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Abstract

A set C C V(G) is an identifying code in a graph G if for all v € V(G), C[v] # 0, and
for all distinct u,v € V(G), Clu] # Clv], where C[v] = N[v] N C and N[v] denotes
the closed neighbourhood of v in G. The minimum density of an identifying code
in G is denoted by d*(G). In this paper, we study the density of king grids which
are strong product of two paths. We show that for every king grid G, d*(G) > 2/9.
In addition, we show this bound is attained only for king grids which are strong
products of two infinite paths. Given k > 3, we denote by Kj the (infinite) king
strip with k£ rows. We prove that d*(K3) = 1/3, d*(K4) = 5/16, d*(K5) = 4/15 and
d*(Kg) = 5/18. We also prove that % + 81% <d*(Ky) < % + g;ik for every k > 7.

Keywords: Identifying code, King grid, Discharging Method.

1 Introduction

Let G be a graph. The neighbourhood of a vertex v of G, denoted by N(v), is
the set of vertices adjacent to v in G, and the closed neighbourhood of v is the
set Nv] = N(v) U{v}. Given a set C C V(G), let C[v] = Njv]NC. We say
that C'is an identifying code of G if Clv] # ) for all v € V(G), and Clu] # C[v]
for all distinct u,v € V(G). Clearly, a graph G has an identifying code if and
only if it contains no twins (vertices u,v € V(G) with N[u] = Nv]).

Let G be a (finite or infinite) graph with bounded maximum degree. For
any non-negative integer r and vertex v, we denote by B,.(v) the ball of radius
rin G centered at v, that is B.(v) = {z | dist(v,z) < r}. For any set of
vertices C' C V(G), the density of C in G, denoted by d(C, G), is defined by

) |C' N By(vo)]
d(C,G) = limsup ————>
(€.6) = limsup e ]
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where vy is an arbitrary vertex in (G. The infimum of the density of an
identifying code in G is denoted by d*(G). Observe that if G is finite, then
d*(G) = |C*|/|V(G)|, where C* is a minimum-size identifying code of G.
The problem of finding low-density identifying codes was introduced in [12]
in relation to fault diagnosis in arrays of processors. Particular interest was
dedicated to grids as many processor networks have a grid topology. Many
results have been obtained on square grids [4,1,9,2,11], triangular grids [12,10],
and hexagonal grids [5,7,8]. In this paper, we study king grids, which are
strong products of two paths. The strong product of two graphs G and H,
denoted by G X H, is the graph with vertex set V(G) x V(H) and edge set :

E(GRH)= {(a,b)(a,b)|aecV(G)and bV € E(H)}
U{(a,b)(d’,b) | ad' € E(G) and b € V(H)}
U{(a,b)(d',V) | ad’ € E(G) and b’ € E(H)}.

The two-way infinite path, denoted by Py, is the graph with vertex set Z
and edge set {{i,7 + 1} |€ Z}, and the one-way infinite path, denoted by Py,
is the graph with vertex set N and edge set {{i,i + 1} | i € N}. A path is a
connected subgraph of P;. For every positive integer k, P, is the subgraph of
Py induced by {1,2,...,k}. A king grid is the strong product of two (finite
or infinite) paths. The plane king grid is G = Pz X Py, the half-plane king
grid is Hx = Pz X Py, the quater-plane king grid is Qg = Py X Py, and the
king strip of height k is K, = Pz X P.

In 2002, Charon et al. [3] proved that d*(Gk) is 2/9. They provided the
tile depicted in Figure 1, which generates a periodic tiling of the plane with
periods (0, 6) and (6,0), yielding an identifying code C, of the bidimensional
infinite king grid with density %.
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Fig. 1. Tile generating an optimal identifying code of the bidimensional infinite
grid. Black vertices are those of the code.

In this paper, using the Discharging Method (see Section 3 of [10] for a
detailed presentation of this technique for identifying codes), we provide the
following tight general lower bound on the minimum density of identifying



codes of king grids.

Theorem 1.1 If G is a (finite or infinite) king grid, then d*(G) > %.

Keeping on, we prove the following.

Theorem 1.2 If G is a finite king grid, then d*(G) > %.

Finally, we give some bounds for king strips. Pushing further the proof of
Theorem 1.1, we prove the following.

Theorem 1.3 For every k> 6, d*(Ky,) > 2+ &

Modifying C,, we construct identifying codes of K yielding the following
upper bounds.

Theorem 1.4 For every k > 5,

%—1—18%, if k=0 mod 3,
d'(Ky) < S23+35 k=1 mod3,
2+, ifk=2 mod3.

Finally, we show some identifying codes of K3, Ky, K5 and K¢ (see Fig-
ures 2, 3, 4, and 5.) and prove that they are optimal. This yields the following.

Theorem 1.5 d*(K3) =1/3=0.333... d*(K4;) =5/16 =0.3125
d*(KCs) = 4/15 = 0.2666 ... d*(K¢) = 5/18 = 0.2777 ...

Clearly d*(Ky) = 1/2 (as Ky = §; = Pz) and Ky has no identifying code
because it has twins. All these results imply that Gy, Hx and Qg are the
unique king grids having an identifying code with density 2/9. (One can easily
derive from C,, identifying codes with density 2/9 of Hx and Q).

o i

Fig. 2. Four tiles generating optimal identifying codes of K3 (density 1/3)
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2 Sketches of proofs

Sketch of proof of Theorem 1.1. Let GG be a king grid and C' an identifying
code of G. We shall prove that d(C,G) > 2/9. For this, we use the Discharging
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Fig. 5. Two tiles generating optimal identifying codes of Kg (density 5/18)

Method. The initial charge of a vertex v is 1 if v € C' and 0 otherwise. We
then apply some local discharging rules. We shall prove that the final charge
of every vertex in C'is at least 2/9. This would imply the result.

Weset U =V(G)\ C. Given X C V(G) and 1 < i <9, we denote by X;
(resp. X>;) the set of vertices in X having exactly i vertices (resp. at least ¢
vertices) in their identifier. An X -vertex is a vertex in X. A vertex is full if
its eight neighbours in G are in G; otherwise it is a side vertex.

We first establish the following properties of C'.

(i) Two Cy-vertices are not adjacent.
(ii) Every C-vertex has at most one neighbour in U;.
(iii) Every full Cs-vertex has at least three neighbours in Usj.
)

(iv) Every full Cs-vertex has a neighbour in Uss.



(v) Every Cj-vertex (a,b) has no neighbour in U; and at most six neighbours
in U,. Furthermore, if it has six neighbours in Us, then either {(a —1,b—
2),(a—2,b—1),(a+2,b+1),(a+1,b+2)} CCor{(a+1,0—2),(a+
2b—1),(a—2,b+1),(a—1,0+2)} CC.

A defective vertexis a vertex in C with six neighbours in Us. Let v = (a, b)
be a defective vertex. The team of v is a set among {(a —1,b—2), (a —2,b —
1),(a+2,b+1),(a+1,b+2)} and {(a + 1,0 —2),(a+2,0—1),(a — 2,0+
1), (@ — 1,b+ 2)} which is included in C. By Property (v), the team exists.
Moreover, by Property (i), at least two vertices of the team are in C3. Those
vertices are the partners of v.

We apply the following discharging rules.

(R1) Every C-vertex sends & to each of its neighbours in U;.
(R2) Every defective vertex receives =; from each of its partners.

Using the above properties, we then prove that the final charge of every

vertex v is at least 2/9. O

Sketch of proof of Theorem 1.2. We only need to prove that, at the end
of the proof of Theorem 1.1, one vertex has final charge greater than 2/9. To
do so we shall prove that there is a side C-vertex or a Css-vertex and check
that such a vertex has final charge at least % + 2—17 O

Sketch of proof of Theorem 1.3. Using the Discharging Method, we prove

that in average, for every column, there is an extra charge of at least % on
the three top vertices and an an extra charge of at least % on the three top

vertices. ]

Sketch of proof of Theorem 1.5. The bth row of Ky is R, = {(a,b) | a € Z}.
We have d(C, Ky) = ¢ Zle d(C, Ry). We show that if C' is an identifying code
of i (k> 3), then d(C, Ry) +d(C, Rs) > 1/2, d(C, Ry,) + d(C, Rx—1) > 1/2,
d(C,R3) > 1/3 and d(C, Ry—2) > 1/3. One easily derives that if C' is an
identifying code of K5 (resp. Ks), then d(C,K5) > 4/15. (resp. d(C,Kg) <
5/18.)

To prove lower bounds on d*(Kj) for k € {3,4}, we use the Discharging
Method on the columns @, = {(a,b) | 1 < b < k}. Let C be an identifying
code of Kr. We set the initial charge of every integer a € Z to chrgy(a) =
|Q.NC|. We say that a € Z is satisfied if its charge is least g and unsatisfied
otherwise, where g3 = 1 and ¢4 = 5/4. We apply five discharging rules, Rule i
for i = 1 to 5 one after another. We denote by chrg,(a) the charge of a after
applying Rule .

Rule i : every unsatisfied a € Z receives min{chrg, ,(a—i)—qy, gx—chrg,_,(a)}



from a — i, if @ — i is satisfied (before Rule 7).
Finally, we prove that, after these rules, every integer a € Z is satisfied. This

implies d(C, Kx) > qi/k. O
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