22,254 research outputs found

    Factorization of Z-homogeneous polynomials in the First (q)-Weyl Algebra

    Full text link
    We present algorithms to factorize weighted homogeneous elements in the first polynomial Weyl algebra and qq-Weyl algebra, which are both viewed as a Z\mathbb{Z}-graded rings. We show, that factorization of homogeneous polynomials can be almost completely reduced to commutative univariate factorization over the same base field with some additional uncomplicated combinatorial steps. This allows to deduce the complexity of our algorithms in detail. Furthermore, we will show for homogeneous polynomials that irreducibility in the polynomial first Weyl algebra also implies irreducibility in the rational one, which is of interest for practical reasons. We report on our implementation in the computer algebra system \textsc{Singular}. It outperforms for homogeneous polynomials currently available implementations dealing with factorization in the first Weyl algebra both in speed and elegancy of the results.Comment: 26 pages, Singular implementation, 2 algorithms, 1 figure, 2 table

    Computing generalized inverses using LU factorization of matrix product

    Full text link
    An algorithm for computing {2, 3}, {2, 4}, {1, 2, 3}, {1, 2, 4} -inverses and the Moore-Penrose inverse of a given rational matrix A is established. Classes A(2, 3)s and A(2, 4)s are characterized in terms of matrix products (R*A)+R* and T*(AT*)+, where R and T are rational matrices with appropriate dimensions and corresponding rank. The proposed algorithm is based on these general representations and the Cholesky factorization of symmetric positive matrices. The algorithm is implemented in programming languages MATHEMATICA and DELPHI, and illustrated via examples. Numerical results of the algorithm, corresponding to the Moore-Penrose inverse, are compared with corresponding results obtained by several known methods for computing the Moore-Penrose inverse

    Modular Las Vegas Algorithms for Polynomial Absolute Factorization

    Get PDF
    Let f(X,Y) \in \ZZ[X,Y] be an irreducible polynomial over \QQ. We give a Las Vegas absolute irreducibility test based on a property of the Newton polytope of ff, or more precisely, of ff modulo some prime integer pp. The same idea of choosing a pp satisfying some prescribed properties together with LLLLLL is used to provide a new strategy for absolute factorization of f(X,Y)f(X,Y). We present our approach in the bivariate case but the techniques extend to the multivariate case. Maple computations show that it is efficient and promising as we are able to factorize some polynomials of degree up to 400

    Differential qd algorithm with shifts for rank-structured matrices

    Full text link
    Although QR iterations dominate in eigenvalue computations, there are several important cases when alternative LR-type algorithms may be preferable. In particular, in the symmetric tridiagonal case where differential qd algorithm with shifts (dqds) proposed by Fernando and Parlett enjoys often faster convergence while preserving high relative accuracy (that is not guaranteed in QR algorithm). In eigenvalue computations for rank-structured matrices QR algorithm is also a popular choice since, in the symmetric case, the rank structure is preserved. In the unsymmetric case, however, QR algorithm destroys the rank structure and, hence, LR-type algorithms come to play once again. In the current paper we discover several variants of qd algorithms for quasiseparable matrices. Remarkably, one of them, when applied to Hessenberg matrices becomes a direct generalization of dqds algorithm for tridiagonal matrices. Therefore, it can be applied to such important matrices as companion and confederate, and provides an alternative algorithm for finding roots of a polynomial represented in the basis of orthogonal polynomials. Results of preliminary numerical experiments are presented
    corecore