147 research outputs found

    Improve the Performance and Scalability of RAID-6 Systems Using Erasure Codes

    Get PDF
    RAID-6 is widely used to tolerate concurrent failures of any two disks to provide a higher level of reliability with the support of erasure codes. Among many implementations, one class of codes called Maximum Distance Separable (MDS) codes aims to offer data protection against disk failures with optimal storage efficiency. Typical MDS codes contain horizontal and vertical codes. However, because of the limitation of horizontal parity or diagonal/anti-diagonal parities used in MDS codes, existing RAID-6 systems suffer several important problems on performance and scalability, such as low write performance, unbalanced I/O, and high migration cost in the scaling process. To address these problems, in this dissertation, we design techniques for high performance and scalable RAID-6 systems. It includes high performance and load balancing erasure codes (H-Code and HDP Code), and Stripe-based Data Migration (SDM) scheme. We also propose a flexible MDS Scaling Framework (MDS-Frame), which can integrate H-Code, HDP Code and SDM scheme together. Detailed evaluation results are also given in this dissertation

    RAID Organizations for Improved Reliability and Performance: A Not Entirely Unbiased Tutorial (1st revision)

    Full text link
    RAID proposal advocated replacing large disks with arrays of PC disks, but as the capacity of small disks increased 100-fold in 1990s the production of large disks was discontinued. Storage dependability is increased via replication or erasure coding. Cloud storage providers store multiple copies of data obviating for need for further redundancy. Varitaions of RAID based on local recovery codes, partial MDS reduce recovery cost. NAND flash Solid State Disks - SSDs have low latency and high bandwidth, are more reliable, consume less power and have a lower TCO than Hard Disk Drives, which are more viable for hyperscalers.Comment: Submitted to ACM Computing Surveys. arXiv admin note: substantial text overlap with arXiv:2306.0876

    HEC: Collaborative Research: SAM^2 Toolkit: Scalable and Adaptive Metadata Management for High-End Computing

    Get PDF
    The increasing demand for Exa-byte-scale storage capacity by high end computing applications requires a higher level of scalability and dependability than that provided by current file and storage systems. The proposal deals with file systems research for metadata management of scalable cluster-based parallel and distributed file storage systems in the HEC environment. It aims to develop a scalable and adaptive metadata management (SAM2) toolkit to extend features of and fully leverage the peak performance promised by state-of-the-art cluster-based parallel and distributed file storage systems used by the high performance computing community. There is a large body of research on data movement and management scaling, however, the need to scale up the attributes of cluster-based file systems and I/O, that is, metadata, has been underestimated. An understanding of the characteristics of metadata traffic, and an application of proper load-balancing, caching, prefetching and grouping mechanisms to perform metadata management correspondingly, will lead to a high scalability. It is anticipated that by appropriately plugging the scalable and adaptive metadata management components into the state-of-the-art cluster-based parallel and distributed file storage systems one could potentially increase the performance of applications and file systems, and help translate the promise and potential of high peak performance of such systems to real application performance improvements. The project involves the following components: 1. Develop multi-variable forecasting models to analyze and predict file metadata access patterns. 2. Develop scalable and adaptive file name mapping schemes using the duplicative Bloom filter array technique to enforce load balance and increase scalability 3. Develop decentralized, locality-aware metadata grouping schemes to facilitate the bulk metadata operations such as prefetching. 4. Develop an adaptive cache coherence protocol using a distributed shared object model for client-side and server-side metadata caching. 5. Prototype the SAM2 components into the state-of-the-art parallel virtual file system PVFS2 and a distributed storage data caching system, set up an experimental framework for a DOE CMS Tier 2 site at University of Nebraska-Lincoln and conduct benchmark, evaluation and validation studies

    Data allocation in disk arrays with multiple raid levels

    Get PDF
    There has been an explosion in the amount of generated data, which has to be stored reliably because it is not easily reproducible. Some datasets require frequent read and write access. like online transaction processing applications. Others just need to be stored safely and read once in a while, as in data mining. This different access requirements can be solved by using the RAID (redundant array of inexpensive disks) paradigm. i.e., RAIDi for the first situation and RAID5 for the second situation. Furthermore rather than providing two disk arrays with RAID 1 and RAID5 capabilities, a controller can be postulated to emulate both. It is referred as a heterogeneous disk array (HDA). Dedicating a subset of disks to RAID 1 results in poor disk utilization, since RAIDi vs RAID5 capacity and bandwidth requirements are not known a priori. Balancing disk loads when disk space is shared among allocation requests, referred to as virtual arrays - VAs poses a difficult problem. RAIDi disk arrays have a higher access rate per gigabyte than RAID5 disk arrays. Allocating more VAs while keeping disk utilizations balanced and within acceptable bounds is the goal of this study. Given its size and access rate a VA\u27s width or the number of its Virtual Disks -VDs is determined. VDs allocations on physical disks using vector-packing heuristics, with disk capacity and bandwidth as the two dimensions are shown to be the best. An allocation is acceptable if it does riot exceed the disk capacity and overload disks even in the presence of disk failures. When disk bandwidth rather than capacity is the bottleneck, the clustered RAID paradigm is applied, which offers a tradeoff between disk space and bandwidth. Another scenario is also considered where the RAID level is determined by a classification algorithm utilizing the access characteristics of the VA, i.e., fractions of small versus large access and the fraction of write versus read accesses. The effect of RAID 1 organization on its reliability and performance is studied too. The effect of disk failures on the X-code two disk failure tolerant array is analyzed and it is shown that the load across disks is highly unbalanced unless in an NxN array groups of N stripes are randomly rotated
    • …
    corecore