22,076 research outputs found

    Analysis and operational challenges of dynamic ride sharing demand responsive transportation models

    Get PDF
    There is a wide body of evidence that suggests sustainable mobility is not only a technological question, but that automotive technology will be a part of the solution in becoming a necessary albeit insufficient condition. Sufficiency is emerging as a paradigm shift from car ownership to vehicle usage, which is a consequence of socio-economic changes. Information and Communication Technologies (ICT) now make it possible for a user to access a mobility service to go anywhere at any time. Among the many emerging mobility services, Multiple Passenger Ridesharing and its variants look the most promising. However, challenges arise in implementing these systems while accounting specifically for time dependencies and time windows that reflect users’ needs, specifically in terms of real-time fleet dispatching and dynamic route calculation. On the other hand, we must consider the feasibility and impact analysis of the many factors influencing the behavior of the system – as, for example, service demand, the size of the service fleet, the capacity of the shared vehicles and whether the time window requirements are soft or tight. This paper analyzes - a Decision Support System that computes solutions with ad hoc heuristics applied to variants of Pick Up and Delivery Problems with Time Windows, as well as to Feasibility and Profitability criteria rooted in Dynamic Insertion Heuristics. To evaluate the applications, a Simulation Framework is proposed. It is based on a microscopic simulation model that emulates real-time traffic conditions and a real traffic information system. It also interacts with the Decision Support System by feeding it with the required data for making decisions in the simulation that emulate the behavior of the shared fleet. The proposed simulation framework has been implemented in a model of Barcelona’s Central Business District. The obtained results prove the potential feasibility of the mobility concept.Postprint (published version

    On critical service recovery after massive network failures

    Get PDF
    This paper addresses the problem of efficiently restoring sufficient resources in a communications network to support the demand of mission critical services after a large-scale disruption. We give a formulation of the problem as a mixed integer linear programming and show that it is NP-hard. We propose a polynomial time heuristic, called iterative split and prune (ISP) that decomposes the original problem recursively into smaller problems, until it determines the set of network components to be restored. ISP's decisions are guided by the use of a new notion of demand-based centrality of nodes. We performed extensive simulations by varying the topologies, the demand intensity, the number of critical services, and the disruption model. Compared with several greedy approaches, ISP performs better in terms of total cost of repaired components, and does not result in any demand loss. It performs very close to the optimal when the demand is low with respect to the supply network capacities, thanks to the ability of the algorithm to maximize sharing of repaired resources

    Adaptive fault-tolerant routing in hypercube multicomputers

    Get PDF
    A connected hypercube with faulty links and/or nodes is called an injured hypercube. To enable any non-faulty node to communicate with any other non-faulty node in an injured hypercube, the information on component failures has to be made available to non-faulty nodes so as to route messages around the faulty components. A distributed adaptive fault tolerant routing scheme is proposed for an injured hypercube in which each node is required to know only the condition of its own links. Despite its simplicity, this scheme is shown to be capable of routing messages successfully in an injured hypercube as long as the number of faulty components is less than n. Moreover, it is proved that this scheme routes messages via shortest paths with a rather high probabiltiy and the expected length of a resulting path is very close to that of a shortest path. Since the assumption that the number of faulty components is less than n in an n-dimensional hypercube might limit the usefulness of the above scheme, a routing scheme is introduced based on depth-first search which works in the presence of an arbitrary number of faulty components. Due to the insufficient information on faulty components, the paths chosen by the above scheme may not always be the shortest. To guarantee that all messages be routed via shortest paths, it is proposed that every mode be equipped with more information than that on its own links. The effects of this additional information on routing efficiency are analyzed, and the additional information to be kept at each node for the shortest path routing is determined. Several examples and remarks are also given to illustrate the results

    Space-Efficient Routing Tables for Almost All Networks and the Incompressibility Method

    Get PDF
    We use the incompressibility method based on Kolmogorov complexity to determine the total number of bits of routing information for almost all network topologies. In most models for routing, for almost all labeled graphs Θ(n2)\Theta (n^2) bits are necessary and sufficient for shortest path routing. By `almost all graphs' we mean the Kolmogorov random graphs which constitute a fraction of 11/nc1-1/n^c of all graphs on nn nodes, where c>0c > 0 is an arbitrary fixed constant. There is a model for which the average case lower bound rises to Ω(n2logn)\Omega(n^2 \log n) and another model where the average case upper bound drops to O(nlog2n)O(n \log^2 n). This clearly exposes the sensitivity of such bounds to the model under consideration. If paths have to be short, but need not be shortest (if the stretch factor may be larger than 1), then much less space is needed on average, even in the more demanding models. Full-information routing requires Θ(n3)\Theta (n^3) bits on average. For worst-case static networks we prove a Ω(n2logn)\Omega(n^2 \log n) lower bound for shortest path routing and all stretch factors <2<2 in some networks where free relabeling is not allowed.Comment: 19 pages, Latex, 1 table, 1 figure; SIAM J. Comput., To appea

    Privacy-preserving Cross-domain Routing Optimization -- A Cryptographic Approach

    Full text link
    Today's large-scale enterprise networks, data center networks, and wide area networks can be decomposed into multiple administrative or geographical domains. Domains may be owned by different administrative units or organizations. Hence protecting domain information is an important concern. Existing general-purpose Secure Multi-Party Computation (SMPC) methods that preserves privacy for domains are extremely slow for cross-domain routing problems. In this paper we present PYCRO, a cryptographic protocol specifically designed for privacy-preserving cross-domain routing optimization in Software Defined Networking (SDN) environments. PYCRO provides two fundamental routing functions, policy-compliant shortest path computing and bandwidth allocation, while ensuring strong protection for the private information of domains. We rigorously prove the privacy guarantee of our protocol. We have implemented a prototype system that runs PYCRO on servers in a campus network. Experimental results using real ISP network topologies show that PYCRO is very efficient in computation and communication costs

    Throughput Optimal Routing in Overlay Networks

    Get PDF
    Maximum throughput requires path diversity enabled by bifurcating traffic at different network nodes. In this work, we consider a network where traffic bifurcation is allowed only at a subset of nodes called \emph{routers}, while the rest nodes (called \emph{forwarders}) cannot bifurcate traffic and hence only forward packets on specified paths. This implements an overlay network of routers where each overlay link corresponds to a path in the physical network. We study dynamic routing implemented at the overlay. We develop a queue-based policy, which is shown to be maximally stable (throughput optimal) for a restricted class of network scenarios where overlay links do not correspond to overlapping physical paths. Simulation results show that our policy yields better delay over dynamic policies that allow bifurcation at all nodes, such as the backpressure policy. Additionally, we provide a heuristic extension of our proposed overlay routing scheme for the unrestricted class of networks
    corecore