412 research outputs found

    An academic review: applications of data mining techniques in finance industry

    Get PDF
    With the development of Internet techniques, data volumes are doubling every two years, faster than predicted by Moore’s Law. Big Data Analytics becomes particularly important for enterprise business. Modern computational technologies will provide effective tools to help understand hugely accumulated data and leverage this information to get insights into the finance industry. In order to get actionable insights into the business, data has become most valuable asset of financial organisations, as there are no physical products in finance industry to manufacture. This is where data mining techniques come to their rescue by allowing access to the right information at the right time. These techniques are used by the finance industry in various areas such as fraud detection, intelligent forecasting, credit rating, loan management, customer profiling, money laundering, marketing and prediction of price movements to name a few. This work aims to survey the research on data mining techniques applied to the finance industry from 2010 to 2015.The review finds that Stock prediction and Credit rating have received most attention of researchers, compared to Loan prediction, Money Laundering and Time Series prediction. Due to the dynamics, uncertainty and variety of data, nonlinear mapping techniques have been deeply studied than linear techniques. Also it has been proved that hybrid methods are more accurate in prediction, closely followed by Neural Network technique. This survey could provide a clue of applications of data mining techniques for finance industry, and a summary of methodologies for researchers in this area. Especially, it could provide a good vision of Data Mining Techniques in computational finance for beginners who want to work in the field of computational finance

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF

    STATISTICAL AND OPTIMAL LEARNING WITH APPLICATIONS IN BUSINESS ANALYTICS

    Get PDF
    Statistical learning is widely used in business analytics to discover structure or exploit patterns from historical data, and build models that capture relationships between an outcome of interest and a set of variables. Optimal learning on the other hand, solves the operational side of the problem, by iterating between decision making and data acquisition/learning. All too often the two problems go hand-in-hand, which exhibit a feedback loop between statistics and optimization. We apply this statistical/optimal learning concept on a context of fundraising marketing campaign problem arising in many non-profit organizations. Many such organizations use direct-mail marketing to cultivate one-time donors and convert them into recurring contributors. Cultivated donors generate much more revenue than new donors, but also lapse with time, making it important to steadily draw in new cultivations. The direct-mail budget is limited, but better-designed mailings can improve success rates without increasing costs. We first apply statistical learning to analyze the effectiveness of several design approaches used in practice, based on a massive dataset covering 8.6 million direct-mail communications with donors to the American Red Cross during 2009-2011. We find evidence that mailed appeals are more effective when they emphasize disaster preparedness and training efforts over post-disaster cleanup. Including small cards that affirm donors' identity as Red Cross supporters is an effective strategy, while including gift items such as address labels is not. Finally, very recent acquisitions are more likely to respond to appeals that ask them to contribute an amount similar to their most recent donation, but this approach has an adverse effect on donors with a longer history. We show via simulation that a simple design strategy based on these insights has potential to improve success rates from 5.4% to 8.1%. Given these findings, when new scenario arises, however, new data need to be acquired to update our model and decisions, which is studied under optimal learning framework. The goal becomes discovering a sequential information collection strategy that learns the best campaign design alternative as quickly as possible. Regression structure is used to learn about a set of unknown parameters, which alternates with optimization to design new data points. Such problems have been extensively studied in the ranking and selection (R&S) community, but traditional R&S procedures experience high computational costs when the decision space grows combinatorially. We present a value of information procedure for simultaneously learning unknown regression parameters and unknown sampling noise. We then develop an approximate version of the procedure, based on semi-definite programming relaxation, that retains good performance and scales better to large problems. We also prove the asymptotic consistency of the algorithm in the parametric model, a result that has not previously been available for even the known-variance case

    Mixed Variational Inequality Interval-valued Problem: Theorems of Existence of Solutions

    Get PDF
    In this article, our efforts focus on finding the conditions for the existence of solutions of Mixed Stampacchia Variational Inequality Interval-valued Problem on Hadamard manifolds with monotonicity assumption by using KKM mappings. Conditions that allow us to prove the existence of equilibrium points in a market of perfect competition. We will identify solutions of Stampacchia variational problem and optimization problem with the interval-valued convex objective function, improving on previous results in the literature. We will illustrate the main results obtained with some examples and numerical results

    AI-assisted patent prior art searching - feasibility study

    Get PDF
    This study seeks to understand the feasibility, technical complexities and effectiveness of using artificial intelligence (AI) solutions to improve operational processes of registering IP rights. The Intellectual Property Office commissioned Cardiff University to undertake this research. The research was funded through the BEIS Regulators’ Pioneer Fund (RPF). The RPF fund was set up to help address barriers to innovation in the UK economy

    An Intelligent Expert System for Decision Analysis and Support in Multi-Attribute Layout Optimization

    Get PDF
    Layout Decision Analysis and Design is a ubiquitous problem in a variety of work domains that is important from both strategic and operational perspectives. It is largely a complex, vague, difficult, and ill-structured problem that requires intelligent and sophisticated decision analysis and design support. Inadequate information availability, combinatorial complexity, subjective and uncertain preferences, and cognitive biases of decision makers often hamper the procurement of a superior layout configuration. Consequently, it is desirable to develop an intelligent decision support system for layout design that could deal with such challenging issues by providing efficient and effective means of generating, analyzing, enumerating, ranking, and manipulating superior alternative layouts. We present a research framework and a functional prototype for an interactive Intelligent System for Decision Support and Expert Analysis in Multi-Attribute Layout Optimization (IDEAL) based on soft computing tools. A fundamental issue in layout design is efficient production of superior alternatives through the incorporation of subjective and uncertain design preferences. Consequently, we have developed an efficient and Intelligent Layout Design Generator (ILG) using a generic two-dimensional bin-packing formulation that utilizes multiple preference weights furnished by a fuzzy Preference Inferencing Agent (PIA). The sub-cognitive, intuitive, multi-facet, and dynamic nature of design preferences indicates that an automated Preference Discovery Agent (PDA) could be an important component of such a system. A user-friendly, interactive, and effective User Interface is deemed critical for the success of the system. The effectiveness of the proposed solution paradigm and the implemented prototype is demonstrated through examples and cases. This research framework and prototype contribute to the field of layout decision analysis and design by enabling explicit representation of experts? knowledge, formal modeling of fuzzy user preferences, and swift generation and manipulation of superior layout alternatives. Such efforts are expected to afford efficient procurement of superior outcomes and to facilitate cognitive, ergonomic, and economic efficiency of layout designers as well as future research in related areas. Applications of this research are broad ranging including facilities layout design, VLSI circuit layout design, newspaper layout design, cutting and packing, adaptive user interfaces, dynamic memory allocation, multi-processor scheduling, metacomputing, etc

    JTIT

    Get PDF
    kwartalni

    Pacific Symposium on Biocomputing 2023

    Get PDF
    The Pacific Symposium on Biocomputing (PSB) 2023 is an international, multidisciplinary conference for the presentation and discussion of current research in the theory and application of computational methods in problems of biological significance. Presentations are rigorously peer reviewed and are published in an archival proceedings volume. PSB 2023 will be held on January 3-7, 2023 in Kohala Coast, Hawaii. Tutorials and workshops will be offered prior to the start of the conference.PSB 2023 will bring together top researchers from the US, the Asian Pacific nations, and around the world to exchange research results and address open issues in all aspects of computational biology. It is a forum for the presentation of work in databases, algorithms, interfaces, visualization, modeling, and other computational methods, as applied to biological problems, with emphasis on applications in data-rich areas of molecular biology.The PSB has been designed to be responsive to the need for critical mass in sub-disciplines within biocomputing. For that reason, it is the only meeting whose sessions are defined dynamically each year in response to specific proposals. PSB sessions are organized by leaders of research in biocomputing's 'hot topics.' In this way, the meeting provides an early forum for serious examination of emerging methods and approaches in this rapidly changing field
    corecore