50 research outputs found

    Integrated Condition Assessment of Subway Networks Using Computer Vision and Nondestructive Evaluation Techniques

    Get PDF
    Subway networks play a key role in the smart mobility of millions of commuters in major metropolises. The facilities of these networks constantly deteriorate, which may compromise the integrity and durability of concrete structures. The ASCE 2017 Report Card revealed that the condition of public transit infrastructure in the U.S. is rated D-; hence a rehabilitation backlog of $90 billion is estimated to improve transit status to good conditions. Moreover, the Canadian Urban Transit Association (CUTA) reported 56.6 billion CAD in infrastructure needs for the period 2014-2018. The inspection and assessment of metro structures are predominantly conducted on the basis of Visual Inspection (VI) techniques, which are known to be time-consuming, costly, and qualitative in nature. The ultimate goal of this research is to develop an integrated condition assessment model for subway networks based on image processing, Artificial Intelligence (AI), and Non-Destructive Evaluation (NDE) techniques. Multiple image processing algorithms are created to enhance the crucial clues associated with RGB images and detect surface distresses. A complementary scheme is structured to channel the resulted information to Artificial Neural Networks (ANNs) and Regression Analysis (RA) techniques. The ANN model comprises sequential processors that automatically detect and quantify moisture marks (MM) defects. The RA model predicts spalling/scaling depth and simulates the de-facto scene by developing a hybrid algorithm and interactive 3D presentation. In addition, a comparative analysis is performed to select the most appropriate NDE technique for subway inspection. This technique is applied to probe the structure and measure the subsurface defects. Also, a novel model for the detection of air voids and water voids is proposed. The Fuzzy Inference System (FIS), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Monte Carlo Simulation (MCS) are streamlined through successive operations to create the integrated condition assessment model. To exemplify and validate the proposed methodology, a myriad of images and profiles are collected from Montréal Metro systems. The results ascertain the efficacy of the developed detection algorithms. The attained recall, precision, and accuracy for MM detection algorithm are 93.2%, 96.1%, and 91.5% respectively. Whereas for spalling detection algorithm, are 91.7%, 94.8%, and 89.3% respectively. The mean and standard deviation of error percentage in MM region extraction are 12.2% and 7.9% respectively. While for spalling region extraction, they account for 11% and 7.1% respectively. Subsequent to selecting the Ground Penetrating Radar (GPR) for subway inspection, attenuation maps are generated by both the amplitude analysis and image-based analysis. Thus, the deteriorated zones and corrosiveness indices for subway elements are automatically computed. The ANN and RA models are validated versus statistical tests and key performance metrics that indicated the average validity of 96% and 93% respectively. The air/water voids model is validated through coring samples, camera images, infrared thermography and 3D laser scanning techniques. The validation outcomes reflected a strong correlation between the different results. A sensitivity analysis is conducted showing the influence of the studied subway elements on the overall subway condition. The element condition index using neuro-fuzzy technique indicated different conditions in Montréal subway systems, ranging from sound concrete to very poor, represented by 74.8 and 35.1 respectively. The fuzzy consolidator extrapolated the subway condition index of 61.6, which reveals a fair condition for Montréal Metro network. This research developed an automated tool, expected to improve the quality of decision making, as it can assist transportation agencies in identifying critical deficiencies, and by focusing constrained funding on most deserving assets

    Geotechnical Engineering for the Preservation of Monuments and Historic Sites III

    Get PDF
    The conservation of monuments and historic sites is one of the most challenging problems facing modern civilization. It involves, in inextricable patterns, factors belonging to different fields (cultural, humanistic, social, technical, economical, administrative) and the requirements of safety and use appear to be (or often are) in conflict with the respect of the integrity of the monuments. The complexity of the topic is such that a shared framework of reference is still lacking among art historians, architects, structural and geotechnical engineers. The complexity of the subject is such that a shared frame of reference is still lacking among art historians, architects, architectural and geotechnical engineers. And while there are exemplary cases of an integral approach to each building element with its static and architectural function, as a material witness to the culture and construction techniques of the original historical period, there are still examples of uncritical reliance on modern technology leading to the substitution from earlier structures to new ones, preserving only the iconic look of the original monument. Geotechnical Engineering for the Preservation of Monuments and Historic Sites III collects the contributions to the eponymous 3rd International ISSMGE TC301 Symposium (Naples, Italy, 22-24 June 2022). The papers cover a wide range of topics, which include:   - Principles of conservation, maintenance strategies, case histories - The knowledge: investigations and monitoring - Seismic risk, site effects, soil structure interaction - Effects of urban development and tunnelling on built heritage - Preservation of diffuse heritage: soil instability, subsidence, environmental damages The present volume aims at geotechnical engineers and academics involved in the preservation of monuments and historic sites worldwide

    Advanced Sensors for Real-Time Monitoring Applications

    Get PDF
    It is impossible to imagine the modern world without sensors, or without real-time information about almost everything—from local temperature to material composition and health parameters. We sense, measure, and process data and act accordingly all the time. In fact, real-time monitoring and information is key to a successful business, an assistant in life-saving decisions that healthcare professionals make, and a tool in research that could revolutionize the future. To ensure that sensors address the rapidly developing needs of various areas of our lives and activities, scientists, researchers, manufacturers, and end-users have established an efficient dialogue so that the newest technological achievements in all aspects of real-time sensing can be implemented for the benefit of the wider community. This book documents some of the results of such a dialogue and reports on advances in sensors and sensor systems for existing and emerging real-time monitoring applications

    Non-destructive Testing in Civil Engineering

    Get PDF
    This Special Issue, entitled “Non-Destructive Testing in Civil Engineering”, aims to present to interested researchers and engineers the latest achievements in the field of new research methods, as well as the original results of scientific research carried out with their use—not only in laboratory conditions but also in selected case studies. The articles published in this Special Issue are theoretical–experimental and experimental, and also show the practical nature of the research. They are grouped by topic, and the main content of each article is briefly discussed for your convenience. These articles extend the knowledge in the field of non-destructive testing in civil engineering with regard to new and improved non-destructive testing (NDT) methods, their complementary application, and also the analysis of their results—including the use of sophisticated mathematical algorithms and artificial intelligence, as well as the diagnostics of materials, components, structures, entire buildings, and interesting case studies

    International Conference on Civil Infrastructure and Construction (CIC 2020)

    Get PDF
    This is the proceedings of the CIC 2020 Conference, which was held under the patronage of His Excellency Sheikh Khalid bin Khalifa bin Abdulaziz Al Thani in Doha, Qatar from 2 to 5 February 2020. The goal of the conference was to provide a platform to discuss next-generation infrastructure and its construction among key players such as researchers, industry professionals and leaders, local government agencies, clients, construction contractors and policymakers. The conference gathered industry and academia to disseminate their research and field experiences in multiple areas of civil engineering. It was also a unique opportunity for companies and organizations to show the most recent advances in the field of civil infrastructure and construction. The conference covered a wide range of timely topics that address the needs of the construction industry all over the world and particularly in Qatar. All papers were peer reviewed by experts in their field and edited for publication. The conference accepted a total number of 127 papers submitted by authors from five different continents under the following four themes: Theme 1: Construction Management and Process Theme 2: Materials and Transportation Engineering Theme 3: Geotechnical, Environmental, and Geo-environmental Engineering Theme 4: Sustainability, Renovation, and Monitoring of Civil InfrastructureThe list of the Sponsors are listed at page 1

    Book of Abstracts 15th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering and 3rd Conference on Imaging and Visualization

    Get PDF
    In this edition, the two events will run together as a single conference, highlighting the strong connection with the Taylor & Francis journals: Computer Methods in Biomechanics and Biomedical Engineering (John Middleton and Christopher Jacobs, Eds.) and Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization (JoãoManuel R.S. Tavares, Ed.). The conference has become a major international meeting on computational biomechanics, imaging andvisualization. In this edition, the main program includes 212 presentations. In addition, sixteen renowned researchers will give plenary keynotes, addressing current challenges in computational biomechanics and biomedical imaging. In Lisbon, for the first time, a session dedicated to award the winner of the Best Paper in CMBBE Journal will take place. We believe that CMBBE2018 will have a strong impact on the development of computational biomechanics and biomedical imaging and visualization, identifying emerging areas of research and promoting the collaboration and networking between participants. This impact is evidenced through the well-known research groups, commercial companies and scientific organizations, who continue to support and sponsor the CMBBE meeting series. In fact, the conference is enriched with five workshops on specific scientific topics and commercial software.info:eu-repo/semantics/draf
    corecore