3,290 research outputs found

    IPH-Hydro Tools : uma ferramenta open source para determinação de informações topológicas em bacias hidrográficas integrada a um ambiente SIG

    Get PDF
    Watershed delineation, drainage network generation and determination of river hydraulic characteristics are important issues in hydrological sciences. In gene- ral, this information can be obtained from Digital Elevation Models (DEM) processing within GIS commercial softwares, such as ArcGIS and IDRISI. On the other hand, the use of open source GIS tools has increased significantly, and their advantages include free distribution, continuous development by user communities and full customization for specific requirements. Herein, we present the IPH-Hydro Tools, an open source tool coupled to MapWindow GIS software designed for watershed topology acquisition, including preprocessing steps in hydrological models such as MGB-IPH. In addition, several tests were carried out assessing the performance and applicability of the developed tool, given by a comparison with available GIS packages (ArcGIS, IDRISI, WhiteBox) for similar purposes. The IPH-Hydro Tools provided satisfactory results on tested applications, allowing for better drainage network and less processing time for catchment delineation. Regarding its limitations, the developed tool was incompatible with huge terrain data and showed some difficulties to represent drainage networks in extensive flat areas, which can occur in reservoirs and large riversA delimitação de bacias hidrográficas, geração da rede de drenagem e determinação de características hidráulicas de um rio de interesse são partes importantes de estudos na área de hidrologia. Atualmente muitas dessas informações são obtidas com o processamento de modelos digitais de elevação (MDEs) em sof- twares comerciais de SIG, como o ArcGIS e o IDRISI. Por outro lado, pacotes de SIG para uso livre, ou seja, gratuitos e de código aberto, têm aumentado significativamente nos últimos anos, e as vantagens desses pacotes incluem ampla distribuição e customização, desenvolvimento continuado pela comunidade de usuários e atendimento a necessidades específicas. Este trabalho apresenta o pacote livre (open-source) denominado IPH-Hydro Tools, um conjunto de ferramentas acoplado ao software livre MapWindow GIS criado para facilitar a aquisição de informações topológicas em bacias hidrográficas, bem como realização de etapas de pré-processamento em modelos hidrológicos a exemplo do MGB-IPH. Para avaliar a aplicabilidade e o desempenho da ferramenta desenvolvida foram realizados testes específicos, através da comparação dos resultados do IPH-Hydro Tools em relação a outros pacotes de SIG (ArcGIS, IDRISI, WhiteBox) disponíveis para esta finalidade. O IPH-Hydro Tools apresentou qualidade de rede de drenagem geralmente superior aos demais pacotes e menor tempo de processamento necessário para delimitação de bacias, apesar de algumas limitações como incompatibilidade em relação a matrizes muito grandes e dificuldade na representação da rede de drenagem em áreas extensas de mesma cota, a exemplo de reservatórios e rios muito largos

    Enhancing Operational Flood Detection Solutions through an Integrated Use of Satellite Earth Observations and Numerical Models

    Get PDF
    Among natural disasters floods are the most common and widespread hazards worldwide (CRED and UNISDR, 2018). Thus, making communities more resilient to flood is a priority, particularly in large flood-prone areas located in emerging countries, because the effects of extreme events severely setback the development process (Wright, 2013). In this context, operational flood preparedness requires novel modeling approaches for a fast delineation of flooding in riverine environments. Starting from a review of advances in the flood modeling domain and a selection of the more suitable open toolsets available in the literature, a new method for the Rapid Estimation of FLood EXtent (REFLEX) at multiple scales (Arcorace et al., 2019) is proposed. The simplified hydraulic modeling adopted in this method consists of a hydro-geomorphological approach based on the Height Above the Nearest Drainage (HAND) model (Nobre et al., 2015). The hydraulic component of this method employs a simplified version of fluid mechanic equations for natural river channels. The input runoff volume is distributed from channel to hillslope cells of the DEM by using an iterative flood volume optimization based on Manning\u2019s equation. The model also includes a GIS-based method to expand HAND contours across neighbor watersheds in flat areas, particularly useful in flood modeling expansion over coastal zones. REFLEX\u2019s flood modeling has been applied in multiple case studies in both surveyed and ungauged river basins. The development and the implementation of the whole modeling chain have enabled a rapid estimation of flood extent over multiple basins at different scales. When possible, flood modeling results are compared with reference flood hazard maps or with detailed flood simulations. Despite the limitations of the method due to the employed simplified hydraulic modeling approach, obtained results are promising in terms of flood extent and water depth. Given the geomorphological nature of the method, it does not require initial and boundary conditions as it is in traditional 1D/2D hydraulic modeling. Therefore, its usage fits better in data-poor environments or large-scale flood modeling. An extensive employment of this slim method has been adopted by CIMA Research Foundation researchers for flood hazard mapping purposes over multiple African countries. As collateral research, multiple types of Earth observation (EO) data have been employed in the REFLEX modeling chain. Remotely sensed data from the satellites, in fact, are not only a source to obtain input digital terrain models but also to map flooded areas. Thus, in this work, different EO data exploitation methods are used for estimating water extent and surface height. Preliminary results by using Copernicus\u2019s Sentinel-1 SAR and Sentinel-3 radar altimetry data highlighted their potential mainly for model calibration and validation. In conclusion, REFLEX combines the advantages of geomorphological models with the ones of traditional hydraulic modeling to ensure a simplified steady flow computation of flooding in open channels. This work highlights the pros and cons of the method and indicates the way forward for future research in the hydro-geomorphological domain

    Spatial decision support system for coastal flood management in Victoria, Australia

    Get PDF
    Coastal climate impact can affect coastal areas in a variety of ways, such as flooding, storm surges, reduction in beach sands and increased beach erosion. While each of these can have major impacts on the operation of coastal drainage systems, this thesis focuses on coastal and riverine flooding in coastal areas. Coastal flood risk varies within Australia, with the northern parts in the cyclone belt most affected and high levels of risk similar to other Asian countries. However, in Australia, the responsibility for managing coastal areas is shared between the Commonwealth government, Australian states and territories, and local governments. Strategies for floodplain management to reduce and control flooding are best implemented at the land use planning stage. Local governments make local decisions about coastal flood risk management through the assessment and approval of planning permit applications. Statutory planning by local government is informed by policies related to coastal flooding and coastal erosion, advice from government departments, agencies, experts and local community experts. The West Gippsland Catchment Management Authority (WGCMA) works with local communities, Victorian State Emergency Services (VCSES), local government authorities (LGAs), and other local organizations to prepare the West Gippsland Flood Management Strategy (WGFMS). The strategy aims at identifying significant flood risks, mitigating those risks, and establishing a set of priorities for implementation of the strategy over a ten-year period. The Bass Coast Shire Council (BCSC) region has experienced significant flooding over the last few decades, causing the closure of roads, landslides and erosion. Wonthaggi was particularly affected during this period with roads were flooded causing the northern part of the city of Wonthaggi to be closed in the worst cases. Climate change and increased exposure through the growth of urban population have dramatically increased the frequency and the severity of flood events on human populations. Traditionally, while GIS has provided spatial data management, it has had limitations in modelling capability to solve complex hydrology problems such as flood events. Therefore, it has not been relied upon by decision-makers in the coastal management sector. Functionality improvements are therefore required to improve the processing or analytical capabilities of GIS in hydrology to provide more certainty for decision-makers. This research shows how the spatial data (LiDAR, Road, building, aerial photo) can be primarily processed by GIS and how by adopting the spatial analysis routines associated with hydrology these problems can be overcome. The aim of this research is to refine GIS-embedded hydrological modelling so they can be used to help communities better understand their exposure to flood risk and give them more control about how to adapt and respond. The research develops a new Spatial Decision Support System (SDSS) to improve the implementation of coastal flooding risk assessment and management in Victoria, Australia. It is a solution integrating a range of approaches including, Light Detection and Ranging (Rata et al., 2014), GIS (Petroselli and sensing, 2012), hydrological models, numerical models, flood risk modelling, and multi-criteria techniques. Bass Coast Shire Council is an interesting study region for coastal flooding as it involves (i) a high rainfall area, (ii) and a major river meeting coastal area affected by storm surges, with frequent flooding of urban areas. Also, very high-quality Digital Elevation Model (DEM) data is available from the Victorian Government to support first-pass screening of coastal risks from flooding. The methods include using advanced GIS hydrology modelling and LiDAR digital elevation data to determine surface runoff to evaluate the flood risk for BCSC. This methodology addresses the limitations in flood hazard modelling mentioned above and gives a logical basis to estimate tidal impacts on flooding, and the impact and changes in atmospheric conditions, including precipitation and sea levels. This study examines how GIS hydrological modelling and LiDAR digital elevation data can be used to map and visualise flood risk in coastal built-up areas in BCSC. While this kind of visualisation is often used for the assessment of flood impacts to infrastructure risk, it has not been utilized in the BCSC. Previous research identified terrestrial areas at risk of flooding using a conceptual hydrological model (Pourali et al., 2014b) that models the flood-risk regions and provides flooding extent maps for the BCSC. It examined the consequences of various components influencing flooding for use in creating a framework to manage flood risk. The BCSC has recognised the benefits of combining these techniques that allow them to analyse data, deal with the problems, create intuitive visualization methods, and make decisions about addressing flood risk. The SDSS involves a GIS-embedded hydrological model that interlinks data integration and processing systems that interact through a linear cascade. Each stage of the cascade produces results which are input into the next model in a modelling chain hierarchy. The output involves GIS-based hydrological modelling to improve the implementation of coastal flood risk management plans developed by local governments. The SDSS also derives a set of Coastal Climate Change (CCC) flood risk assessment parameters (performance indicators), such as land use, settlement, infrastructure and other relevant indicators for coastal and bayside ecosystems. By adopting the SDSS, coastal managers will be able to systematically compare alternative coastal flood-risk management plans and make decisions about the most appropriate option. By integrating relevant models within a structured framework, the system will promote transparency of policy development and flood risk management. This thesis focuses on extending the spatial data handling capability of GIS to integrate climatic and other spatial data to help local governments with coastal exposure develop programs to adapt to climate change. The SDSS will assist planners to prepare for changing climate conditions. BCSC is a municipal government body with a coastal boundary and has assisted in the development and testing of the SDSS and derived many benefits from using the SDSS developed as a result of this research. Local governments at risk of coastal flooding that use the SDSS can use the Google Earth data sharing tool to determine appropriate land use controls to manage long-term flood risk to human settlement. The present research describes an attempt to develop a Spatial Decision Support System (SDSS) to aid decision makers to identify the proper location of new settlements where additional land development could be located based on decision rules. Also presented is an online decision-support tool that all stakeholders can use to share the results

    Photomorphic analysis techniques: An interim spatial analysis using satellite remote sensor imagery and historical data

    Get PDF
    The use of machine scanning and/or computer-based techniques to provide greater objectivity in the photomorphic approach was investigated. Photomorphic analysis and its application in regional planning are discussed. Topics included: delineation of photomorphic regions; inadequacies of existing classification systems; tonal and textural characteristics and signature analysis techniques; pattern recognition and Fourier transform analysis; and optical experiments. A bibliography is included

    Potential of Spaceborne X & L-Band SAR-Data for Soil Moisture Mapping Using GIS and its Application to Hydrological Modelling: the Example of Gottleuba Catchment, Saxony / Germany

    Get PDF
    Hydrological modelling is a powerful tool for hydrologists and engineers involved in the planning and development of integrated approach for the management of water resources. With the recent advent of computational power and the growing availability of spatial data, RS and GIS technologies can augment to a great extent the conventional methods used in rainfall runoff studies; it is possible to accurately describe watershed characteristics in particularly when determining runoff response to rainfall input. The main objective of this study is to apply the potential of spaceborne SAR data for soil moisture retrieval in order to improve the spatial input parameters required for hydrological modelling. For the spatial database creation, high resolution 2 m aerial laser scanning Digital Terrain Model (DTM), soil map, and landuse map were used. Rainfall records were transformed into a runoff through hydrological parameterisation of the watershed and the river network using HEC-HMS software for rainfall runoff simulation. The Soil Conservation Services Curve Number (SCS-CN) and Soil Moisture Accounting (SMA) loss methods were selected to calculate the infiltration losses. In microwave remote sensing, the study of how the microwave interacts with the earth terrain has always been interesting in interpreting the satellite SAR images. In this research soil moisture was derived from two different types of Spaceborne SAR data; TerraSAR-X and ALOS PALSAR (L band). The developed integrated hydrological model was applied to the test site of the Gottleuba Catchment area which covers approximately 400 sqkm, located south of Pirna (Saxony, Germany). To validate the model historical precipitation data of the past ten years were performed. The validated model was further optimized using the extracted soil moisture from SAR data. The simulation results showed a reasonable match between the simulated and the observed hydrographs. Quantitatively the study concluded that based on SAR data, the model could be used as an expeditious tool of soil moisture mapping which required for hydrological modelling

    Quarterly literature review of the remote sensing of natural resources

    Get PDF
    The Technology Application Center reviewed abstracted literature sources, and selected document data and data gathering techniques which were performed or obtained remotely from space, aircraft or groundbased stations. All of the documentation was related to remote sensing sensors or the remote sensing of the natural resources. Sensors were primarily those operating within the 10 to the minus 8 power to 1 meter wavelength band. Included are NASA Tech Briefs, ARAC Industrial Applications Reports, U.S. Navy Technical Reports, U.S. Patent reports, and other technical articles and reports
    corecore