107,196 research outputs found

    Efficient algorithms to discover alterations with complementary functional association in cancer

    Full text link
    Recent large cancer studies have measured somatic alterations in an unprecedented number of tumours. These large datasets allow the identification of cancer-related sets of genetic alterations by identifying relevant combinatorial patterns. Among such patterns, mutual exclusivity has been employed by several recent methods that have shown its effectivenes in characterizing gene sets associated to cancer. Mutual exclusivity arises because of the complementarity, at the functional level, of alterations in genes which are part of a group (e.g., a pathway) performing a given function. The availability of quantitative target profiles, from genetic perturbations or from clinical phenotypes, provides additional information that can be leveraged to improve the identification of cancer related gene sets by discovering groups with complementary functional associations with such targets. In this work we study the problem of finding groups of mutually exclusive alterations associated with a quantitative (functional) target. We propose a combinatorial formulation for the problem, and prove that the associated computation problem is computationally hard. We design two algorithms to solve the problem and implement them in our tool UNCOVER. We provide analytic evidence of the effectiveness of UNCOVER in finding high-quality solutions and show experimentally that UNCOVER finds sets of alterations significantly associated with functional targets in a variety of scenarios. In addition, our algorithms are much faster than the state-of-the-art, allowing the analysis of large datasets of thousands of target profiles from cancer cell lines. We show that on one such dataset from project Achilles our methods identify several significant gene sets with complementary functional associations with targets.Comment: Accepted at RECOMB 201

    Mining Pure, Strict Epistatic Interactions from High-Dimensional Datasets: Ameliorating the Curse of Dimensionality

    Get PDF
    Background: The interaction between loci to affect phenotype is called epistasis. It is strict epistasis if no proper subset of the interacting loci exhibits a marginal effect. For many diseases, it is likely that unknown epistatic interactions affect disease susceptibility. A difficulty when mining epistatic interactions from high-dimensional datasets concerns the curse of dimensionality. There are too many combinations of SNPs to perform an exhaustive search. A method that could locate strict epistasis without an exhaustive search can be considered the brass ring of methods for analyzing high-dimensional datasets. Methodology/Findings: A SNP pattern is a Bayesian network representing SNP-disease relationships. The Bayesian score for a SNP pattern is the probability of the data given the pattern, and has been used to learn SNP patterns. We identified a bound for the score of a SNP pattern. The bound provides an upper limit on the Bayesian score of any pattern that could be obtained by expanding a given pattern. We felt that the bound might enable the data to say something about the promise of expanding a 1-SNP pattern even when there are no marginal effects. We tested the bound using simulated datasets and semi-synthetic high-dimensional datasets obtained from GWAS datasets. We found that the bound was able to dramatically reduce the search time for strict epistasis. Using an Alzheimer's dataset, we showed that it is possible to discover an interaction involving the APOE gene based on its score because of its large marginal effect, but that the bound is most effective at discovering interactions without marginal effects. Conclusions/Significance: We conclude that the bound appears to ameliorate the curse of dimensionality in high-dimensional datasets. This is a very consequential result and could be pivotal in our efforts to reveal the dark matter of genetic disease risk from high-dimensional datasets. © 2012 Jiang, Neapolitan

    The dynamics of gene expression changes in a mouse model of oral tumorigenesis may help refine prevention and treatment strategies in patients with oral cancer.

    Get PDF
    A better understanding of the dynamics of molecular changes occurring during the early stages of oral tumorigenesis may help refine prevention and treatment strategies. We generated genome-wide expression profiles of microdissected normal mucosa, hyperplasia, dysplasia and tumors derived from the 4-NQO mouse model of oral tumorigenesis. Genes differentially expressed between tumor and normal mucosa defined the "tumor gene set" (TGS), including 4 non-overlapping gene subsets that characterize the dynamics of gene expression changes through different stages of disease progression. The majority of gene expression changes occurred early or progressively. The relevance of these mouse gene sets to human disease was tested in multiple datasets including the TCGA and the Genomics of Drug Sensitivity in Cancer project. The TGS was able to discriminate oral squamous cell carcinoma (OSCC) from normal oral mucosa in 3 independent datasets. The OSCC samples enriched in the mouse TGS displayed high frequency of CASP8 mutations, 11q13.3 amplifications and low frequency of PIK3CA mutations. Early changes observed in the 4-NQO model were associated with a trend toward a shorter oral cancer-free survival in patients with oral preneoplasia that was not seen in multivariate analysis. Progressive changes observed in the 4-NQO model were associated with an increased sensitivity to 4 different MEK inhibitors in a panel of 51 squamous cell carcinoma cell lines of the areodigestive tract. In conclusion, the dynamics of molecular changes in the 4-NQO model reveal that MEK inhibition may be relevant to prevention and treatment of a specific molecularly-defined subgroup of OSCC

    SSA-ME Detection of cancer driver genes using mutual exclusivity by small subnetwork analysis

    Get PDF
    Because of its clonal evolution a tumor rarely contains multiple genomic alterations in the same pathway as disrupting the pathway by one gene often is sufficient to confer the complete fitness advantage. As a result, many cancer driver genes display mutual exclusivity across tumors. However, searching for mutually exclusive gene sets requires analyzing all possible combinations of genes, leading to a problem which is typically too computationally complex to be solved without a stringent a priori filtering, restricting the mutations included in the analysis. To overcome this problem, we present SSA-ME, a network-based method to detect cancer driver genes based on independently scoring small subnetworks for mutual exclusivity using a reinforced learning approach. Because of the algorithmic efficiency, no stringent upfront filtering is required. Analysis of TCGA cancer datasets illustrates the added value of SSA-ME: well-known recurrently mutated but also rarely mutated drivers are prioritized. We show that using mutual exclusivity to detect cancer driver genes is complementary to state-of-the art approaches. This framework, in which a large number of small subnetworks are being analyzed in order to solve a computationally complex problem (SSA), can be generically applied to any problem in which local neighborhoods in a network hold useful information

    Detection of Epigenomic Network Community Oncomarkers

    Get PDF
    In this paper we propose network methodology to infer prognostic cancer biomarkers based on the epigenetic pattern DNA methylation. Epigenetic processes such as DNA methylation reflect environmental risk factors, and are increasingly recognised for their fundamental role in diseases such as cancer. DNA methylation is a gene-regulatory pattern, and hence provides a means by which to assess genomic regulatory interactions. Network models are a natural way to represent and analyse groups of such interactions. The utility of network models also increases as the quantity of data and number of variables increase, making them increasingly relevant to large-scale genomic studies. We propose methodology to infer prognostic genomic networks from a DNA methylation-based measure of genomic interaction and association. We then show how to identify prognostic biomarkers from such networks, which we term `network community oncomarkers'. We illustrate the power of our proposed methodology in the context of a large publicly available breast cancer dataset
    • …
    corecore