3 research outputs found

    An Automatic Ship Detection Method Based on Local Gray-Level Gathering Characteristics in SAR Imagery

    Get PDF
    This paper proposes an automatic ship detection method based on gray-level gathering characteristics of synthetic aperture radar (SAR) imagery. The method does not require any prior knowledge about ships and background observation. It uses a novel local gray-level gathering degree (LGGD) to characterize the spatial intensity distribution of SAR image, and then an adaptive-like LGGD thresholding and filtering scheme to detect ship targets. Experiments on real SAR images with varying sea clutter backgrounds and multiple targets situation have been conducted. The performance analysis confirms that the proposed method works well in various circumstances with high detection rate, fast detection speed and perfect shape preservation

    A ship detector applying Principal Component Analysis to the polarimetric Notch Filter

    Get PDF
    Ship detection using polarimetric synthetic aperture radar (PolSAR) data has attracted a lot of attention in recent years. Polarimetry can provide information regarding the scattering mechanisms of targets, which helps discriminate between ships and sea clutter. This enhancement is particularly valuable when we aim at detecting smaller vessels in rough sea states. This work exploits a ship detector called the Geometrical Perturbation-Polarimetric Notch Filter (GP-PNF), and it is aimed at improving its performance especially when less polarimetric images are available (e.g., dual-polarimetric data). The idea is to design a new polarimetric feature vector containing more features that are renowned to allow separation between ships and sea clutter. Then, a Principal Component Analysis (PCA) is further used to reduce the dimensionality of the new feature space. Experiments on four real Sentinel-1 datasets are carried out to demonstrate the validity of the proposed method and compare it against other ship detectors. Analyses of the experimental results show that the proposed algorithm can not only reduce the false alarms significantly, but also enhance the target-to-clutter ratio (TCR) so that it can more effectively detect weaker ships

    A New Polarimetric CFAR Ship Detection System

    No full text
    corecore