10 research outputs found

    A New Lower Bound on the Density of Vertex Identifying Codes for the Infinite Hexagonal Grid

    Get PDF
    Given a graph G, an identifying code D subset of V(G) is a vertex set such that for any two distinct vertices v(1), v(2) is an element of V(G), the sets N[v(1)] boolean AND D and N[v(2)] boolean AND D are distinct and nonempty (here N[v] denotes a vertex v and its neighbors). We study the case when G is the infinite hexagonal grid H.Cohen et.al. constructed two identifying codes for H with density 3/7 and proved that any identifying code for H must have density at least 16/39 approximate to 0.410256. Both their upper and lower bounds were best known until now. Here we prove a lower bound of 12/29 approximate to 0.413793

    Automated Discharging Arguments for Density Problems in Grids

    Full text link
    Discharging arguments demonstrate a connection between local structure and global averages. This makes it an effective tool for proving lower bounds on the density of special sets in infinite grids. However, the minimum density of an identifying code in the hexagonal grid remains open, with an upper bound of 37≈0.428571\frac{3}{7} \approx 0.428571 and a lower bound of 512≈0.416666\frac{5}{12}\approx 0.416666. We present a new, experimental framework for producing discharging arguments using an algorithm. This algorithm replaces the lengthy case analysis of human-written discharging arguments with a linear program that produces the best possible lower bound using the specified set of discharging rules. We use this framework to present a lower bound of 2355≈0.418181\frac{23}{55} \approx 0.418181 on the density of an identifying code in the hexagonal grid, and also find several sharp lower bounds for variations on identifying codes in the hexagonal, square, and triangular grids.Comment: This is an extended abstract, with 10 pages, 2 appendices, 5 tables, and 2 figure

    Minimum density of identifying codes of king grids

    Get PDF
    International audienceA set C ⊆ V (G) is an identifying code in a graph G if for all v ∈ V (G), C[v] = ∅, and for all distinct u, v ∈ V (G), C[u] = C[v], where C[v] = N [v] ∩ C and N [v] denotes the closed neighbourhood of v in G. The minimum density of an identifying code in G is denoted by d * (G). In this paper, we study the density of king grids which are strong product of two paths. We show that for every king grid G, d * (G) ≥ 2/9. In addition, we show this bound is attained only for king grids which are strong products of two infinite paths. Given k ≥ 3, we denote by K k the (infinite) king strip with k rows. We prove that d * (K 3) = 1/3, d * (K 4) = 5/16, d * (K 5) = 4/15 and d * (K 6) = 5/18. We also prove that 2 9 + 8 81k ≤ d * (K k) ≤ 2 9 + 4 9k for every k ≥ 7

    Locating and Identifying Codes in Circulant Networks

    Full text link
    A set S of vertices of a graph G is a dominating set of G if every vertex u of G is either in S or it has a neighbour in S. In other words, S is dominating if the sets S\cap N[u] where u \in V(G) and N[u] denotes the closed neighbourhood of u in G, are all nonempty. A set S \subseteq V(G) is called a locating code in G, if the sets S \cap N[u] where u \in V(G) \setminus S are all nonempty and distinct. A set S \subseteq V(G) is called an identifying code in G, if the sets S\cap N[u] where u\in V(G) are all nonempty and distinct. We study locating and identifying codes in the circulant networks C_n(1,3). For an integer n>6, the graph C_n(1,3) has vertex set Z_n and edges xy where x,y \in Z_n and |x-y| \in {1,3}. We prove that a smallest locating code in C_n(1,3) has size \lceil n/3 \rceil + c, where c \in {0,1}, and a smallest identifying code in C_n(1,3) has size \lceil 4n/11 \rceil + c', where c' \in {0,1}

    An improved lower bound for (1,<=2)-identifying codes in the king grid

    Full text link
    We call a subset CC of vertices of a graph GG a (1,≤ℓ)(1,\leq \ell)-identifying code if for all subsets XX of vertices with size at most ℓ\ell, the sets {c∈C∣∃u∈X,d(u,c)≤1}\{c\in C |\exists u \in X, d(u,c)\leq 1\} are distinct. The concept of identifying codes was introduced in 1998 by Karpovsky, Chakrabarty and Levitin. Identifying codes have been studied in various grids. In particular, it has been shown that there exists a (1,≤2)(1,\leq 2)-identifying code in the king grid with density 3/7 and that there are no such identifying codes with density smaller than 5/12. Using a suitable frame and a discharging procedure, we improve the lower bound by showing that any (1,≤2)(1,\leq 2)-identifying code of the king grid has density at least 47/111

    A New Lower Bound on the Density of Vertex Identifying Codes for the Infinite Hexagonal Grid

    No full text
    Given a graph G, an identifying code D ⊆ V (G) is a vertex set such that for any two distinct vertices v1,v2 ∈ V (G), the sets N[v1] ∩ D and N[v2] ∩ D are distinct and nonempty (here N[v] denotes a vertex v and its neighbors). We study the case when G is the infinite hexagonal grid H. Cohen et.al. constructed two identifying codes for H with density 3/7 and proved that any identifying code for H must have density at least 16/39 ≈ 0.410256. Both their upper and lower bounds were best known until now. Here we prove a lower bound of 12/29 ≈ 0.413793

    On Vertex Identifying Codes For Infinite Lattices

    Get PDF
    PhD Thesis--A compilation of the papers: "Lower Bounds for Identifying Codes in Some Infinite Grids", "Improved Bounds for r-identifying Codes of the Hex Grid", and "Vertex Identifying Codes for the n-dimensional Lattics" along with some other resultsComment: 91p
    corecore