905 research outputs found

    The TREC-2002 video track report

    Get PDF
    TREC-2002 saw the second running of the Video Track, the goal of which was to promote progress in content-based retrieval from digital video via open, metrics-based evaluation. The track used 73.3 hours of publicly available digital video (in MPEG-1/VCD format) downloaded by the participants directly from the Internet Archive (Prelinger Archives) (internetarchive, 2002) and some from the Open Video Project (Marchionini, 2001). The material comprised advertising, educational, industrial, and amateur films produced between the 1930's and the 1970's by corporations, nonprofit organizations, trade associations, community and interest groups, educational institutions, and individuals. 17 teams representing 5 companies and 12 universities - 4 from Asia, 9 from Europe, and 4 from the US - participated in one or more of three tasks in the 2001 video track: shot boundary determination, feature extraction, and search (manual or interactive). Results were scored by NIST using manually created truth data for shot boundary determination and manual assessment of feature extraction and search results. This paper is an introduction to, and an overview of, the track framework - the tasks, data, and measures - the approaches taken by the participating groups, the results, and issues regrading the evaluation. For detailed information about the approaches and results, the reader should see the various site reports in the final workshop proceedings

    Automated generation of movie tributes

    Get PDF
    O objetivo desta tese é gerar um tributo a um filme sob a forma de videoclip, considerando como entrada um filme e um segmento musical coerente. Um tributo é considerado um vídeo que contém os clips mais significativos de um filme, reproduzidos sequencialmente, enquanto uma música toca. Nesta proposta, os clips a constar do tributo final são o resultado da sumarização das legendas do filme com um algoritmo de sumarização genérico. É importante que o artefacto seja coerente e fluido, pelo que há a necessidade de haver um equilíbrio entre a seleção de conteúdo importante e a seleção de conteúdo que esteja em harmonia com a música. Para tal, os clips são filtrados de forma a garantir que apenas aqueles que contêm a mesma emoção da música aparecem no vídeo final. Tal é feito através da extração de vetores de características áudio relacionadas com emoções das cenas às quais os clips pertencem e da música, e, de seguida, da sua comparação por meio do cálculo de uma medida de distância. Por fim, os clips filtrados preenchem a música cronologicamente. Os resultados foram positivos: em média, os tributos produzidos obtiveram 7 pontos, numa escala de 0 a 10, em critérios como seleção de conteúdo e coerência emocional, fruto de avaliação humana.This thesis’ purpose is to generate a movie tribute in the form of a videoclip for a given movie and music. A tribute is considered to be a video containing meaningful clips from the movie playing along with a cohesive music piece. In this work, we collect the clips by summarizing the movie subtitles with a generic summarization algorithm. It is important that the artifact is coherent and fluid, hence there is the need to balance between the selection of important content and the selection of content that is in harmony with the music. To achieve so, clips are filtered so as to ensure that only those that contain the same emotion as the music are chosen to appear in the final video. This is made by extracting vectors of emotion-related audio features from the scenes they belong to and from the music, and then comparing them with a distance measure. Finally, filtered clips fill the music length in a chronological order. Results were positive: on average, the produced tributes obtained scores of 7, on a scale from 0 to 10, on content selection, and emotional coherence criteria, from human evaluation

    이야기형 설명문을 활용한 대규모 비디오 학습 연구

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 컴퓨터공학부, 2021. 2. 김건희.Extensive contributions are being made to develop intelligent agents that can recognize and communicate with the world. In this sense, various video-language tasks have drawn a lot of interests in computer vision research, including image/video captioning, video retrieval and video question answering. It can be applied to high-level computer vision tasks and various future industries such as search engines, social marketing, automated driving, and robotics support through QA / dialog generation for the surrounding environment. However, despite these developments, video-language learning suffers from a higher degree of complexity. This thesis investigates methodologies for learning the relationship between videos and free-formed languages, including explanations, conversations, and question-and-answers, so that the machine can easily adapt to target downstream tasks. First, we introduce several methods to learn the relationship between long sentences and videos efficiently. We introduce the approaches for supervising human attention transfer for the video attention model, which shows the video attention mechanism can benefit from explicit human gaze labels. Next, we introduce the end-to-end semantic attention method, which further reduces the visual attention algorithm's complexity by using the representative visual concept word detected by the attention-based detector. As a follow-up study on previous methods, we introduce a JSFusion (Joint Sequence Fusion) method that enables efficient video search and QA by enabling many-to-many matching of attention model. Next, we introduce the CiSIN(Character in Story Identification Network), which uses Attention to increase the performance of character grounding and character re-identification in the movie. Finally, we introduce Transitional Adaptation, which promotes the caption generation models to generates coherent narratives for long videos. In summary, this thesis presents a novel approaches for automatic video description generation/retrieval and shows the benefits of extracting linguistic knowledge for object and motion in the video as well as the advantage of multimodal audio-visual learning for understanding videos. Since the proposed methods are easily adapted to any video-language tasks, it is expected to be applied to the latest models, bringing additional performance improvements. Moving forward, we plan to design an unsupervised video learning framework that can solve many challenges in the industry by integrating an unlimited amount of video, audio, and free-formed language data from the web.시각-언어 학습은 이미지/비디오 캡션(Image/Video captioning), 시각 질의응답(Visual Question and Answering), 비디오 검색(Video Retrieval), 장면 이해(scene understanding), 이벤트 인식(event detection) 등 고차원의 컴퓨터 비전 태스크(task)뿐만 아니라 주변 환경에 대한 질의 응답 및 대화 생성(Dialogue Generation)으로 인터넷 검색 뿐만 아니라 최근 활발한 소셜 마케팅(Social Marketing) 자율 주행(Automated Driving), 로보틱스(Robotics)을 보조하는 등 여러 미래 산업에 적용될 수 있어 활발히 연구되고 있는 중요한 분야이다. 컴퓨터 비젼과 자연어 처리는 이러한 중요성을 바탕으로 각자 고유한 영역에서 발전을 거듭해 왔으나, 최근 딥러닝의 등장과 함께 눈부시게 발전하면서 서로를 보완하며 학습 결과를 향상시키는 등 큰 시너지 효과를 발휘하게 되었다. 하지만 이런 발전에도 불구하고, 비디오-언어간 학습은 문제의 복잡도가 한층 높아 어려움을 겪게 되는 경우가 많다. 본 논문에서는 비디오와 이에 대응하는 설명, 대화, 질의 응답 등 더 나아가 자유 형태의 언어 (Free-formed language)간의 관계를 더욱 효율적으로 학습하고, 목표 임무에 잘 대응할 수 있도록 개선하는 것을 목표로 한다. 먼저, 시각적 복잡도가 이미지보다 높은 비디오와 긴 문장 사이의 관계를 효율적으로 학습하기 위한 여러 방법들을 소개한다. 인간의 주의 인식(Attention) 모델을 비디오-언어 모델에 지도 학습 하는 방법을 소개하고, 이어서 비디오에서 우선 검출된 대표 시각 단어를 매개로 하여 주의 인식(Attention) 알고리즘의 복잡도를 더욱 줄이는 의미 중심 주의 인식 (Semantic Attention) 방법, 어텐션 모델의 다대다 매칭을 기반으로 효율적인 비디오 검색 및 질의응답을 가능케 하는 비디오-언어간 융합 (Joint Sequence Fusion) 방법 등 비디오 주의 인식을 효율적으로 학습시킬 수 있는 방법들을 제시한다. 다음으로는, 주의 인식(Attention) 모델이 물체-단어 간 관계를 넘어 비디오 상에서 인물 검색 (Person Searching) 그리고 인물 재 식별 (Person Re-Identification)을 동시에 수행하며 상승작용을 일으키는 스토리 속 캐릭터 인식 신경망 (Character in Story Identification Network) 을 소개하며, 마지막으로 자기 지도 학습(Self-supervised Learning)을 통해 주의 인식(Attention) 기반 언어 모델이 긴 비디오에 대한 설명을 연관성 있게 잘 생성할 수 있도록 유도하는 방법을 소개한다. 요약하자면, 이 학위 논문에서 제안한 새로운 방법론들은 비디오-언어 학습에 해당하는 비디오 캡션(Video captioning), 비디오 검색(Video Retrieval), 시각 질의응답(Video Question and Answering)등을 해결할 수 있는 기술적 디딤돌이 되며, 비디오 캡션 학습을 통해 학습된 주의 인식 모듈은 검색 및 질의응답, 인물 검색 등 각 네트워크에 이식되면서 새로운 문제들에 대해 동시에 최고 수준(State-of-the-art)의 성능을 달성하였다. 이를 통해 비디오-언어 학습으로 얻은 언어 지식의 이전은 시각-청각을 아우르는 비디오 멀티모달 학습에 큰 도움이 되는 것을 실험적으로 보여준다. 향후 작업 방향 (Future Work)으로는 앞서 연구한 내용들을 기반으로 웹 속에 존재하는 대규모의 언어, 비디오, 오디오 데이터를 통합해 학습에 활용하여 산업계의 많은 난제를 해결할 수 있는 비지도 학습 모델을 만들고자 한다.Chapter 1 Introduction 1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . .8 Chapter 2 Related Work 2.1 Video Captioning . . . . . . . . . . . . . . . . . . . . . . . . . . .9 2.2 Video Retrieval with Natural Language . . . . . . . . . . . . . . 12 2.3 Video Question and Answering . . . . . . . . . . . . . . . . . . . 13 2.4 Cross-modal Representation Learning for Vision and LanguageTasks . . . . 15 Chapter 3 Human Attention Transfer for Video Captioning18 3.1 Introduction 3.2 Video Datasets for Caption and Gaze . . . . . . . . . . . . . . . 21 3.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.1 Video Pre-processing and Description . . . . . . . . . . . 22 3.3.2The Recurrent Gaze Prediction (RGP) Model . . . . . . . 23 3.3.3Construction of Visual Feature Pools . . . . . . . . . . . . 24 3.3.4The Decoder for Caption Generation . . . . . . . . . . . . 26 3.3.5Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4.1Evaluation of Gaze Prediction . . . . . . . . . . . . . . . . 29 3.4.2Evaluation of Video Captioning . . . . . . . . . . . . . . . 32 3.4.3Human Evaluation via AMT . . . . . . . . . . . . . . . . 35 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Chapter 4 Semantic Word Attention for Video QA and VideoCaptioning 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.1.1Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.1.2Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2.1Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2.2An Attention Model for Concept Detection . . . . . . . . 42 4.2.3Video-to-Language Models . . . . . . . . . . . . . . . . . 45 4.2.4A Model for Description . . . . . . . . . . . . . . . . . . . 45 4.2.5A Model for Fill-in-the-Blank . . . . . . . . . . . . . . . . 48 4.2.6A Model for Multiple-Choice Test . . . . . . . . . . . . . 50 4.2.7A Model for Retrieval . . . . . . . . . . . . . . . . . . . . 51 4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.3.1The LSMDC Dataset and Tasks . . . . . . . . . . . . . . 52 4.3.2Quantitative Results . . . . . . . . . . . . . . . . . . . . . 54 4.3.3Qualitative Results . . . . . . . . . . . . . . . . . . . . . . 56 4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Chapter 5 Joint Sequnece Fusion Attention for Multimodal Sequence Data 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.3.1Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.3.2The Joint Semantic Tensor . . . . . . . . . . . . . . . . . 65 5.3.3The Convolutional Hierarchical Decoder . . . . . . . . . . 66 5.3.4An Illustrative Example of How the JSFusion Model Works 68 5.3.5Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.3.6Implementation of Video-Language Models . . . . . . . . 69 5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.4.1LSMDC Dataset and Tasks . . . . . . . . . . . . . . . . . 71 5.4.2MSR-VTT-(RET/MC) Dataset and Tasks . . . . . . . . . 73 5.4.3Quantitative Results . . . . . . . . . . . . . . . . . . . . . 74 5.4.4Qualitative Results . . . . . . . . . . . . . . . . . . . . . . 76 5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Chapter 6 Character Re-Identification and Character Ground-ing for Movie Understanding 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.3.1Video Preprocessing . . . . . . . . . . . . . . . . . . . . . 84 6.3.2Visual Track Embedding . . . . . . . . . . . . . . . . . . . 85 6.3.3Textual Character Embedding . . . . . . . . . . . . . . . 86 6.3.4Character Grounding . . . . . . . . . . . . . . . . . . . . 87 6.3.5Re-Identification . . . . . . . . . . . . . . . . . . . . . . . 88 6.3.6Joint Training . . . . . . . . . . . . . . . . . . . . . . . . 90 6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.4.1Experimental Setup . . . . . . . . . . . . . . . . . . . . . 92 6.4.2Quantitative Results . . . . . . . . . . . . . . . . . . . . . 93 6.4.3Qualitative Results . . . . . . . . . . . . . . . . . . . . . . 95 6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Chapter 7 Transitional Adaptation of Pretrained Models forVisual Storytelling 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.3.1The Visual Encoder . . . . . . . . . . . . . . . . . . . . . 104 7.3.2The Language Generator . . . . . . . . . . . . . . . . . . 104 7.3.3Adaptation training . . . . . . . . . . . . . . . . . . . . . 105 7.3.4The Sequential Coherence Loss . . . . . . . . . . . . . . . 105 7.3.5Training with the adaptation Loss . . . . . . . . . . . . . 107 7.3.6Fine-tuning and Inference . . . . . . . . . . . . . . . . . . 107 7.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7.4.1Experimental Setup . . . . . . . . . . . . . . . . . . . . . 109 7.4.2Quantitative Results . . . . . . . . . . . . . . . . . . . . . 112 7.4.3Further Analyses . . . . . . . . . . . . . . . . . . . . . . . 112 7.4.4Human Evaluation Results . . . . . . . . . . . . . . . . . 115 7.4.5Qualitative Results . . . . . . . . . . . . . . . . . . . . . . 116 7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Chapter 8 Conclusion 8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 8.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Bibliography ... 123 요약 ... 148 Acknowledgements ... 150Docto

    Self-supervised Face Representation Learning

    Get PDF
    This thesis investigates fine-tuning deep face features in a self-supervised manner for discriminative face representation learning, wherein we develop methods to automatically generate pseudo-labels for training a neural network. Most importantly solving this problem helps us to advance the state-of-the-art in representation learning and can be beneficial to a variety of practical downstream tasks. Fortunately, there is a vast amount of videos on the internet that can be used by machines to learn an effective representation. We present methods that can learn a strong face representation from large-scale data be the form of images or video. However, while learning a good representation using a deep learning algorithm requires a large-scale dataset with manually curated labels, we propose self-supervised approaches to generate pseudo-labels utilizing the temporal structure of the video data and similarity constraints to get supervision from the data itself. We aim to learn a representation that exhibits small distances between samples from the same person, and large inter-person distances in feature space. Using metric learning one could achieve that as it is comprised of a pull-term, pulling data points from the same class closer, and a push-term, pushing data points from a different class further away. Metric learning for improving feature quality is useful but requires some form of external supervision to provide labels for the same or different pairs. In the case of face clustering in TV series, we may obtain this supervision from tracks and other cues. The tracking acts as a form of high precision clustering (grouping detections within a shot) and is used to automatically generate positive and negative pairs of face images. Inspired from that we propose two variants of discriminative approaches: Track-supervised Siamese network (TSiam) and Self-supervised Siamese network (SSiam). In TSiam, we utilize the tracking supervision to obtain the pair, additional we include negative training pairs for singleton tracks -- tracks that are not temporally co-occurring. As supervision from tracking may not always be available, to enable the use of metric learning without any supervision we propose an effective approach SSiam that can generate the required pairs automatically during training. In SSiam, we leverage dynamic generation of positive and negative pairs based on sorting distances (i.e. ranking) on a subset of frames and do not have to only rely on video/track based supervision. Next, we present a method namely Clustering-based Contrastive Learning (CCL), a new clustering-based representation learning approach that utilizes automatically discovered partitions obtained from a clustering algorithm (FINCH) as weak supervision along with inherent video constraints to learn discriminative face features. As annotating datasets is costly and difficult, using label-free and weak supervision obtained from a clustering algorithm as a proxy learning task is promising. Through our analysis, we show that creating positive and negative training pairs using clustering predictions help to improve the performance for video face clustering. We then propose a method face grouping on graphs (FGG), a method for unsupervised fine-tuning of deep face feature representations. We utilize a graph structure with positive and negative edges over a set of face-tracks based on their temporal structure of the video data and similarity-based constraints. Using graph neural networks, the features communicate over the edges allowing each track\u27s feature to exchange information with its neighbors, and thus push each representation in a direction in feature space that groups all representations of the same person together and separates representations of a different person. Having developed these methods to generate weak-labels for face representation learning, next we propose to learn compact yet effective representation for describing face tracks in videos into compact descriptors, that can complement previous methods towards learning a more powerful face representation. Specifically, we propose Temporal Compact Bilinear Pooling (TCBP) to encode the temporal segments in videos into a compact descriptor. TCBP possesses the ability to capture interactions between each element of the feature representation with one-another over a long-range temporal context. We integrated our previous methods TSiam, SSiam and CCL with TCBP and demonstrated that TCBP has excellent capabilities in learning a strong face representation. We further show TCBP has exceptional transfer abilities to applications such as multimodal video clip representation that jointly encodes images, audio, video and text, and video classification. All of these contributions are demonstrated on benchmark video clustering datasets: The Big Bang Theory, Buffy the Vampire Slayer and Harry Potter 1. We provide extensive evaluations on these datasets achieving a significant boost in performance over the base features, and in comparison to the state-of-the-art results

    Feature based dynamic intra-video indexing

    Get PDF
    A thesis submitted in partial fulfillment for the degree of Doctor of PhilosophyWith the advent of digital imagery and its wide spread application in all vistas of life, it has become an important component in the world of communication. Video content ranging from broadcast news, sports, personal videos, surveillance, movies and entertainment and similar domains is increasing exponentially in quantity and it is becoming a challenge to retrieve content of interest from the corpora. This has led to an increased interest amongst the researchers to investigate concepts of video structure analysis, feature extraction, content annotation, tagging, video indexing, querying and retrieval to fulfil the requirements. However, most of the previous work is confined within specific domain and constrained by the quality, processing and storage capabilities. This thesis presents a novel framework agglomerating the established approaches from feature extraction to browsing in one system of content based video retrieval. The proposed framework significantly fills the gap identified while satisfying the imposed constraints of processing, storage, quality and retrieval times. The output entails a framework, methodology and prototype application to allow the user to efficiently and effectively retrieved content of interest such as age, gender and activity by specifying the relevant query. Experiments have shown plausible results with an average precision and recall of 0.91 and 0.92 respectively for face detection using Haar wavelets based approach. Precision of age ranges from 0.82 to 0.91 and recall from 0.78 to 0.84. The recognition of gender gives better precision with males (0.89) compared to females while recall gives a higher value with females (0.92). Activity of the subject has been detected using Hough transform and classified using Hiddell Markov Model. A comprehensive dataset to support similar studies has also been developed as part of the research process. A Graphical User Interface (GUI) providing a friendly and intuitive interface has been integrated into the developed system to facilitate the retrieval process. The comparison results of the intraclass correlation coefficient (ICC) shows that the performance of the system closely resembles with that of the human annotator. The performance has been optimised for time and error rate
    corecore