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Abstract

Given a graph G, an identifying code D ⊆ V (G) is a vertex set such that for any
two distinct vertices v1, v2 ∈ V (G), the sets N [v1] ∩ D and N [v2] ∩ D are distinct
and nonempty (here N [v] denotes a vertex v and its neighbors). We study the case
when G is the infinite hexagonal grid H. Cohen et.al. constructed two identifying
codes for H with density 3/7 and proved that any identifying code for H must have
density at least 16/39 ≈ 0.410256. Both their upper and lower bounds were best
known until now. Here we prove a lower bound of 12/29 ≈ 0.413793.

1 Introduction

Identifying codes were introduced by Karpovsky et al. [6] in 1998 to model fault diagnosis
in multiprocessor systems. If we model a multiprocessor as an undirected simple graph
G, then an (r, 6ℓ)-ID code is a subset of the vertices of G having the property that every
collection of at most ℓ vertices has a non-empty and distinct set of code vertices that are
distance at most r from it. To be precise, let Nr[X] be the set of vertices that are within
distance r of X (called the “closed r-neighborhood”). An (r, 6 ℓ)-ID code is a subset D
of V (G) such that Nr[X] ∩ D and Nr[Y ] ∩ D are distinct and non-empty for all distinct
subsets X ⊆ V (G) and Y ⊆ V (G) with |X|, |Y | 6 ℓ. In this paper, we consider the case
r = 1, which we denote simply as ℓ-ID codes; we also write N [v] for N1[v].

Not every graph has an ℓ-ID code. For example, if G contains two vertices u and v
such that N [u] = N [v], then G cannot have even a 1-ID code, since for any subset of
vertices D we have N [u] ∩ D = N [v] ∩ D. However, if, for every pair of subsets X 6= Y
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with |X|, |Y | 6 ℓ, we have N [X] 6= N [Y ], then G has an ℓ-ID code, since D = V (G)
is such a code. Hence we are usually interested in finding an ℓ-ID code of minimum
cardinality. The most studied case is when ℓ = 1. In this case, D is an 1-ID code if and
only if for all distinct vertices u and v in G, the intersections N [u] ∩D and N [v] ∩D are
distinct and nonempty. For a fixed subset of vertices D, we say that vertices u and v are
distinguishable if N [u] ∩ D 6= N [v] ∩ D.

Much work has focused on finding 1-ID codes for infinite grids, see [1, 2, 3, 4, 5]. To
measure how small an ID code can be, we talk about the “density” of an infinite grid,
which, roughly speaking, is the fraction of the vertices in the graph that are in the code
(we give a formal definition of density after we prove Proposition 1).

In 1998, Karpovsky, Chakrabarty, and Levitin [6] considered the 6-regular, 4-regular,
and 3-regular infinite grids that come from the tilings of the plane by equilateral triangles,
squares, and regular hexagons. They asked the question “What is the minimum density
of an identifying code for each grid?” A short proof shows that the answer for the 6-
regular grid is density 1/4. For the 4-regular grid, Cohen et. al [2] constructed codes with
density 7/20 and Ben-Haim and Litsyn [1] proved that 7/20 is best possible. For the 3-
regular grid, the minimum density remains unknown. The best upper bound is 3/7, which
comes from two codes constructed by Cohen et. al [3]; these same authors also proved a
lower bound of 16/39. In this paper, we improve the lower bound to 12/29. Before we
prove our main result, which is Theorem 1, we first prove a weaker lower bound, given in
Proposition 1. The proof of Proposition 1 is instructive, because the proof is easy, yet the
proofs of Theorem 1 and Proposition 1 use the same core idea. We call the components
of G[D] clusters and a cluster with d vertices is a d-cluster (a d+-cluster has d or more
vertices).

Proposition 1. The density of every vertex identifying code for the infinite hexagonal
grid is at least 2/5.

Proof: Our proof is by the discharging method. Thus, D must contain at least 2/5 of
the vertices. We assign to each vertex v in the identifying code D a charge of 1. We
will redistribute the charges, without introducing any new charge, so that every vertex
(whether in D or not) has charge at least 2/5. We redistribute the charge according to
the following discharging rule:

• If v ∈ D is adjacent to w /∈ D and w has k neighbors in D, then v gives charge
2/(5k) to w.

Now we simply verify that after applying the discharging rule, each vertex has charge
at least 2/5.

If v /∈ D, then v receives charge k(2/(5k)) = 2/5. If v is a 1-cluster, then note
that each neighbor w of v has at least one other neighbor in D (otherwise v and w are
indistinguishable). So v gives each neighbor charge at most 1/5. Thus, v retains charge
at least 1 − 3(1/5) = 2/5. It is easy to see that D cannot contain 2-clusters. Let C be a
3+-cluster, and let v be a vertex in C. If dC(v) = 1, then v has two neighbors v1 and v2
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not in D. Since v1 and v2 are distinguishable, at least one of them has another neighbor
in D. So the total charge v gives to v1 and v2 is at most 2/5 + 1/5; thus v retains charge
at least 1 − 3/5 = 2/5. If dC(v) = 2, then v gives away charge at most 2/5, so v retains
charge at least 1 − 2/5 = 3/5. Finally, if dC(v) = 3, then v gives away no charge, so v
retains charge 1.

Since the charge at each vertex (whether in D or not) is at least 2/5, the density of D
is at least 2/5. �

It is instructive to note that our proof does not rely on the structure of the grid, but
only that it is 3-regular. In fact, Proposition 1 is a special case of a more general lower
bound, which follows from a similar proof: any 1-ID code for any k-regular graph has
density at least 1/(1 + k/2).

When we study the proof of Proposition 1, it is natural to look for “slack”, i.e., vertices
that have charge greater than 2/5 after the discharging phase. Of course every vertex v in
a 3+-cluster C with at least two neighbors in C has slack. It is clear that every 3+-cluster
C contains at least one such slack vertex. Our plan is to distribute this excess charge at
the slack vertices among the vertices close to v. We must also verify that each 1-cluster
and each vertex not in D are close to some 3+-cluster. This approach forms the outline
of the proof of Theorem 1.

We think our proof of Theorem 1 could be refined to give a better lower bound.
However, we think that bound would be only slightly better than Theorem 1, and that
the proof would be much more complicated, so we have not attempted it.

Now we formally define density. We fix an arbitrary vertex v ∈ V (G) and let Vh denote
all the vertices that are distance at most h from v. The density of a code D is defined as

lim sup
h→∞

|D ∩ Vh|

|Vh|
.

We note that since each vertex in Vh finishes with charge at least 12/29, the sum of the
charges at vertices in Vh is at least 12|Vh|/29. We should remark that some vertices in
Vh may receive charge from vertice in D \ Vh. However, the sum of the charges sent from
vertices in D \ Vh to vertices in Vh is linear in h, whereas |Vh| is quadratic in h. Thus, we
see that 12/29 is a lower bound on the density of D.

The organization of the rest of the paper is as follows. In Section 2 we prove the
main result. This proof consist of stating six discharging rules, and verifying that after
the discharging phase, each vertex has charge at least 12/29. Showing that each vertex
finishes with sufficient charge is a lengthy task. To simplify the analysis, we state and prove
five structural lemmas and three claims about the discharging process. The difference
between our claims and our structural lemmas is that the claims are statements about
our discharging rules, whereas the lemmas are statements about any 1-ID code in the
infinite hexagonal grid. So to simplify the proof of the main result, we defer the proofs of
the five structural lemmas until Section 3.
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2 Main Result

Let v be a 1-cluster. If v has a neighbor u /∈ D, such that all three neighbors of u are
in D, then we say that v is crowded; otherwise v is uncrowded. Let C be a 3-cluster and
let w be the non-leaf vertex of C; we call w the center of C. If the neighbor of w that
is not in C has no other neighbor in D, then we call C an open 3-cluster and we call w
an open center. Otherwise we call C a closed 3-cluster. For each leaf v of C, there must
exist a w ∈ D at distance two from v and not in C (otherwise the two neighbors of v not
in C would be indistinguishable). However, a leaf may have two or more such vertices at
distance two. If any vertex v in C, leaf or center, has at least two vertices w1 ∈ D, w2 ∈ D
at distance two (and neither w1 nor w2 is in C), then we call C crowded; otherwise C is
uncrowded. The significance of a closed or crowded 3-cluster C is that C will have extra
help when sending charge to its adjacent vertices.

We say that an uncrowded 1-cluster C1 is nearby a 3+-cluster C2 if C1 is within distance
three of either a 4+-cluster C2, a closed 3-cluster C2, or an open center of a 3-cluster C2.
Similarly, we say that an uncrowded open 3-cluster C1 is nearby a 3+-cluster C2 if C1

is within distance three of either a 4+-cluster C2 or a closed 3-cluster C2, or if both its
leaves are within distance three of an open 3-cluster C2. We will show in Lemma 1 that
each uncrowded 1-cluster v is nearby a 3+-cluster. If an open 3-cluster C is uncrowded,
has no open 3-clusters within distance two, and has no closed 3-clusters or 4+-clusters
within distance three, then we say that C is threatened. If an uncrowded 1-cluster has
no 4+-cluster within distance three and has no nearby unthreatened 3-cluster, then we
say that v is threatened. If a threatened 3-cluster C has at least four nearby threatened
1-clusters and threatened 3-clusters, then we say that C is needy. Whereas clusters that
are closed or crowded already have extra help sending charge, clusters that are uncrowded,
threatened, or needy will likely need to receive extra charge from elsewhere.

Theorem 1. The density of every vertex identifying code for the infinite hexagonal grid
is at least 12/29.

Proof: Our proof is by discharging. We assign to each vertex v in the identifying code
D a charge of 1. We will redistribute the charges, without introducing any new charge,
so that every vertex (whether in D or not) has charge at least 12/29.

The outline of the proof is as follows. Consider a vertex v not in D. Let k be the
number of neighbors of v that are in D. Vertex v will receive charge 12/(29k) from each
of its k neighbors (this is rule 1, in the discharging rules below). Thus every vertex not in
D receives charge 12/29. Clearly every neighbor of a 1-cluster v must have at least two
neighbors in D; thus, each neighbor of v will receive charge at most 6/29 from v. If v is
uncrowded, then v sends charge 6/29 to each of its three neighbors, so v will be left with
charge 1− 3(6/29) = 11/29. Hence v needs more charge. Our plan is to send charge 1/29
to each uncrowded 1-cluster v from a nearby 3+-cluster C; we will do this via rules 2–4
below. We will also need to prove that such a 3+-cluster C does not send charge to too
many uncrowded 1-clusters.

In verifying that each vertex finishes with charge at least 12/29 it is convenient to
count the charges of vertices in a single cluster together; i.e., for each cluster with m
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vertices, we simply verify that the sum of the final charges of the vertices in that cluster
is at least 12m/29.

Note that the charge that a closed 3-cluster C gives away by rule 1 is at most 3(6/29)+
2(12/29) = 42/29. Since C begins with charge 87/29 and needs to keep charge 36/29,
C can afford to give away another 87/29 − 42/29 − 36/29 = 9/29 to nearby clusters. In
contrast, the charge that an open 3-cluster C ′ gives away by rule 1 may perhaps be as
much as 2(6/29)+3(12/29) = 48/29. Thus, C ′ can only afford to give away another 3/29
to nearby clusters. Below, we define rules 2–4 so that each uncrowded 1-cluster receives
charge 1/29 from some nearby 3+-clusters. Although rules 2–4 ensure sufficient charge
for each uncrowded 1-cluster, in some cases they unfortunately require open 3-clusters to
give away a total charge of 4/29 to nearby 1-clusters. Giving away this additional charge
may result in a needy 3-cluster C ′ with remaining charge only 35/29 (rather than the
necessary 36/29). Thus, we add rule 5, which supplies these needy 3-clusters with the
necessary charge (from nearby open 3-clusters).

Discharging Rules

1. Each vertex v /∈ D that has k neighbors in D receives charge 12/(29k) from each
neighbor in D.

2. Each uncrowded 1-cluster that is nearby a 4+-cluster C receives charge 1/29 from
C.

3. Each uncrowded 1-cluster v that is nearby a closed 3-cluster C, and has not received
charge by rule 2, receives charge 1/29 from C.

4. Each uncrowded 1-cluster v that is nearby an open center in an open 3-cluster C,
and has not received charge by rule 2 or 3, receives charge 1/29 from C. However, if
v is nearby a crowded 3-cluster C, then v receives charge 1/29 from C and receives
no charge from any other cluster. Similarly, if v is not nearby a crowded 3-cluster,
but lies on a 6-cycle with an open center in cluster C, then v receives charge 1/29
from C and receives no charge from any other cluster.

5. If C1 is a needy, open 3-cluster then it has both its leaves within distance three of
another open 3-cluster C2; C1 receives charge 1/29 from C2. However, if C1 and
C2 are both uncrowded and they each have both leaves within distance three of the
other cluster, then neither cluster sends charge to the other. We say that such C1

and C2 are paired with each other.

Note that in each rule, if cluster C1 receives charge from cluster C2, then C1 is nearby
C2. This is a necessary, though not sufficient, condition for receiving charge.

Before we verify that each vertex has final charge at least 12/29, we state five structural
lemmas about the relationships between uncrowded, threatened, and needy clusters and
their nearby 3+-clusters. We defer the proofs of these lemmas until after we complete
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the discharging argument. We separate these lemmas from the rest of the present proof
because they make no mention of discharging rules. Thus, they may be useful in proving
a stronger lower bound.

Lemma 1. Every uncrowded 1-cluster is nearby a 3+-cluster.

Lemma 2. Every closed 3-cluster C is nearby at most ten 1-clusters and open 3-clusters.
If C is nearby exactly ten such clusters, then C is crowded.

Lemma 3. Every needy 3-cluster has both leaves within distance three of a 3+-cluster.

Lemma 4. Let C1 and C2 be uncrowded, open 3-clusters that are paired with each other.
Clusters C1 and C2 have at most 7 nearby threatened 1-clusters and threatened 3-clusters.
If they have exactly 7 such nearby clusters, then they also have a nearby closed 3-cluster
or 4+-cluster.

Lemma 5. Every cluster C with m vertices has at most m + 8 nearby clusters.

Now we verify that after the discharging phase, every vertex (whether in D or not)
has charge at least 12/29; this proves that D has density at least 12/29. We write f(v)
or f(C) to denote the charge at v or C after the discharging phase.

Suppose v /∈ D. By rule 1, f(v) = k(12/(29k)) = 12/29, where k is the number of
neighbors of v in D. Now let v be a crowded 1-cluster. One of the neighbors u of v has three
neighbors in D, so u receives only charge 4/29 from v. Hence f(v) > 1−2(6/29)−(4/29) =
13/29. Finally, let v be an uncrowded 1-cluster. By Lemma 1 and rules 2–4, v receives
charge 1/29 from some nearby 3+-cluster. Thus, f(v) > 1 − 3(6/29) + 1/29 = 12/29.

Let C be a closed 3-cluster; let u and v be the leaves of C, and let w be the center.
Since we can distinguish between the neighbors of u (not in C), at least one of them has
a neighbor in D other than u; similarly for the neighbors of v. Since C is closed, the
neighbor of w not in C has another neighbor in D. Thus, the charge given from C to
adjacent vertices is at most 2(12/29) + 3(6/29) = 42/29. If C is uncrowded, then, by
Lemma 2, C gives charge 1/29 to at most nine nearby clusters; thus f(C) > 3− 42/29−
9(1/29) = 36/29. If C is crowded, then the charge C gives to adjacent vertices is at most
max(2(6/29) + 2(12/29) + 4/29, 4(6/29) + 12/29) = 40/29. By Lemma 2, C gives charge
to at most ten nearby clusters, so f(C) > 3 − 40/29 − 10(1/29) > 3(12/29).

Now we consider open 3-clusters. In the remainder of this paper, we often seek to
show that an open 3-cluster is not needy, thus we now study how much charge is given
away by an open 3-cluster.

Claim 1. Every open 3-cluster gives away charge at most 52/29.
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Claim 2. If an open 3-cluster C has a vertex v at distance two and v does not receive
charge from C, then C gives away charge at most 51/29. Similarly, if an open 3-cluster C
has a nearby closed 3-cluster or 4+-cluster, then C gives away charge at most 51/29 and
C is not needy.

Since Claims 1 and 2 are very similar, we only provide a proof for Claim 1. However,
a short analysis of this proof yields a proof of Claim 2.

1 2

3
4

5
6

7

8
9

10
11

12

13
14

15
16

17
18

19
20

21

22
23

24
25

26
27

28
29

30

31
32

33

C

Fig. 1: Proof of Claim 1.

Proof (of Claim 1): Let C be the open 3-cluster 16-17-18 shown in Fig. 1. Let U =
{8, 9, 10, 14, 15, 24}; these are the vertices that may receive charge from C and also are
nearest to 16. Similarly, let V = {10, 11, 12, 19, 20, 28} and let W = {26, 31, 33}. Let
U ′ = U ∪ {13-22-23}, V ′ = V ∪ {21-30-29}, and W ′ = W ∪ {31-32-33}.

We now show that the charge C sends to vertices in U ′ is at most 20/29 if C sends
charge to the 3-cluster 13-22-23 in U ′ and at most 19/29 otherwise; and the same is true
for V ′ and the 3-cluster 21-30-29. We also show that the charge C sends to vertices in W ′

is 14/29 if C sends charge to both 31 and 33, and is at most 13/29 otherwise.
Since we can distinguish between 9 and 15, we know that |U ∩D| > 1. If |U ∩D| = 1,

then the charge C sends to U ′ is 12/29+6/29+1/29+1/29 = 20/29 if C sends charge to
the 3-cluster, and 19/29 otherwise. If |U ∩ D| = 2 then either each of 9 and 15 have two
neighbors in D or one of them has three neighbors and the other has only 16. Suppose
that 9 has three neighbors in D; note that since 9 receives charge 4/29 from each of its
neighbors, none of these neighbors can be a threatened 1-cluster. Thus the charge C sends
to U ′ is at most max(2(6/29) + 2(1/29), 12/29 + 4/29 + 1/29) = 17/29. If |U ∩ D| = 3,
then the charge C sends to U ′ is at most 6/29 + 4/29 + 1(1/29) = 11/29. If |U ∩D| = 4,
then the charge C sends to U ′ is 2(4/29) + 0(1/29) = 8/29. The same analysis holds for
the charge C sends to V ′. If |W ∩ D| = 2, then the charge C sends to W ′ is at most
12/29 + 2(1/29) = 14/29. If either of 31 and 33 is not a threatened 1-cluster, then the
charge C sends is at most 13/29. Now we examine the total charge given away by C.

First we consider the case when both 31 and 33 are threatened 1-clusters. Now 24 ∈ D
and 28 ∈ D. Thus, C does not send charge to the 3-cluster in either U ′ or V ′. Hence, if
C is unpaired, then C sends total charge at most 14/29 + 2(19/29) = 52/29.
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Now we consider the case when at least one of 31 and 33 is not a threatened 1-cluster.
Now C sends total charge at most 13/29 + 2(20/29) = 53/29. However, equality holds
only if 10 /∈ D and 8 ∈ D and 12 ∈ D; suppose equality holds. We consider N [10]. Since
9 /∈ D, 10 /∈ D, and 11 /∈ D, we must have 5 ∈ D, and specifically, 5 must be in a
3+-cluster C1. If C1 is a 4+-cluster, then C1 gives charge to both 8 and 12, so C doesn’t
have to. Similary, if C1 is 1-4-5 or 5-6-2, then C1 is a closed 3-cluster; again C1 gives
charge to 8 and 12, so C doesn’t have to. Finally, suppose that C1 is 4-5-6. Now C1

is also an open 3-cluster. By the final sentence of rule 4, vertices 8 and 12 each receive
charge 1/29 from C1 and each receive no charge from C. Thus, again C gives away total
charge at most 52/29. �

We just proved that every open 3-cluster C gives away charge at most 52/29. Now
Lemma 3 states that every needy 3-cluster has both leaves within distance three of a
3+-cluster. So by rule 5, every unpaired needy 3-cluster receives charge 1/29. Thus, for
every unpaired needy 3-cluster C, we have f(C) > 3 − 52/29 + 1/29 = 36/29. If an
unpaired open 3-cluster is not needy, then f(C) > 3 − 51/29 = 36/29. Hence, we now
turn our attention to paired open 3-clusters.

Lemma 4 reads: “Let C1 and C2 be uncrowded, open 3-clusters that are paired with
each other. Either C1 and C2 have at most 6 nearby threatened 1-clusters and threatened
3-clusters, or they have exactly 7 such nearby clusters, but they also have a nearby closed
3-cluster or 4+-cluster.” So let C1 and C2 be open, uncrowded 3-clusters that are paired
with each other. We consider the two cases listed in Lemma 4.

Note that the charge that each gives to adjacent vertices not in D is 3(12/29) +
2(6/29) = 48/29. Thus, if C1 and C2 have at most 6 nearby threatened 1-clusters and
threatened 3-clusters, then f(C1) + f(C2) > 6 − 2(48/29) − 6(1/29) = 72/29. Similarly,
if C1 and C2 have exactly 7 nearby threatened 1-clusters and threatened 3-clusters, then
f(C1) + f(C2) > 6 − 2(48/29) − 7(1/29) + 1/29 = 72/29.

Finally, we consider 4+-clusters. Let C be a 4+-cluster with m vertices. We will show
that f(C) > 12m/29. Note that for each v ∈ C if dC(v) = 1, then v gives charge at
most 12/29 + 6/29 = 18/29 to adjacent vertices not in C. Similarly, if dC(v) = 2, then v
gives charge at most 12/29 to its adjacent vertex not in C; if dC(v) = 3, then v has no
adjacent vertices not in C. Let αi denote the number of vertices v in C with dC(v) = i
for i = 1, 2, 3. Lemma 5 implies that C gives charge at most (m + 8)/29 to nearby
clusters. Thus, f(C) > α1 + α2 + α3 −

18

29
α1 −

12

29
α2 −

1

29
(α1 + α2 + α3 + 8). We want

f(C) − 12m/29 > 0; thus, we want to show that (−2α1 + 4α2 + 16α3 − 8)/29 > 0. Note
that if α3 > 0, then α1 6 α3 + 2, and if α3 = 0, then α1 6 2. So the desired inequality
holds except when α3 = 0, α1 = 2, and α2 = 2. Now we consider the two 4-clusters with
α3 = 0, α1 = 2, and α2 = 2.

We begin with the 4-cluster shown in Fig. 2a. The charge that C gives to its six
adjacent vertices not in D is at most 4(12/29) + 2(6/29) = 60/29. Since C begins with
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Fig. 2a: First 4-cluster with
α3 = 0, α1 = 2, and α2 = 2.
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Fig. 2b: Second 4-cluster with
α3 = 0, α1 = 2, and α2 = 2.

charge 4 and must retain charge at least 4(12/29), the charge that C can afford to give
to nearby needy clusters is 4 − 60/29 − 4(12/29) = 8/29. Note that C has at most 11
nearby needy clusters, since all the vertices at distance 2 and 3 are covered by the 11 sets
{2, 8}, {4, 10}, {6, 7}, {11, 12}, {14, 15}, {21, 22}, {23, 24}, {29, 30}, {31, 32}, {33, 34},
and {35, 36}.

If 8 ∈ D, 10 ∈ D, 11 ∈ D, or 21 ∈ D, then the charge C gives to adjacent vertices is at
most 54/29, and C can give charge 1/29 to each of the at most 11 nearby needy clusters.
Hence, we assume that 8 /∈ D, 10 /∈ D, 11 /∈ D, and 21 /∈ D. Under this assumption,
we will show that C has at most 8 nearby needy clusters. Note, as follows, that the sets
{2, 8} and {4, 10} intersect at most 1 needy cluster. Since 9 /∈ D, 10 /∈ D, and 11 /∈ D,
we must have 4 in a 3+-cluster. Since 8 /∈ D, we only need consider 2 ∈ D. Now either 2
and 4 are in the same cluster, or 4 is in a 4+-cluster or closed 3-cluster (since 12 ∈ D). By
symmetry, the sets {11, 12} and {21, 22} intersect at most 1 needy cluster. Thus, we see
that C has at most 9 nearby needy clusters. We now show that, in fact, C has at most 8
nearby needy clusters.

Suppose to the contrary that each of the seven sets {6, 7}, {14, 15}, {23, 24}, {29, 30},
{31, 32}, {33, 34}, and {35, 36} intersects a needy cluster. Recall from Claim 2 that if a
3+-cluster C2 has a vertex v at distance two and v is within distance three of a 4+-cluster,
then C2 is not needy. Hence, we conclude that the cluster that intersects {31, 32} is a
1-cluster; by symmetry, we assume that this cluster is 31. For the same reason, we must
now have the clusters 23, 14, and 7. Since 7 is a 1-cluster, we must also have 2 ∈ D.
Now if 2 and 4 lie in the same cluster, then that cluster is not needy, so the lemma is
true. Similarly, the lemma is true if 4 and 12 lie in the same cluster. Hence, 4 must lie
in a cluster with 5, but not with 12. However, as before, the cluster containing 4 and 5
cannot be needy, since 12 ∈ D. Thus, the lemma is true for the first 4-cluster with α3 = 0,
α1 = 2, and α2 = 2.

We now consider the 4-cluster C shown in Fig. 2b. Note that C has at most 12 nearby
clusters, since each of the 12 sets {1, 8}, {3, 10}, {5, 12}, {6, 7}, {13}, {14, 15}, {22, 23},
{24}, {25, 32}, {27, 34}, {29, 36} and {30, 31} intersects at most one cluster, and these
12 sets cover all the vertices at distance two or three from C. As for the previous case, if
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any of 8 ∈ D, 10 ∈ D, 27 ∈ D, or 29 ∈ D hold, then C gives away charge at most 54/29
to adjacent vertices, so C can afford to give away charge 1/29 to each of the at most 12
nearby clusters. Thus, we assume that 8 /∈ D, 10 /∈ D, 27 /∈ D, and 29 /∈ D.

We will show that the four sets {1, 8}, {3, 10}, {5, 12}, and {13} intersect at most two
needy clusters. Since N [10]∩D 6= ∅, we know that 3 is in a 3+-cluster C1; we consider two
(non-exclusive) cases: 2 ∈ C1 and 4 ∈ C1. First suppose that 2 ∈ C1. Now the two sets
{1, 8} and {3, 10} intersect at most one cluster. Further, if 5 ∈ D, then we can show that
C1 is not needy, since 5 is nearby C1 but the cluster contain 5 receives no charge from C1,
since it is also nearby C. However, if 5 /∈ D, then the four sets {1, 8}, {3, 10}, {5, 12},
and {13} intersect at most two clusters. Suppose instead that 4 ∈ C1. If 1 ∈ D, then
we can show that C1 is not needy. However, if 1 /∈ D, then the four sets {1, 8}, {3, 10},
{5, 12}, and {13} intersect at most two clusters.

Thus, the four sets {1, 8}, {3, 10}, {5, 12}, and {13} intersect at most two needy
clusters. By symmetry, the four sets {24}, {25, 32}, {27, 34}, and {29, 36} intersect at
most two needy clusters. Thus, C has at most 8 nearby, needy clusters, so f(C) >

4− 60/29− 8(1/29) = 48/29. This concludes the proof of Theorem 1, subject to proving
Lemmas 1–5, which we do in the next section.

3 Structural Lemmas
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Fig. 3a: Proof of Lemma 1.
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Fig. 3b: Proof of Lemma 2.

Lemma 1. Every uncrowded 1-cluster is nearby a 3+-cluster.

Proof: Let 13 ∈ D be the uncrowded 1-cluster shown in Fig. 3a. Since we can distinguish
13 from its neighbors, each of these neighbors has an additional neighbor in D. By
symmetry, we may assume that 10, 11 ∈ D. If 10 or 11 is in a 3+-cluster C, then the
lemma holds; hence we may assume that 10 and 11 are 1-clusters. Since 13 is uncrowded,
and 10, 13 ∈ D, we know that 8 /∈ D. Since we can distinguish 7 from 11, we know that
6 ∈ D. Since N [8]∩D is nonempty, we know that 4 ∈ D. Since we can distinguish 4 from
8, we know that 4 is in a 3+-cluster. If 4 is in a 4+-cluster or closed 3-cluster C, then the
lemma holds. Hence, C = 3-4-5. Now 4 is an open center, so again the lemma holds. �
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Lemma 2. Every closed 3-cluster C has at most ten nearby 1-clusters and open 3-
clusters. If C has exactly ten such clusters, then C is crowded.

Proof: Let C be the 3-cluster 18-19-20 shown in Fig. 3b. Consider the nine bold edges
and two bold isolated vertices not in C. These eleven sets cover all of the vertices at
distance two or three from C. Hence, C has at most 11 distinct nearby clusters (this is a
special case of Lemma 5). Note that either 4 is in a 3+-cluster C1 or 11 is a 1-cluster. We
first consider the possibilities for C1. By symmetry, we assume that 5 ∈ C1; additionally,
either 1 ∈ C1, 3 ∈ C1, 6 ∈ C1, or 11 ∈ C1.

Suppose {4, 5, 11} ⊆ C1. Note that {6, 13, 14} intersects at most one cluster (other
than C1). Similarly, if {2, 8, 9} intersects two nearby clusters, then C1 is a closed 3-cluster
or 4+-cluster. Hence, C has at most nine nearby 1-clusters and open 3-clusters.

Suppose {3, 4, 5} ⊆ C1. Note that {2, 8, 9} intersects at most one cluster other than C1;
similarly for {6, 13, 14}. Hence, C has at most nine nearby 1-clusters and open 3-clusters.

Suppose {4, 5, 6} ⊆ C1. Assume also that 11 /∈ C1, since this is an earlier case. Clearly,
C has at most ten nearby clusters. Furthermore, equality holds only if each bold set (other
than {4, 11} and {6, 13}) intersects a distinct nearby cluster. Under this assumption, we
note the following: 14 ∈ D, 22 /∈ D, 29 ∈ D (since each leaf of C has some vertex v at
distance two, with v ∈ D), 28 /∈ D, 26 ∈ D (since C is closed), 25 /∈ D. Also, 8 ∈ D
implies that 9 /∈ D and 16 /∈ D. But now 18 has no vertex v at distance two, with v ∈ D.
Hence C has at most nine nearby clusters.

Suppose {1, 4, 5} ⊆ C1. Also assume that 6 /∈ D, since otherwise we are in an earlier
case. Note that 13 /∈ D, for if it is, then 14 cannot be a distinct cluster and also C1 is a
closed 3-cluster or 4+-cluster. Since 6 /∈ D and 13 /∈ D, we are in a similar situation to
the previous case, and that argument suffices.

Hence, we conclude that 11 is a 1-cluster. First we prove that the five sets {8}, {2, 9},
{4, 11}, {6, 13}, and {14} intersect at most four nearby 1-clusters and open 3-clusters.
Second, we assume that C is not crowded and show that the other six bold sets intersect
at most five nearby 1-clusters and open 3-clusters. Assume that both 8 ∈ D and 14 ∈ D.
Since 4 is distinguishable from 11, either 5 ∈ D or 3 ∈ D; by symmetry, assume 5 ∈ D. If
6 /∈ D, then {6, 13} intersects no cluster other than (possibly) the one that contains 14.
However, if 6 ∈ D, then the cluster that contains 5 and 6 is either a closed 3-cluster or a
4+-cluster. Hence, C has at most 10 nearby 1-clusters and open 3-clusters.

Now assume further that C is not crowded. Since C is closed, either 26 ∈ D or 28 ∈ D;
by symmetry, assume 26 ∈ D. Since C is not crowded, we know that 9 /∈ D, 13 /∈ D,
16 /∈ D, 22 /∈ D, 25 /∈ D, 28 /∈ D, and 29 /∈ D. Since N [29] ∩ D is nonempty, 30 is in a
3+-cluster C1. Now either 23 /∈ D, or 23 ∈ C1, or 32 /∈ D, or C1 is a closed 3-cluster (due
to 32) or a 4+-cluster. In every case, the lemma is true. �

Lemma 3. Every needy 3-cluster has both leaves within distance three of a 3+-cluster.

Proof: Let C1 be the 3-cluster shown in Fig. 4. Since N [6] ∩ D is nonempty, either 1 is
in a 3+-cluster, or 6 is a 1-cluster. In the former case, the lemma holds, so we consider
only the latter case.
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Fig. 4: Proof of Lemma 3.

Suppose 6 is a 1-cluster. We will now show that C1 is not needy; suppose, for contra-
diction, that C1 is needy. By definition, C1 is uncrowded. This implies that neither 15
nor 16 is a 1-cluster. Thus, the only candidates to be nearby threatened 1-clusters and
threatened 3-clusters, other than 6, are the three 3-clusters shown in bold. Furthermore,
since C1 is needy, 6 and each of these 3-clusters must be threatened. Since 6 is a 1-cluster,
1 must also have another neighbor in D; by symmetry, we assume 2 ∈ D. Now we consider
whether 9 is in D or not.

Suppose that 9 ∈ D. Now 9 must be a 1-cluster, since C2 is threatened. Since 8 is
distinguishable from 9, we know that 3 ∈ D. Now we have 2 ∈ D and 3 ∈ D, so 2 and 3
lie together in a 3+-cluster C3. Note that since 6 ∈ D and 9 ∈ D, C3 is either a closed
3-cluster or a 4+-cluster. In each case, 6 is unthreatened, so C1 is not needy.

Suppose instead that 9 /∈ D. Since 7 /∈ D, 8 /∈ D, and 9 /∈ D, we know that 3 ∈ D.
Similarly, 8 /∈ D, 9 /∈ D, and 13 /∈ D, so 10 ∈ D; furthermore, 10 is in a 3+-cluster.
Since C2 is threatened, 11 cannot be in a 3+-cluster with 10; hence, 10 is in a cluster with
5. Now we consider the cluster C3 that contains 2 and 3. Again, C3 is either a closed
3-cluster or a 4+-cluster. In each case, 6 is unthreatened, so C is not needy. �

Lemma 4. Let C1 and C2 be uncrowded, open 3-clusters that are paired with each other.
Clusters C1 and C2 have at most 7 nearby threatened 1-clusters and threatened 3-clusters.
If they have exactly 7 such nearby clusters, then they also have a nearby closed 3-cluster
or 4+-cluster.
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Fig. 5: Proof of Lemma 4.
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Proof: Let C1 = 21-22-23 and C2 = 39-40-41 be the paired, uncrowded, open 3-clusters
shown in Fig. 5. We note that the number of 1-clusters and open 3-clusters nearby
C1 and C2 is at most 8, as follows. We show that C1 has at most four such nearby
clusters. First suppose that at most one of 1 and 3 is a 1-cluster. Now at most one
nearby cluster intersects each of the following four vertex sets: {1, 2, 3}, {7, 8, 9, 18, 19},
{13, 14, 15, 25, 26}, and {30}. If both 1 and 3 are 1-clusters, then the same analysis holds,
except now we know that 9 ∈ D, so 30 /∈ D.

Since we can distinguish 24 from 33, we know that either 13 ∈ D or 25 ∈ D. Similarly,
since we can distinguish 34 from 42, we know that 35 ∈ D, 43 ∈ D, or 46 ∈ D. Note that
if 25 ∈ D and 35 ∈ D, then 25 and 35 are in the same 3+-cluster and it must be a closed
3-cluster or 4+-cluster. Furthermore, C1 and C2 have at most 7 other nearby clusters; so
the lemma holds. Thus, we have five possibilities: {13, 35}, {13, 43}, {13, 46}, {25, 43},
and {25, 46}. We consider each possibility in turn, but we defer the first possibility until
the end.

Suppose 13 ∈ D and 43 ∈ D. Since C2 is uncrowded, 35 /∈ D; similarly 25 /∈ D. Thus
26 ∈ D and 36 ∈ D. Now 36 and 43 lie together in a 3+-cluster C3. If C3 = 36-43-44, then
C3 is a closed 3-cluster and again C1 and C2 have at most 7 other nearby clusters. The
situation is similar if C3 is a 4+-cluster. Hence, we assume that C3 = 37-36-43. Since we
can distinguish between 25 and 26, we know that 26 is in a 3+-cluster C4. Furthermore,
C4 is either a closed 3-cluster or a 4+-cluster; thus, both C3 and the cluster containing 13
are unthreatened.

Suppose 13 ∈ D and 46 ∈ D. The analysis is similar to the previous case. Since C1

is not crowded, 25 /∈ D. Similarly, 35 /∈ D. Thus 26 ∈ D and 36 ∈ D and each are in
3+-clusters. Since C2 is not crowded, 43 6∈ D; thus, 36 lies in a 3+-cluster C3 with 37.
Now C3 is either a closed 3-cluster or a 4+-cluster; thus, the cluster containing 46 is not
threatened. Similarly, the cluster containing 26 is either a 4+-cluster or a closed 3-cluster,
so the cluster containing 13 is not threatened.

Suppose 25 ∈ D (and either 43 ∈ D or 46 ∈ D). Since C1 is open and uncrowded,
12 /∈ D and 13 /∈ D. Since N [12] ∩ D 6= ∅, we know 3 ∈ D. Also 14 is in a 3+-cluster C3.
If C3 is closed or a 4+-cluster, then the clusters containing 3 and 25 are unthreatened, so
the lemma holds. Thus, we assume that C3 = 5-14-15. Since 3 is distinguishable from
12, we know that 3 is in a 3+-cluster C4. Since 5 ∈ D, C4 is unthreatened; so we may
assume that all other nearby clusters are threatened. Thus, 25 is a 1-cluster. So, 36 ∈ D.
If 43 ∈ D, then the cluster containing 36 and 43 is nearby C2 and is a closed 3-cluster or
4+-cluster. Hence, we assume that 46 ∈ D. Since 25 is threatened, 5-14-15 is uncrowded.
Thus, 27 /∈ D. So to distinguish between 36 and 37, we must have 38 ∈ D. Suppose
37 /∈ D. Now 28 is in a 3+-cluster C5. Recall that 17 /∈ D, since 5-14-15 is uncrowded.
Thus, the cluster containing 28 must be either a closed 3-cluster or a 4+-cluster; in each
case, 25 is unthreatened, so the lemma is true. Thus 37 ∈ D; we may assume 36-37-38 is
an open 3-cluster, since otherwise 25 is unthreatened. Now since 17 /∈ D and 28 /∈ D, we
have 29 in a 3+-cluster. However, now 36-37-38 has a 3+-cluster at distance two, so 25 is
unthreatened. Again the lemma holds.
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Fig. 6: Proof of Lemma 4 (continued).
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Hence we may assume that 13 ∈ D and 35 ∈ D; by symmetry, we may also assume
that 30 ∈ D and 45 ∈ D (see Fig. 6). Observe that we have eight candidates to be
nearby threatened clusters; these are 13, 30, 35, 45, 18-7-8, 47-48-44, 3 or 3-2-1, and 49 or
49-50-51. If at most six of these candidates are threatened, then the lemma holds. Hence,
by symmetry, we may assume that each of 13, 35, 18-7-8, and 3 or 3-2-1 is threatened.
Since 1 is distinguishable from 10, we know that 1 is in a 3+-cluster C3. If 2 /∈ C3, then
C3 is a 4+-cluster or a closed 3-cluster; so the cluster containing 3 is unthreatened. Thus,
we assume that C1 is 1-2-3. Since 13 and 14 are distinguishable, either 5 ∈ D or 15 ∈ D.
If 5 ∈ D, then 1-2-3 is crowded, so neither 1-2-3 nor 13 is threatened; hence, we assume
15 ∈ D. Since 35 is distinguishable from 25, we know that 26 ∈ D. However, now the
cluster containing 15 and 26 is either a closed 3-cluster or a 4+-cluster; in each case both
13 and 35 are unthreatened. �

Lemma 5. Every cluster C with m vertices has at most m + 8 nearby clusters.

Instead of proving Lemma 5 directly, we prove Lemma 6, which is stronger, but also easier
to prove by induction.

Lemma 6. If C is a cluster with m vertices, then we can partition the set of vertices at
distances two and three from C into m + 8 sets, each of which consists of two adjacent
vertices or a single vertex. Furthermore, if a vertex v is distance three from C and in fact
has two disjoint paths of length 3 to the same vertex u ∈ C, then v is in a set of size 1 in
the partition.

Lemma 6 immediately implies Lemma 5, since each set in the partition intersects at most
one cluster. If a vertex v is distance at most three from C, then either v is adjacent to C
or v is in the partition for C; we call such a vertex v covered. If a vertex is not covered,
then we call it uncovered.
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Fig. 7b: The second induction step.

Proof: We use induction on the size of C, growing C by one vertex at each step. The
base case |C| = 3 is easy and is shown in Fig. 3b. Let C ′ be a cluster of size k + 1 and
let T be a spanning tree of C ′ with a leaf v. By deleting v we reach a cluster C, of size
k, for which the induction hypothesis holds; let P be the desired partion for C of size
k. We consider different induction steps, depending on whether v has one, two, or three
neighbors in C. Note that if v has three neighbors in C, then P is still a valid partition
for C ′. So we consider below the cases when v has one or two neighbors in C.

First we consider a cluster C ′ that is built from C by adding a vertex with only one
neighbor in C. Let 7 be the new vertex (see Fig. 7a); by symmetry, we may assume
that 11, 12 ∈ C. We assume that 1, 3, 5 are uncovered (the case where one or more of
these vertices is covered is easier, so we omit the details). We will modify P to form
a new partition that also includes 1, 3, 5. Beginning with P, we delete the sets that
contain 2 and 4, and we add the sets {1, 2}, {3}, and {4, 5}. As above, we assume that
10 is uncovered (since the other case is easier). Since 10 is uncovered, P contains the
set {9}; replace the set {9} with the set {9, 10}. We now have a partition P ′ for C ′ and
|P ′| = k + 1.

Second we consider a cluster C ′ that is built from C by adding a vertex with two
neighbors in C. Let 7 be the new vertex added to C and let 6 and 8 be vertices already
in C (see Fig. 7b). If 1 is uncovered, then 3 is distance three from C; similarly, if 2 is
uncovered, then 5 is distance three from C. We assume that 1 and 2 are uncovered by C
(the case where one or both of 1 and 2 is covered is easier, so we omit the details). So
3 and 5 are both in sets of size one; we thus replace {3} with {1, 3} and we replace {5}
with {2, 5}. We now have a partition P ′ for C ′ and |P ′| = k. �
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