24 research outputs found

    Globally Convergent Accelerated Algorithms for Multilinear Sparse Logistic Regression with 0\ell_0-constraints

    Full text link
    Tensor data represents a multidimensional array. Regression methods based on low-rank tensor decomposition leverage structural information to reduce the parameter count. Multilinear logistic regression serves as a powerful tool for the analysis of multidimensional data. To improve its efficacy and interpretability, we present a Multilinear Sparse Logistic Regression model with 0\ell_0-constraints (0\ell_0-MLSR). In contrast to the 1\ell_1-norm and 2\ell_2-norm, the 0\ell_0-norm constraint is better suited for feature selection. However, due to its nonconvex and nonsmooth properties, solving it is challenging and convergence guarantees are lacking. Additionally, the multilinear operation in 0\ell_0-MLSR also brings non-convexity. To tackle these challenges, we propose an Accelerated Proximal Alternating Linearized Minimization with Adaptive Momentum (APALM+^+) method to solve the 0\ell_0-MLSR model. We provide a proof that APALM+^+ can ensure the convergence of the objective function of 0\ell_0-MLSR. We also demonstrate that APALM+^+ is globally convergent to a first-order critical point as well as establish convergence rate by using the Kurdyka-Lojasiewicz property. Empirical results obtained from synthetic and real-world datasets validate the superior performance of our algorithm in terms of both accuracy and speed compared to other state-of-the-art methods.Comment: arXiv admin note: text overlap with arXiv:2308.1212

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of 2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem

    An Accelerated Block Proximal Framework with Adaptive Momentum for Nonconvex and Nonsmooth Optimization

    Full text link
    We propose an accelerated block proximal linear framework with adaptive momentum (ABPL+^+) for nonconvex and nonsmooth optimization. We analyze the potential causes of the extrapolation step failing in some algorithms, and resolve this issue by enhancing the comparison process that evaluates the trade-off between the proximal gradient step and the linear extrapolation step in our algorithm. Furthermore, we extends our algorithm to any scenario involving updating block variables with positive integers, allowing each cycle to randomly shuffle the update order of the variable blocks. Additionally, under mild assumptions, we prove that ABPL+^+ can monotonically decrease the function value without strictly restricting the extrapolation parameters and step size, demonstrates the viability and effectiveness of updating these blocks in a random order, and we also more obviously and intuitively demonstrate that the derivative set of the sequence generated by our algorithm is a critical point set. Moreover, we demonstrate the global convergence as well as the linear and sublinear convergence rates of our algorithm by utilizing the Kurdyka-Lojasiewicz (K{\L}) condition. To enhance the effectiveness and flexibility of our algorithm, we also expand the study to the imprecise version of our algorithm and construct an adaptive extrapolation parameter strategy, which improving its overall performance. We apply our algorithm to multiple non-negative matrix factorization with the 0\ell_0 norm, nonnegative tensor decomposition with the 0\ell_0 norm, and perform extensive numerical experiments to validate its effectiveness and efficiency

    Audio inpainting algorithms

    Get PDF
    Tato práce se zabývá doplňováním chybějících dat do audio signálů a algoritmy řešícími problém založenými na řídké reprezentaci audio signálu. Práce se zaměřuje na některé algoritmy, které řeší doplňování chybějících dat do audio signálů pomocí řídké reprezentace signálů. Součástí práce je také návrh algoritmu, který používá řídkou reprezentaci signálu a také nízkou hodnost signálu ve spektrogramu audio signálu. Dále práce uvádí implementaci tohoto algoritmu v programu Matlab a jeho vyhodnocení.The thesis deals with audio inpainting problem and sparse representation approaches to this problem. It focuses on some of recent approaches to solving audio inpainting problem with respect to sparse representation algorithms. It proposes solving audio inapinting problem based on sparse representation of signal and low rank structure in spectrogram of audio signal. Thesis also describes implementation in program Matlab and evaluation of the proposed method.

    Compressive Wave Computation

    Full text link
    This paper considers large-scale simulations of wave propagation phenomena. We argue that it is possible to accurately compute a wavefield by decomposing it onto a largely incomplete set of eigenfunctions of the Helmholtz operator, chosen at random, and that this provides a natural way of parallelizing wave simulations for memory-intensive applications. This paper shows that L1-Helmholtz recovery makes sense for wave computation, and identifies a regime in which it is provably effective: the one-dimensional wave equation with coefficients of small bounded variation. Under suitable assumptions we show that the number of eigenfunctions needed to evolve a sparse wavefield defined on N points, accurately with very high probability, is bounded by C log(N) log(log(N)), where C is related to the desired accuracy and can be made to grow at a much slower rate than N when the solution is sparse. The PDE estimates that underlie this result are new to the authors' knowledge and may be of independent mathematical interest; they include an L1 estimate for the wave equation, an estimate of extension of eigenfunctions, and a bound for eigenvalue gaps in Sturm-Liouville problems. Numerical examples are presented in one spatial dimension and show that as few as 10 percents of all eigenfunctions can suffice for accurate results. Finally, we argue that the compressive viewpoint suggests a competitive parallel algorithm for an adjoint-state inversion method in reflection seismology.Comment: 45 pages, 4 figure

    Non-Smooth Regularization: Improvement to Learning Framework through Extrapolation

    Get PDF
    International audienceDeep learning architectures employ various regularization terms to handle different types of priors. Non-smooth regularization terms have shown promising performance in the deep learning architectures and a learning framework has recently been proposed to train autoencoders with such regularization terms. While this framework efficiently manages the non-smooth term during training through proximal operators, it is limited to autoencoders and suffers from low convergence speed due to several optimization sub-problems that must be solved in a row. In this paper, we address these issues by extending the framework to general feed-forward neural networks and introducing variable extrapolation which can dramatically increase the convergence speed in each sub-problem. We show that the proposed update rules converge to a critical point of the objective function under mild conditions. To compare the resulting framework with the previously proposed one, we consider the problem of training sparse autoencoders and robustifying deep neural architectures against both targeted and untargeted attacks. Simulations show superior performance in both convergence speed and final objective function value
    corecore