overall time-invariant impulse response hd (τ) in the

dth receive dimension includes pulse shaping in the trans-

mitter, radio propagation channel and receive filtering. Fur-

thermore, it is assumed to be zero for τ < 0 and having

finite temporal length LT .

In the detector, the received signal is sampled once every

T for each dimension and the samples from all dimensions

at the nth symbol is then put into a stacked column vector
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notation as

r (nT ) = [r0 (nT ) , r1 (nT ) , ..., rNd−1 (nT )]T (2)

where (·)
T

indicates matrix transpose. Samples starting

from the n1’th symbol and ending at the n2’th symbols is

represented by

r
n2

n1
= [r (n1T )

T
, r ((n1 + 1) T )

T
, . . . , r (n2T )

T
]T (3)

Assuming sn = 0 for n < 0 and that Ns − L + 1
symbols have been transmitted, the available received signal

of length NsT is therefore r
Ns−1
0 .

3. OPTIMAL DETECTION IN SIMO CHANNELS

WITH MEMORYLESS NOISE

The optimal symbol-by-symbol detector chooses the sym-

bol having the highest posterior probability, that is

ŝn = arg max
sn

P
(

sn | rNs−1
0

)

(4)

As a result of the finite constellation size |Ω| and the

channel having a memory of L − 1 symbols, the task of

finding the posterior distribution may be formulated as an

inference problem on a Hidden Markov Model(HMM) with

|Ω|
L−1

states. The state vector of the jth state at the nth

symbol determine the symbols interfering with the desired

user in r
n
n assuming the jth combination of the interfering

symbols. The state vector is therefore defined as

σ
j
n = [ŝj

n−L+1, ŝ
j
n−L+2, ..., ŝ

j
n−1] (5)

with ŝ
j
n−1 being the value of the n − 1’th symbol in

the jth state. Further define Ω0 as the set of all states and

Ω(sn−1) as the set of states where ŝn−1 takes on a specific

value from Ω. This makes it possible to rewrite the posterior

probability as

P
(

sn−1 | rNs−1
0

)

=
P

(

sn−1, r
Ns−1
0

)

P
(

r
Ns−1
0

)

=

∑

σ
j
n∈Ω(sn−1)

P
(

r
Ns−1
0 ,σj

n

)

∑

σ
j
n∈Ω0

P
(

r
Ns−1
0 ,σ

j
n

)

(6)

The result of Equation (6) is, that the desired posterior

can be extracted from the joint probability P
(

r
Ns−1
0 ,σj

n

)

by marginalization. Finding the joint probability is done

by splitting it into a forward variable αj
n and a backward

variable βj
n as

P
(

r
Ns−1
0 ,σj

n

)

= P
(
r

n−1
0 ,σj

n

)
P

(
r

Ns−1
n | rn−1

0 ,σj
n

)

= P
(
r

n−1
0 ,σj

n

)

︸ ︷︷ ︸

α
j
n

P
(
r

Ns−1
n | σ

j
n

)

︸ ︷︷ ︸

β
j
n

(7)

The conditioning on r
n−1
0 can be dropped as the state

vector contains all information about the past. However,

this is only true when the noise is memoryless as assumed

here.

To find the forward and backward variables, let the apri-

ori probability of a state transition be P
(

σ
j
n | σ

j′

n−1

)

and

the set of states where P
(

σ
j
n | σ

j′

n−1

)

�= 0 as Ωn. This

makes it possible to find the forward variable recursively as

αj
n = P

(
r

n−1
0 ,σj

n

)
=

∑

σ
j′

n−1
∈Ωn

P
(

r
n−1
0 ,σj

n,σ
j′

n−1

)

=
∑

σ
j′

n−1
∈Ωn

P
(

r
n−2
0 ,σ

j′

n−1

)

︸ ︷︷ ︸

α
j′

n−1

P
(

σ
j
n | σ

j′

n−1

)

P
(

r
n−1
n−1 | σ

j
n,σ

j′

n−1

)

(8)

and the backward variable as

βj
n = P

(
r

Ns−1
n | σ

j
n

)
=

∑

σ
j′

n+1
∈Ωn+1

P
(

r
Ns−1
n ,σ

j′

n+1 | σ
j
n

)

=
∑

σ
j′

n+1
∈Ωn+1

P
(

r
Ns−1
n+1 | σ

j′

n+1

)

︸ ︷︷ ︸

β
j′

n+1

P
(

σ
j′

n+1 | σ
j
n

)

P
(

r
n
n | σ

j′

n+1,σ
j
n

)

(9)

In the special case where the noise ǫd (t) is zero-mean

Additive White Gaussian Noise(AWGN) with variance σ2

per dimension, the observation probability is conditionally

Gaussian and is given by

− 2ln
(

P
(

r
n−1
n−1 | σ

j
n,σ

j′

n−1

))

+ Z

=
1

σ2

∥
∥
∥r

n−1
n−1 − r̂

n−1
n−1

(

h,σj
n,σ

j′

n−1

)∥
∥
∥

2 (10)

with the normalization constant Z = Ndln
(
2πσ2

)
. The

function r̂
n−1
n−1

(

h,σj
n,σ

j′

n−1

)

reconstructs the desired sig-

nal from the sampled impulse response h and the overall

state. In the case of AWGN, the complexity of the algo-

rithm is O
(

Nd |Ω|
L
)

operations per symbol as O (Nd |Ω|)

operations must be performed in each of the |Ω|
L−1

states.

4. OPTIMAL DETECTION IN SIMO CHANNELS

WITH MARKOV NOISE

The noise process ǫd (t) is now assumed to be Markov with

a finite temporal memory NmT and possibly coupled across
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the receive dimensions. As before, it is desirable to model

the desired signal by a HMM, but now the noise is inde-

pendently modeled by a Markov model and the memory

needed to correctly capture the state of the system is now

L− 1 + Nm as the memories add up. The number of states

is now |Ω|
L−1+Nm and the new state vector is therefore de-

fined as

σ
j
n = [ŝj

n−L−Nm+1, ŝ
j
n−L−Nm+2, ..., ŝ

j
n−1] (11)

As in Equation (7), the joint probability is found by

splitting it into a forward variable and backward variable

by

P
(

r
Ns−1
0 ,σj

n

)

= P
(
r

n−1
0 ,σj

n

)
P

(
r

Ns−1
n | rn−1

0 ,σj
n

)

= P
(
r

n−1
0 ,σj

n

)

︸ ︷︷ ︸

α
j
n

P
(
r

Ns−1
n | rn−1

n−Nm
,σj

n

)

︸ ︷︷ ︸

β
j
n

(12)

However, the conditioning on r
n−1
0 can only be reduced

to r
n−1
n−Nm

as a result of the finite memory Markov noise and

the fact that only the desired signal is described by σ
j
n.

As before the forward variable αj
n and the backward

variable βj
n may be found recursively. The forward variable

is found by

αj
n = P

(
r

n−1
0 ,σj

n

)
=

∑

σ
j′

n−1
∈Ωn

P
(

r
n−1
0 ,σj

n,σ
j′

n−1

)

=
∑

σ
j′

n−1
∈Ωn

P
(

r
n−2
0 ,σ

j′

n−1

)

︸ ︷︷ ︸

α
j′

n−1

P
(

σ
j
n | σ

j′

n−1

)

P
(

r
n−1
n−1 | rn−2

n−1−Nm
,σj

n,σ
j′

n−1

)

(13)

and the backward variable by

βj
n = P

(
r

Ns−1
n | rn−1

n−Nm
,σj

n

)

=
∑

σ
j′

n+1
∈Ωn+1

P
(

r
Ns−1
n ,σ

j′

n+1 | rn−1
n−Nm

,σj
n

)

=
∑

σ
j′

n+1
∈Ωn+1

P
(

r
Ns−1
n+1 | rn

n+1−Nm
,σ

j′

n+1

)

︸ ︷︷ ︸

β
j′

n+1

P
(

σ
j′

n+1 | σ
j
n

)

P
(

r
n
n | rn−1

n−Nm
,σ

j′

n+1,σ
j
n

)

(14)

The observation probability is now conditioned on pre-

vious received samples and a convenient way of avoiding

this is by rewriting using Bayes’ rule as

P
(

r
n−1
n−1 | rn−2

n−1−Nm
,σj

n,σ
j′

n−1

)

=
P

(

r
n−1
n−1−Nm

| σ
j
n,σ

j′

n−1

)

P
(

r
n−2
n−1−Nm

| σ
j
n,σ

j′

n−1

)

(15)

which can be evaluated directly. The complexity of the

algorithm is O
(

|Ω|
L+Nm

)

per symbol excluding the com-

plexity involved in evaluating Equation (15).

5. OPTIMAL DETECTION IN SIMO CHANNELS

WITH GAUSS-MARKOV NOISE

The special case where the noise is not only Markov, but

also zero-mean Gaussian is described in this section. This

model fits communication systems well and is interesting

as only the covariance matrix of the noise must be known in

order to evaluate Equation (15). Any Gauss-Markov process

having non-zero mean is also described by this section, as

it may be transformed into having zero-mean by subtracting

the mean.

Let the noise samples be stacked in the same manner in

ǫ
n2
n1

as in r
n2
n1

for the received signal. To evaluate the top of

Equation (15), the covariance

Σ = E
[

ǫ
n
n−Nm

(
ǫ

n
n−Nm

)H
]

(16)

is required where (·)
H

indicates matrix transpose and

complex conjugation. The lower part requires the covari-

ance

Σ̆ = E
[

ǫ
n−1
n−Nm

(
ǫ

n−1
n−Nm

)H
]

(17)

However, the last covariance is included in the first as

can be seen by block partioning the first as

Σ =

[

Σ̆ B

B
H

A

]

(18)

Defining

W = Σ
−1 −

[

Σ̆
−1

0

0 0

]

(19)

makes it possible to rewrite Equation (15) as

− 2ln




P

(

r
n−1
n−1−Nm

| σ
j
n,σ

j′

n−1

)

P
(

r
n−2
n−1−Nm

| σ
j
n,σ

j′

n−1

)



 + Z =

ǫ̂
n−1
n−1−Nm

(

h,σj
n,σ

j′

n−1

)H

Wǫ̂
n−1
n−1−Nm

(

h,σj
n,σ

j′

n−1

)

(20)
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with the normalization constant being

Z = ln

∣
∣
∣A − B

H
Σ̆

−1
B

∣
∣
∣ + Ndln (2π) (21)

where |·| indicates the matrix determinant and the esti-

mated noise is defined as

ǫ̂
n−1
n−1−Nm

(

h,σj
n,σ

j′

n−1

)

= r
n−1
n−1−Nm

− r̂
n−1
n−1−Nm

(

h,σj
n,σ

j′

n−1

) (22)

However, the rank of W is not full. It is shown in Sec-

tion 8 that rank (W) = Nd, thus making it possible to

express W as a sum of Nd vector outer products

W =

Nd−1∑

d=0

fdf
H
d

= [f0, f1, . . . , fNd−1]
︸ ︷︷ ︸

F

[f0, f1, . . . , fNd−1]
H

︸ ︷︷ ︸

FH

(23)

Whitening of the noise process can therefore be achieved

by the MIMO whitening filter F
H . The whitened received

signal and reconstructed signal are defined as

r̃
n−1
n−1 = F

H
r

n−1
n−1−Nm

˜̂rn−1
n−1

(

h,σj
n,σ

j′

n−1

)

= F
H
r̂

n−1
n−1−Nm

(

h,σj
n,σ

j′

n−1

)

(24)

making it possible to rewrite Equation (20) as

− 2ln




P

(

r
n−1
n−1−Nm

| σ
j
n,σ

j′

n−1

)

P
(

r
n−2
n−1−Nm

| σ
j
n,σ

j′

n−1

)



 + Z

=
∥
∥
∥r̃

n−1
n−1 −

˜̂rn−1
n−1

(

h,σj
n,σ

j′

n−1

)∥
∥
∥

2

(25)

This is simply the AWGN version of the receiver as

the signal has now been whitened by F
H , but the chan-

nel length is now L + Nm instead of L. The complex-

ity of the receiver using the whitening filter is therefore

O
(

Nd |Ω|
L+Nm

)

operations per symbol excluding finding

and applying the whitening filter. As expected, the results

of [2] and [3] are recovered if Nd = 1 is inserted.

6. NUMERICAL SIMULATIONS

In this section, a number of simulations using a GSM phys-

ical layer is presented using the zero-mean Gauss-Markov

model to approximate Co-Channel Interference(CCI). All

interferers are fully synchonized in time with the desired

user. The used modulation is Gaussian Minimum Shift Key-

ing(GMSK) with BT = 0.3 in accordance with the GSM

specifications. However, as this modulation is non-linear, it

is linearized to fit the model of Equation (1) by the Laurent

approximation [5]. The channel model used for all simu-

lations is the Typical Urban(TU) model given by the GSM

specifications using a mobile speed of 50 km/h at a carrier

frequency of 945 MHz. All simulations are performed us-

ing perfect knowledge of the linearized impulse response

of the desired user and covariance matrix of the linearized

interference.

In the detector the received signal is oversampled by a

factor of Nsps relative to the symbolrate. There are several

reasons for having Nsps > 1 in a GSM receiver, one being

that the bandwidth of the signal exceeds the Nyquist fre-

quency. After sampling, the received signal is derotated to

remove the rotation in the GMSK modulation [5]. Next, the

received signal is split into a real and imaginary part as this

improves the rejection of interferers with real constellation

points, such as derotated GMSK, by exploiting redundancy

in the interfering signal [6]. The number of real-valued re-

ceive dimensions for the receiver is therefore Nd = 2Nsps.

As a measure of the level of interference, the Carrier-to-

Interference Ratio(CIR) is defined as the average received

power for the desired user divided by the average received

interference power. Further, AWGN is added to account

for any thermal noise with the Signal-to-Noise Ratio(SNR)

being defined as the average received signal power from the

desired user divided by the noise variance.

For comparison, the performance of IQ-LMMSE[6] and

BCJR detection without whitening is shown using perfect

parameter estimates. Like the Gauss-Markov approxima-

tion, the IQ-LMMSE relies on second-order moments to

suppress interference and therefore seems to be a reason-

able comparison.

In Figure 1 the Bit Error Rate(BER) of a GSM user is

plotted under the influence of one GMSK co-channel inter-

ferer. It can be seen that a gain can be achieved by increas-

ing the oversampling from Nsps = 1 to Nsps = 2 and that

the IQ-LMMSE is outperformed, especially at higher val-

ues of CIR. Higher values of Nsps are not included as only

marginal gains compared to Nsps = 2 are achievable for

this scenario. The value of L = 7 is selected in order to

capture all energy spread out in time by the channel model

and Nm = 3 was selected as higher values seem to provide

little improvement.

In Figure 2 another interferer is added with the second

interferer being 10dB weaker than the first. The perfor-

mance is clearly impacted by the additional interferer, but

a significant gain is still achieved over IQ-LMMSE and by

using Nsps = 2 compared to Nsps = 1.

7. CONCLUSION

Minimum symbol error rate detection in SIMO channels

with Markov noise has been derived as a generalization of
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Fig. 1. BER plot of 1 CCI on TU50 channels with L = 7,

Nm = 3, SNR = 40dB.

the work presented in [2]. In the special case of Gauss-

Markov noise, it has been shown that optimal detection can

be achieved by a MIMO whitening filter followed by a tradi-

tional BCJR algorithm. Numerical simulations have shown

that the presented detector can improve the performance

compared to the IQ-LMMSE and the detector in [2] when

multiple observations per symbol are available in interfe-

rence-limited scenarios.

8. PROOF OF RANK

In this section it is shown that rank (W) = Nd with W

defined by Equations (18)-(19). This is most easily done by

using the inversion lemma for block partitioned matrices to

yield

W = Σ
−1 −

[

Σ̆
−1

0

0 0

]

=

[

B̃SB̃
H

−B̃S

−SB̃
H

S

]

=

[

B̃

−I

]

S

[

B̃

−I

]H
(26)

with

B̃ = Σ̆
−1

B

S =
(

A − B
H
Σ̆

−1
B

)−1 (27)

where I indicates the identity matrix. As the Schur com-

plement S is positive definite, it may be Cholesky factorized

as S = CC
H making it possible to rewrite Equation (26) as

W =

[

B̃

−I

]

C

︸ ︷︷ ︸

F

C
H

[

B̃

−I

]H

︸ ︷︷ ︸

FH

(28)
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The result in Equation (28) directly shows rank (W) =
Nd and thereby completes the proof.
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ABSTRACT

A general Variational Bayesian framework for iterative data
and parameter estimation for coherent detection is introduced
as a generalization of the EM-algorithm. Explicit solutions
are given for MIMO channel estimation with Gaussian prior
and noise covariance estimation with inverse-Wishart prior.
Simulation of a GSM-like system provides empirical proof
that the VBEM-algorithm is able to provide better perfor-
mance than the EM-algorithm. However, if the posterior dis-
tribution is highly peaked, the VBEM-algorithm approaches
the EM-algorithm and the gain disappears. The potential gain
is therefore greatest in systems with a small amount of ob-
servations compared to the number of parameters to be esti-
mated.

1. INTRODUCTION

The focus of this paper is on improved iterative data and para-
meter estimation for coherent detection in block-fading freq-
uency-selective MIMO channels. Much work has been done
within this field and many variants of the EM-algorithm have
been applied to communication systems, see for example [1,
2, 3]. However, previous estimators have all provided point-
estimates of the parameters, not distributions as offered by the
full Bayesian approach. On the other hand, Bayesian estima-
tors average over the distribution of the unknown variables
or parameters to provide improved inference about the sys-
tem. Previously, a so-called Bayesian EM (BEM)-algorithm
was introduced for communication systems [2, 3]. However,
the BEM-algorithm provides a Maximum A Posteriori (MAP)
point-estimate and is therefore not a true Bayesian estimator.

The contribution of this paper is to introduce the Varia-
tional Bayesian EM (VBEM)-algorithm, already used exten-
sively in the machine-learning community, to the communi-
cations society. Explicitly, the contribution is to formulate an
iterative data, channel and noise covariance estimator based
on the VBEM-algorithm. By simulations it is shown, that
the performance of a communication system can be improved
over that based on the EM-algorithm when there is significant
uncertainty in the parameter estimates.

The first author would like to thank Nokia Denmark for funding

2. SYSTEM MODEL

We will consider the uncoded linearM × N MIMO system

yi = Hxi + ni (1)

whereH ∈ CM×N is the channel matrix andxi ∈ ΩN×1

is the vector of transmitted symbols at time indexi, each
belonging to the complex-valued alphabetΩ. The received
signal vectoryi ∈ CM×1 holds the observations at timei
and the additive noiseni ∈ CM×1 is assumed to be circu-
lar zero-mean Gaussian with covarianceΣ , E

[

nin
H
i

]

and
E
[

nin
T
i

]

= 0. The generalization of the estimation frame-
work to Gauss-Markov noise is straightforward [4].

The frequency-selectivechannel is assumed to have a tem-
poral length ofL symbols. LetNt andNr denote the num-
ber of transmitters and receivers respectively leading toN =
LNt andM = Nr. For channel estimation, it is desirable to
rewrite the channel matrix into a vector notation as

yi = Xih + ni (2)

with h , vec (H) wherevec (·) is the column stacking oper-
ator. Thek’th row of the symbol matrixXi ∈ CNr×LNtNr is
found by upsamplingxT

i by Nr and shifting it right byk − 1
positions producing a Toeplitz structure. The two representa-
tions are equivalent and we can use the best suited depending
on conditions.

Assuming data is sent in frames ofNf symbols per trans-
mitter, the collection of all transmitted symbols and observa-
tions is given by

x = {x1,x2, ...,xNf
}, y = {y1,y2, ...,yNe

} (3)

whereNe = Nf + L − 1 due to the convolutive multipath
channel.

3. MAXIMUM LIKELIHOOD ESTIMATION

In this section, a quick outline of Maximum Likelihood (ML)
estimation using the EM-algorithm is presented as the VBEM-
algorithm is a generalization of the EM-algorithm. The frame-
work is in a general form and is carried over to the formulation
of the VBEM-algorithm. For further details, see [5, 6].
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The idea behind the EM-algorithm is to consider the ob-
servationsy being incomplete data as the underlying hidden
variablesx are unknown. This problem is overcome by con-
sidering the hidden variables as being random variables and
averaging over their distribution. By this philosophy we can
write the complete-data log-likelihood of the parameter set θ

E : Q
(

θ, θ(j−1)
)

, 〈ln [p (y,x | θ)]〉
p(x|y,θ(j−1)) (4)

whereθ
(j−1) is the parameter set from the previous iteration

and 〈·〉p(·) indicates averaging w.r.t. the distribution in the
subscript. Carrying out the above averaging is often termed
the E-step. Next, in the so-called M-step we maximize w.r.t.
θ, i.e.

M : θ
(j)

, argmax
θ

Q
(

θ, θ(j−1)
)

(5)

We now have an iterative algorithm, which can be shown
to converge to a local maximum inp (y, θ). However, the
fact that the algorithm ”only” converges to a local maximum
makes initialization of the algorithm crucial, as it may other-
wise converge to an incorrect maximum.

In terms of the system model from Section 2, the obser-
vations are the received samplesy, the hidden variables cor-
respond to the transmitted symbolsx and the parameter set
is θ = {h,Σ}. In the E-step, the posterior distribution of

the transmitted symbolsp
(

x | y,h(j),Σ(j)
)

is found by the

well-known BCJR algorithm using forward-backward recur-
sions, see e.g. [4]. The M-step finds the joint ML channel
and covariance estimate, but this produces non-linear sys-
tems of equations that in the general case appear to have no
closed-form solution. A solution is to find the individual ML
estimates and possibly iterate between them in the M-step.
The individual solutions are easily found to be the Weighted
Least-Squares estimator and the sample covariance for the
channel and covariance estimate respectively, both averaged
over the posterior of the symbols. This common result is
not reproduced here, but is given byh

(j)
MAP in (13) andS(j)

in (14) by replacing the parameter distribution with a delta-
function in the ML point estimate, i.e.qθ (θ) = δ (θ − θML)
andΣ−1

1 = 0.

4. BAYESIAN ESTIMATION

In a truly Bayesian framework, all unknown variables and pa-
rameters are treated as random variables with some distribu-
tion that can be integrated out. The marginal likelihood of the
model is therefore found by integrating out the uncertaintyas

p (y) =

∫

p (y,x, θ) dxdθ (6)

However, for interesting models the integration is likely to
be intractable as it involves multi-dimensional integralsover

complicated expressions. Instead, we lower-bound the mar-
ginal log-likelihood by Jensen’s inequality as

ln [p (y)] = ln

[
∫

q (x, θ)
p (y,x, θ)

q (x, θ)
dxdθ

]

≥

∫

q (x, θ) ln

[

p (y,x, θ)

q (x, θ)

]

dxdθ

(7)

whereq (x, θ) is a free distribution used to approximate the
posteriorp (y,x, θ). Maximizing the lower-bound w.r.t. the
free distributionq (x, θ) yields the exact posterior, which was
what we started out with, and is therefore of no interest. Con-
straining the free distribution to factorize between the hidden
variables and the parameters by requiring

q (x, θ) = qx (x) qθ (θ) (8)

provides the intriguing solution that we can optimize the free
distributions individually and iterate between them to max-
imize the lower-bound. This is done by the alternating be-
tween the VBE-step and the VBM-step given by

V BE : q(j)
x (x) ∝ e

〈ln[p(y,x|θ)]〉
q
(j−1)
θ

(θ)

V BM : q
(j)
θ

(θ) ∝ p (θ) e
〈ln[p(y,x|θ)]〉

q
(j)
x (x)

(9)

wherep (θ) is a parameter prior. Due to the factorization,
global convergence can not be guaranteed, but it can be shown
to converge to a local maximum inp (y). From (9) we see
that the VBEM-algorithm is similar to the EM-algorithm, but
the distinction between hidden variables and unknown para-
meters has vanished as the VBE- and VBM-steps are both
averaging over posterior distributions. For more details on
Bayesian estimation and the VBEM-algorithm, see [6, 7].

Returning to the system model of Section 2 we now have

q (x,h,Σ) = qx (x) qh (h) qΣ (Σ) (10)

where the free distribution is further assumed to factorizebe-
tween the channel and noise covariance posterior. This ap-
proach is equivalent to the individual maximization described
in Section 3 for the M-step. The above facorization can be
seen to yield the updates

q(j)
x (x) ∝ e

〈ln[p(y,x|h,Σ)]〉
q
(j−1)
h

(h)q
(j−1)
Σ

(Σ)

q
(j)
h (h) ∝ p (h) e

〈ln[p(y,x|h,Σ)]〉
q
(j)
x (x)q

(j−1)
Σ

(Σ)

q
(j)
Σ (Σ) ∝ p (Σ) e

〈ln[p(y,x|h,Σ)]〉
q
(j)
x (x)q

(j)
h

(h)

(11)

To simplify the updates, the parameter priors should be con-
jugate meaning that the posterior is of the same type as the
prior. For the channel estimate, the conjugate prior ish ∼
CN (h1,Σ1) and for the covariance, it is the inverse-Wishart
distribution [8].
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For the channel estimate, using (2)-(3) and the fact that
the noise and prior is Gaussian, we get

− ln
[

q
(j)
h (h)

]

+ Z1 = (h − h1)
H

Σ−1
1 (h − h1)

+

Ne
∑

i=1

〈

(yi − Xih)
H 〈

Σ−1
〉

q
(j−1)
Σ

(Σ)
(yi − Xih)

〉

q
(j)
x (x)

(12)

with Z indicating a normalization constant. Due to the choice
of a conjugate prior, the posterior is Gaussian and given by

q
(j)
h (h) ∼ CN

(

h
(j)
MAP ,Σ

(j)
h

)

with covariance and mean

Σ
(j)
h

=

(

Ne
∑

i=1

〈

XH
i

〈

Σ−1
〉

q
(j−1)
Σ

(Σ)
Xi

〉

q
(j)
x (x)

+ Σ−1
1

)−1

h
(j)
MAP =

Σ
(j)
h

(

Ne
∑

i=1

〈

XH
i

〉

q
(j)
x (x)

〈

Σ−1
〉

q
(j−1)
Σ

(Σ)
yi + Σ−1

1 h1

)

(13)

The distribution of the noise covariance is

− ln
[

q
(j)
Σ (Σ)

]

+ ln [p (Σ)] − Neln |Σ| + Z2

=

Ne
∑

i=1

〈

(yi − Xih)
H

Σ−1 (yi − Xih)
〉

q
(j)
x (x)q

(j)
h

(h)

= tr

{

Σ−1
Ne
∑

i=1

〈

(yi − Xih) (yi − Xih)
H
〉

q
(j)
x (x)q

(j)
h

(h)

}

= tr
{

Σ−1S(j)
}

(14)

whereS(j) is the sample covariance averaged over the poste-
riors. It can be shown [8], that for the inverse-Wishart prior
Σ ∼ CW−1 (ν,Σ2), we get

〈

Σ−1
〉

q
(j)
Σ

(Σ)
= (Ne + ν)

(

S(j) + Σ2

)−1

(15)

which for the noninformativepriorΣ ∼ CW−1 (0,0) is equiv-
alent to the ML covariance estimate. The conjugate priors can
therefore be interpreted as inserting virtual observations into
the estimation.

The VBE-step is similar to the traditional BCJR algo-
rithm, only now we average over the posterior distribution
of the parameters. The required state transition probabilities

γ (yi | Xi, θ) are therefore of the form

− ln [γ (yi | Xi, θ)] + Z3

=
〈

(yi − Xih)
H 〈

Σ−1
〉

q
(j−1)
Σ

(Σ)
(yi − Xih)

〉

q
(j−1)
h

(h)

= Z4 − 2Re
{

yH
i

〈

Σ−1
〉

q
(j−1)
Σ

(Σ)
Xi 〈h〉q(j−1)

h
(h)

}

+ tr
{

〈

hhH
〉

q
(j−1)
h

(h)
XH

i

〈

Σ−1
〉

q
(j−1)
Σ

(Σ)
Xi

}

(16)

As the posterior distribution of the channel estimate is Gaussian,
we have

〈h〉
q
(j)
h

(h)
= h

(j)
MAP

Σ(j)
m ,

〈

hhH
〉

q
(j)
h

(h)
= h

(j)
MAP

(

h
(j)
MAP

)H

+ Σ
(j)
h

(17)

Inserting this into (16), we get

− ln [γ (yi | Xi, θ)] + Z3 − Z4

= −2Re
{

yH
i

〈

Σ−1
〉

q
(j−1)
Σ

(Σ)
Xih

(j−1)
MAP

}

+ tr
{

Σ(j−1)
m XH

i

〈

Σ−1
〉

q
(j−1)
Σ

(Σ)
Xi

}

(18)

The exchange of soft-information between the data and para-
meter estimators is now complete with the complexity being
similar to that of the equivalent EM-algorithm per iteration.

5. NUMERICAL EXAMPLE AND DISCUSSION

In order to indicate the advantage of the VBEM-algorithm
and keep things as simple as possible, a single-antenna noise-
limited GSM-like system is considered. The GSM system
has a burst structure withNf = 142 + 6 transmitted sym-
bols, including the 6 so-called tailbits, and hasNtr = 26
known training symbols placed in the middle. The noise is as-
sumed to be Additive White Gaussian Noise (AWGN) and the
noise covariance estimation therefore reduces to a scalar vari-
ance estimation. The used channel model is the GSM Typical
Urban (TU) multipath channel profile [9] with a speed of 0
km/h and using ideal frequency hopping. This ensures that
the channel stays constant over a burst and that a new channel
is drawn from the distribution for every burst, i.e. making it
block-fading. The overall length of the transmission pulse-
shaping and channel model isL = 7. To make a fair compar-
ison with the EM-algorithm and not go into a discussion on
the correctness of various choices of priors, only noninforma-
tive priors are used for the VBEM-algorithm, i.e.Σ−1

1 = 0

andΣ ∼ CW−1 (0,0).
A difference between the considered system and a GSM

system is, that the considered modulation is linearized in or-
der to eliminate the non-linearities introduced by the GMSK
modulation used in GSM. The resulting linear modulation is
simply a BPSK modulation with a rotation ofπ/2 per symbol.
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Fig. 1. Simulation of a GSM-like system using a TU0iFH channel profile,Nt = Nr = 1, L = 7.

On the left of Fig. 1, the Bit Error Rate (BER) of the above
mentioned system is plotted. The results termed ”Known”
and ”Training” are respectively the BER using the correct pa-
rameters and using only the training symbols for estimation.
It can be seen that the BER of the EM and VBEM estimators
are pretty much the same, although the VBEM estimator is
actually better. The reason for this result is, that the number
of observations is large compared to the number of parame-
ters to be estimated. This makes the posterior distribution
highly peaked around the ML solution effectively making the
VBEM-algorithm fall back to the EM-algorithm.

However, changing the ratio between the number of esti-
mated parameters and the number of observations affects the
posterior distribution. On the right of Fig. 1, the length ofthe
GSM burst has been reduced to half its original size leading
to a less peaked posterior. The result is that the EM-algorithm
now performs worse than the VBEM-algorithm, as the lat-
ter incorporates knowledge about the uncertainty in the pa-
rameters. The VBEM-algorithm is therefore beneficial when
”few” observations are present or when ”a lot” of parameters
have to be estimated. This little example illustrates the ad-
vantage of the VBEM-algorithm for systems employing short
packet structures and/or MIMO systems with many parame-
ters to be estimated from a limited number of observations.
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ABSTRACT

Toeplitz covariance matrix estimation has many uses in sta-
tistical signal processing due to the stationarity assumption
of many signals. For some applications, further constraints
may exist on the maximum lag at which the correlation func-
tion is non-zero and thereby giving rise to a band-Toeplitz co-
variance matrix. In this paper, an existing EM-algorithm for
Toeplitz estimation is generalized to the case of band-Toeplitz
estimation. In addition, the Cramer-Rao lower-bound for un-
biased band-Toeplitz covariance matrix estimation is derived
and through simulations it is shown that the proposed estima-
tor achieves the bound for medium and large sample-sizes.

Index Terms— Structured covariance matrix estimation,
banded Toeplitz, EM-algorithm, Cramer-Rao lower-bound.

1. INTRODUCTION

Estimation of Toeplitz covariance matrices is inherently con-
nected to signal processing of stationary processes and ap-
plications are numerous, e.g. communications and radar sys-
tems. However, the constraint of stationarity and its result-
ing requirement for a Toeplitz structure in the covariance ma-
trix, makes Maximum-Likelihood (ML) estimation challeng-
ing and no general closed-form solution is known [1, 2]. In
[1], an EM-algorithm for Toeplitz covariance matrix estima-
tion is constructed by exploiting a circulant extension of the
Toeplitz matrix and the idea is further generalized to Block-
Toeplitz in [3].

The contribution of this paper is to generalize the idea of
using an EM-algorithm based on a circulant extension to co-
variance matrices that are not only Toeplitz, but band-Toeplitz
with bandwidthB, i.e. having non-zero correlations only up
to and including lagB. Such estimates are important in many
practical applications as it is often reasonable to set an up-
per limit on the maximum lag of the estimate due to proper-
ties of the system considered. The proposed method therefore
bridges the gap in correlation estimation from simple power
estimation (B = 0) to full Toeplitz covariance matrix estima-
tion. A natural generalization to block-banded block-Toeplitz

The author would like to thank Nokia Denmark for funding

matrices exists following [3], but this is outside the scopeof
this paper.

Section 2 presents the system model and preliminaries and
in Section 3 the EM-algorithm for Toeplitz covariance matrix
estimation is outlined. Next, Section 4 modifies the existing
M-step of the EM-algorithm to allow for constrained band-
Toeplitz estimation. Section 5 derives the Cramer-Rao lower-
bound for band-Toeplitz estimation and Section 6 outlines a
traditional linear estimator used for comparison. Finally, Sec-
tion 7 presents a numerical example and conclusion.

In the following, bold letters such asx andX are respec-
tively column vectors and matrices withxi and[X]i,j being a
specific scalar element with the indices starting at zero. Fur-
ther,(·)T indicates matrix transpose,(·)∗ matrix conjugation,

(·)H
,
(
(·)∗
)T

Hermitian transpose andtr {·} the trace op-
erator. The notation| · | indicates the determinant of a matrix
or the absolute value of a scalar. Finally,diag (·) constructs
a diagonal matrix from a vector or, if operating on a matrix,
produces a vector from the diagonal elements of the matrix.

2. SYSTEM MODEL AND PRELIMINARIES

Let X , {xk}
K

k=1 be a collection of independent realiza-
tions of a zero-mean circular complex Gaussian distribution
xk ∼ CN (0,Σx) with xk ∈ CNx . The distribution of the
observations is therefore given by

−ln (p (X | Σx)) − Kln |πΣx| =

K∑

k=1

x
H
k Σ

−1
x xk

= Ktr
{
Σ

−1
x Sx

}

(1)

with Sx ∈ CNx×Nx being the sample covariance matrix

Sx ,
1

K

K∑

k=1

xkx
H
k (2)

Also definec ∈ CB+1 as the topB + 1 terms of the first
column inΣx and letr ∈ R

2B+1 be the stacking of the real
and imaginary part ofc with the real parts in the top of the
vector. The length ofr is only 2B + 1 as the imaginary part
of c0 must be zero.
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Given the observationsX , the task is to provide the con-
strained ML estimate ofΣx. If no such constraints existed,
the ML solution is simply given bySx.

Let Σ̂
(k)

x ∈ CNx×Nx be an estimate ofΣx at iterationk

that obeys the Toeplitz constraint. Now, letΣ̂
(k)

y ∈ CNy×Ny

be a circularly extended version ofΣ̂
(k)

x whereNy ≥ 2Nx−1
makes a circulant extension possible. It is well-known thatthe
Discrete Fourier Transform (DFT) diagonalizes any circulant
matrix, i.e.

Σ̂
(k)

y = D
H
Λ̂

(k)
D (3)

with [D]i,j = N
− 1

2
y e

− 2π
√

−1
Ny

ij being the normalized DFT ma-

trix of size Ny. The diagonal matrix̂Λ(k) , diag
(

λ̂
(k)
)

holds the eigenvalues given by

λ̂
(k)

, N
1
2
y Dσ̂(k)

y (4)

whereσ̂(k)
y ,

[

Σ̂
(k)

y

]

:,0
is the first column of the circulant

matrix. The eigenvalues of (4) contain all the information
about the underlying Toeplitz matrix and we therefore have

Σ̂
(k)

x = D̃
H
Λ̂

(k)
D̃ (5)

with D̃ , D [INx
0]

T . If the desired covariance estimate
is of sizeM ≤ Nx, the result is given by the upper left sub-

matrix of Σ̂
(k)

x .

3. EM-ALGORITHM FOR TOEPLITZ ESTIMATION

Here, the EM-algorithm applied to the problem of Toeplitz
covariance matrix estimation is briefly outlined as described
in [1] with [2] providing an efficient implementation. The
E-step can be expressed as

E : ∆
(k) , Λ̂

(k)
D̃

(

W
(k)

SxW
(k) − W

(k)
)

D̃
H
Λ̂

(k)

(6)

with W
(k) ,

(

Σ̂
(k)

x

)−1

and∆
(k) being the unconstrained

update to the complete-data sample covariance matrixSy.
The M-step should now choose the complete-data ML co-
variance estimate fulfilling the structural constraints based on
the sufficient statisticSy. As the estimate is known to be
Toeplitz, meaning that the update must be a diagonal matrix,
it is straight-forward to show that the constrained ML update
is exactly the diagonal of∆(k), i.e.

M : Σ̂
(k+1)

x = D̃
Hdiag








λ̂
(k)

+ diag
(

∆
(k)
)

︸ ︷︷ ︸

λ̂
(k+1)








D̃ (7)

As the EM-algorithm is only guaranteed to converge to a local
maximum in the complete-data likelihood function, initializa-
tion is important. A reasonable choice of initialization, which

is used throughout this paper, iŝΣ
(0)

x = N−1
x tr {Sx} INx

.

4. A MODIFIED M-STEP FOR BAND-TOEPLITZ
ESTIMATION

Assuming it is known apriori that the covariance matrixΣx is
band-Toeplitz with bandwidthB, the idea is now to constrain

the covariance estimate by requiring a functional form ofλ̂
(k)

that guarantee this constraint. From (4) we have

σ̂(k)
y = N

− 1
2

y D
H λ̂

(k)
(8)

so a set of eigenvalueŝλ
(k)

BT fulfilling the structural constraint,
must decompose as

λ̂
(k)

BT = N
1
2
y

B∑

b=−B

ĉ
(k)
b db s.t. ĉ

(k)
b =

(

ĉ
(k)
−b

)∗

= N
1
2
y

(

ĉ
(k)
0 d0 + 2

B∑

b=1

Re
{

ĉ
(k)
b db

}
) (9)

wheredb = d
∗
−b , [D]:,mod(b,Ny) with mod (x, y) mean-

ing x moduloy. The functional form of the eigenvalues in
(9) effectively forces the covariance estimate to beĉ

(k) ,
[

ĉ
(k)
0 , . . . , ĉ

(k)
B

]T

for the non-zero band and zero elsewhere.

However, as the eigenvalues must be real-valued and there
are onlyNb , 2B + 1 real-valued degrees-of-freedom in the
decomposition, we choose to reformulate the constraint as a
real-valued decomposition, i.e.

λ̂
(k)

BT = Tr̂
(k) (10)

Herer̂
(k) ∈ RNb are the unknowns andT , [t0, . . . , tNb−1]

is defined by

tb ,







N
1
2
y Re {db} , b = 0

2N
1
2
y Re {db} , 1 ≤ b ≤ B

−2N
1
2
y Im {db−B} , B < b < Nb

(11)

The upperB + 1 coefficients of̂r(k) will therefore hold the
real part of̂c(k) while the lowerB coefficients are the imag-
inary part. In the case of real-valued covariance estimation,
havingNb , B + 1 is therefore sufficient to parameterize the
constrained estimate.

The reader should now be familiar with the overall struc-
ture of the EM-algorithm for band-Toeplitz estimation and the
iteration index is therefore dropped for notational ease inthe
following. The challenge is now, given the current ML es-
timate over the space of circulant matricesλ̂, to minimize
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some distance measuref
(

λ̂, r̂
)

between the Toeplitz and

the band-Toeplitz estimate subject to the constraint that the
resulting eigenvalues must all be non-negative, i.e.Tr ≥ 0.
As the EM-algorithm proceeds, this will result in a successive
tightening of the lower-bound on the marginal log-likelihood
determined in the E-step.

4.1. ML Estimation

Using the complete-data negative log-likelihood as a distance
measure, we maximize the lower-bound over the space of
valid band-Toeplitz matrices. Letting

[
t̃0, . . . , t̃Ny−1

]
, T

T ,
the desired distance measure can be written as

f
(

λ̂, r̂
)

=

Ny−1
∑

i=0

ln
(
t̃
T
i r̂
)

+
(
t̃
T
i r̂
)−1

λ̂i (12)

As the distance measure consists of a sum of a concave and
a convex term in the unknowns, the overall function is non-
convex and thereby making global minimization unfeasible.
Instead, the first- and second-order derivatives

∂f
(

λ̂, r̂
)

∂r̂
=

Ny−1
∑

i=0

1

t̃T
i r̂

(

1 −
λ̂i

t̃T
i r̂

)

t̃i (13)

∂2f
(

λ̂, r̂
)

∂r̂∂r̂T
= −

Ny−1
∑

i=0

1
(
t̃T
i r̂
)2

(

1 −
2λ̂i

t̃T
i r̂

)

t̃it̃
T
i (14)

can be used in any favorite optimization scheme to determine
a local minimum of the distance measure. As the distance
measure may have multiple minima, the search should be
started at the previous value ofr̂ to make sure that the update
cannot increase the distance measure.

4.2. Other Distance Measures

Instead of minimizing the negative log-likelihood function di-
rectly other criterions can also be used. However, for the EM-
algorithm to converge an update must not increase (12), but
it is not required to minimize it either. In this manner, it is
possible to formulate an entire family of Generalized EM-
algorithms for band-Toeplitz covariance estimation. An ex-
ample of this strategy would be to not minimize (12), but only
find an update that lowers it and thereby trade convergence
speed for reduced computational complexity in the M-step.

5. LOWER-BOUND FOR BAND-TOEPLITZ
COVARIANCE ESTIMATION

The Cramer-Rao Lower-Bound (CRLB) provides the lowest
possible error variance of any estimator and is therefore a nat-
ural performance benchmark. Determining the bound for a
biased estimator involves computing the bias-function of the

estimator, which in general appears unfeasible. Instead, the
Unbiased CRLB (U-CRLB) is derived and used for compar-
ison, as it is well-known that the ML estimate is asymptoti-
cally unbiased.

Following the derivation in [4] and modifying it to include
the complex-valued observations, the Fisher information ma-
trix J ∈ RNb×Nb for the constrained covariance estimate can
be found to be

[J]i,j = Ktr

{

Σ
−1
x

∂Σx

∂ri

Σ
−1
x

∂Σx

∂rj

}

(15)

and using (5) and (10) we readily get

∂Σx

∂ri

= D̃
Hdiag (ti) D̃ (16)

As the focus is on the U-CRLB, the desired lower-bound is

E
[

|ri − r̂i|
2
]

≥
[
J
−1
]

i,i
(17)

6. WEIGHTED PROJECTED COVARIANCE
ESTIMATION

This section outlines a simple method of performing Toeplitz
covariance matrix estimation based on the idea of [5] in or-
der to better understand the EM-based approach and provide
a benchmark. The idea is to simply average along the diago-
nals of the sample covariance to estimate the correlations for
the desired lags. However, to guarantee a positive definite
matrix, the lagm correlation estimate is weighted byNx−m

Nx

with m ≥ 0. A valid Toeplitz covariance matrix of sizeM
can now be constructed from the weighted correlation coeffi-
cients[ĉ0, . . . , ĉM−1]

T resulting in a bias given by

E [cm − ĉm] =
m

Nx

cm (18)

The Mean-Squared Error (MSE) of the correlation estimates
can be found by expressing fourth-ordermoments of the Gaus-
sian observations by their second-order moments as

E
[

|cm − ĉm|2
]

=

m2

N2
x

|cm|2 +
1

KN2
x

B∑

b=−B

(Nx − m − |b|) |c|b||
2

(19)

The result of (19) is only valid for the complex-valued do-
main, but a similar result can be obtained for the real-valued
domain by following the same principle. However, the proof
of (19) and its real-valued equivalent are left out due to lack
of space.

Although this sub-optimal method of covariance estima-
tion can only provide full Toeplitz matrix estimates, it is re-
lated to band-Toeplitz estimation in the sense that one can
chooseM = B + 1 to produce an estimate of the non-zero
correlation coefficients. Using the resulting estimate to pro-
duce a larger band-Toeplitz matrix, e.g. of sizeNx, is how-
ever not guaranteed to be positive definite.
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Fig. 1. Example of band-Toeplitz covariance matrix estimation asa function of the sample-sizeNx for B = 1, K = 1.

7. NUMERICAL EXAMPLE AND CONCLUSION

To demonstrate the proposed method, complex-valued zero-
mean white Gaussian noise with unit power is filtered by a

first-order FIR filter having coefficients
[

1√
2
, 1+

√
−1

2

]T

. This

results in a band-Toeplitz covariance matrix(B = 1) having

the first column specified byr =
[

1, 1√
8
, 1√

8

]T

. In figure

1, the bias and MSE of the Weighted Projected (WP) estima-
tor and the proposed EM-based method (EM) is depicted as
a function of the sample-sizeNx. For WP, both exact results
found by (19) and simulations are shown. The lower part of
the figure depicts the MSE of the estimates and the U-CRLB
is also shown for reference. It can be seen that a significant
reduction in MSE is achievable by incurring a moderate bias
increase with the exception of lag zero where WP is unbi-
ased. Furthermore, as the sample-size increases, the proposed
estimator becomes unbiased and tends to the U-CRLB. In
conclusion, the proposed EM-based estimator provides near-
optimal performance with a reasonable complexity due to its
effective implementation exploiting the band-Toeplitz struc-
ture [2]. These properties make the proposed method an inter-
esting candidate for many applications where accurate band-
Toeplitz covariance matrix estimation is of great importance.

8. REFERENCES

[1] M. I. Miller and D. L. Snyder, “The role of likelihood
and entropy in incomplete-data problems: Applications
to estimating point-process intensities and toeplitz con-
strained covariances,”Procedings of the IEEE, vol. 75,
pp. 892–907, 1987.

[2] A. Dembo, C. L. Mallows, and L. A. Shepp, “Embed-
ding nonnegative definite Toeplitz Matrices in nonnega-
tive definite circulant matrices, with application to covari-
ance estimation,” IEEE Trans. on Information Theory,
vol. 35, no. 6, pp. 1206–1212, Nov. 1989.

[3] D. R. Fuhrmann and T. A. Barton, “Estimation of block-
toeplitz covariance matrices,” in24th IEEE Asim. Conf.
on Signals, Systems and Computers., 1990, pp. 779–783.

[4] B. Porat and B. Friedlander, “Computation of the exact
information matrix of Gaussian time series with station-
ary random components,”IEEE Trans. on Accoustics,
Speech and Signal Proc., vol. 34, pp. 118–130, 1986.

[5] T. A. Barton and S. T. Smith, “Structured covariance es-
timation for space-time adaptive processing,” inProced-
ings of the IEEE ICASSP, 1997, pp. 3493–3496.



92 Appendix D



Bibliography

[3GP] TS 45.005 3GPP. 3GPP TSG GERAN; Radio transmission and
reception (Release 5).

[ADC95] N. Al-Dhahir and J.M. Cioffi. MMSE decision-feedback equalizers:
finite-length results. IEEE Transactions on Information Theory,
41(4):961–975, July 1995.

[AEVZ02] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger. Closest point search
in lattices. IEEE Transactions on Information Theory, 48(8):2201–
2214, Aug. 2002.

[AM00] S.M. Aji and R.J. McEliece. The generalized distributive law. IEEE
Trans. on Info. Theory, 46(2):325–343, Mar. 2000.

[Att00] H. Attias. A variational bayesian framework for graphical models.
In Adv. Neur. Info. Proc. Sys. (NIPS) 12. MIT Press, Cambridge,
MA., 2000.

[AV01] D. Agrawal and A. Vardy. The turbo decoding algorithm and
its phase trajectories. IEEE Transactions on Information Theory,
47(2):699–722, Feb. 2001.

[BC02] J. Boutros and G. Caire. Iterative multiuser joint decoding: unified
framework and asymptotic analysis. IEEE Transactions on Infor-
mation Theory, 48(7):1772–1793, July 2002.

[BCJR74] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal decoding of
linear codes for minimizing symbol error rate. IEEE Transactions
on Information Theory, 20(2):284–287, Mar. 1974.



94 BIBLIOGRAPHY

[Bea03] M. Beal. Variational Algorithms For Approximate Bayesian Infer-
ence. PhD thesis, 2003.

[BG03] M. Beal and Z. Ghahramani. The Variational Bayesian EM Algo-
rithm for Incomplete Data: with Application to Scoring Graphical
Model Structures. Bayesian Stat., Oxford University Press, 7:453–
464, 2003.

[BGT93] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit
error-correcting coding and decoding: Turbo-codes. In IEEE Int.
Conf. on Comm., volume 2, pages 1064–1070, May 1993.

[CC06] Michael Chertkov and Vladimir Y. Chernyak. Loop calculus helps
to improve belief propagation and linear programming decodings of
low-density-parity-check codes, 2006.

[Chr05a] L. P. B. Christensen. A Low-Complexity Joint Synchronization and
Detection Algorithm for Single-Band DS-CDMA UWB Communi-
cations. EURASIP, Journal on Applied Signal Processing, UWB -
State of the Art, 2005.

[Chr05b] L. P. B. Christensen. Minimum symbol error rate detection in single-
input multiple-output channels with markov noise. In IEEE SPAWC
Workshop, pages 236–240, June 2005.

[Chr07] L. P. B. Christensen. An EM-algorithm for Band-Toeplitz Co-
variance Matrix Estimation. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), April 2007.

[CL06] L. P. B. Christensen and J. Larsen. On Data and Parameter Estima-
tion using the Variational Bayesian EM-algorithm for Block-fading
Frequency-selective MIMO Channels. In IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), May
2006.

[DEGC03] M.O. Damen, H. El Gamal, and G. Caire. On maximum-likelihood
detection and the search for the closest lattice point. IEEE Trans-
actions on Information Theory, 49(10):2389–2402, Oct. 2003.

[DHH89] A. Duel-Hallen and C. Heegard. Delayed decision-feedback sequence
estimation. IEEE Transactions on Communications, 37(5):428–436,
May 1989.

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal
Statistical Society, 39(1):1–38, 1977.



BIBLIOGRAPHY 95

[DMS89] A. Dembo, C. L. Mallows, and L. A. Shepp. Embedding nonnegative
definite Toeplitz Matrices in nonnegative definite circulant matrices,
with application to covariance estimation. IEEE Transactions on
Information Theory, 35(6):1206–1212, Nov. 1989.

[EKM06] M. El-Khamy and R.J. McEliece. Iterative algebraic soft-decision list
decoding of Reed-Solomon codes. IEEE Journal on Selected Areas
in Communications, 24(3):481–490, Mar. 2006.

[EQ88] M.V. Eyuboglu and S.U.H. Qureshi. Reduced-state sequence estima-
tion with set partitioning and decision feedback. IEEE Transactions
on Communications, 36(1):13–20, Jan. 1988.

[FB90] D. R. Fuhrmann and T. A. Barton. Estimation of block-toeplitz
covariance matrices. In 24th IEEE Asilomar Conference on Signals,
Systems and Computers., pages 779–783, Nov. 1990.

[FN02] T. Fabricius and O. Nørklit. Approximations to joint-ml and ml
symbol-channel estimators in mud cdma. In IEEE Global Telecom-
munications Conference (GLOBECOM), pages 389–393, Nov. 2002.

[GG84] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions,
and the bayesian restoration of images. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 6:721–741, 1984.

[GH03] R. Gowaikar and B. Hassibi. Efficient statistical pruning for max-
imum likelihood decoding. In IEEE International Conference on
Acoustics, Speech, and Signal Processing, volume 5, pages 49–52,
April 2003.

[GOS+04] W.H. Gerstacker, F. Obernosterer, R. Schober, A.T. Lehmann,
A. Lampe, and P. Gunreben. Equalization Concepts for Alamouti’s
Space-Time Block Code. IEEE Transactions on Communications,
52(7):1178–1190, July 2004.

[GSL03] W.H. Gerstacker, R. Schober, and A. Lampe. Receivers with widely
linear processing for frequency-selective channels. IEEE Transac-
tions on Communications, 51(9):1512–1523, Sep. 2003.

[Hay96] S. Haykin. Adaptive Filter Theory. Prentice-Hall, 3rd edition, 1996.

[HtB03] B.M. Hochwald and S. ten Brink. Achieving near-capacity on a
multiple-antenna channel. IEEE Transactions on Communications,
51(3):389–399, Mar. 2003.

[HV05a] B. Hassibi and H. Vikalo. On the sphere-decoding algorithm I.
Expected complexity. IEEE Transactions on Signal Processing,
53(8):2806–2818, Aug. 2005.



96 BIBLIOGRAPHY

[HV05b] B. Hassibi and H. Vikalo. On the sphere-decoding algorithm II. Gen-
eralizations, second-order statistics, and applications to communi-
cations. IEEE Transactions on Signal Processing, 53(8):2819–2834,
Aug. 2005.

[KFL01] F.R. Kschischang, B.J. Frey, and H.-A. Loeliger. Factor graphs
and the sum-product algorithm. IEEE Trans. on Info. Theory,
47(2):498–519, Feb. 2001.

[KFSW02] C. Komninakis, C. Fragouli, A. H. Sayed, and R. D. Wesel. Multi-
input multi-output fading channel tracking and equalization using
Kalman estimation. IEEE Trans. on Signal Processing, 50(5):1065–
1076, May 2002.

[KM00] A. Kavcic and J.M.F. Moura. Matrices with banded inverses: inver-
sion algorithms and factorization of Gauss-Markov processes. IEEE
Transactions on Information Theory, 46(4):1495–1509, July 2000.

[KST04] R. Koetter, A.C. Singer, and M. Tuchler. Turbo equalization. IEEE
Signal Processing Magazine, 21(1):67–80, Jan. 2004.

[LR04] T. Lin and L.K. Rasmussen. Application of maximal ratio combining
for iterative multiuser decoding. In International Symposium on
Information Theory, page 531, June 2004.

[LR05] T. Lin and L.K. Rasmussen. Truncated maximal ratio combining
for iterative multiuser decoding. In Proceedings of the 6th Australian
Communications Theory Workshop, pages 35–41, Feb. 2005.

[Mac97] D. J. C. MacKay. Ensemble learning for hidden Markov models.
www.inference.phy.cam.ac.uk/mackay/abstracts/ensemblePaper.html,
1997.

[MMC98] R.J. McEliece, D.J.C. MacKay, and Jung-Fu Cheng. Turbo decod-
ing as an instance of Pearl’s ”belief propagation” algorithm. IEEE
Journal on Sel. Areas in Comm., 16(2):140–152, Feb. 1998.

[MN97] D.J.C. MacKay and R.M. Neal. Near Shannon limit performance of
low density parity check codes. Electronics Letters, 33(6):457–458,
Mar. 1997.

[MS87] M. I. Miller and D. L. Snyder. The role of likelihood and entropy in
incomplete-data problems: Applications to estimating point-process
intensities and toeplitz constrained covariances. Proceedings of the
IEEE, 75:892–907, July 1987.

[NH99] R. M. Neal and G. E. Hinton. A view of the EM algorithm that jus-
tifies incremental, sparse, and other variants. Learning in Graphical
Models, pages 355–368, 1999.



BIBLIOGRAPHY 97
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