68 research outputs found

    An investigation into buffer management mechanisms for the Diffserv assured forwarding traffic class

    Get PDF
    Includes bibliographical references.One of the service classes offered by Diffserv is the Assured Forwarding (AF) class. Because of scalability concerns, IETF specifications recommend that microflow and aggregate-unaware active buffer management mechanisms such as RIO (Random early detecLion with ln/Out-ofprofile) be used in the core of Diffserv networks implementing AF. Such mechanisms have, however, been shown to provide poor performance with regard to fairness, stability and network controL Furthermore, recent advances in router technology now allow routers to implement more advanced scheduling and buffer management mechanisms on high-speed ports. This thesis evaluates the performance improvements that may be realized when implementing the Diffserv AF core using a hierarchical microflow and aggregate aware buffer management mechanism instead of RIO. The author motivates, proposes and specifies such a mechanism. The mechanism. referred to as H-MAQ or Hierarchical multi drop-precedence queue state Microflow-Aware Quelling, is evaluated on a testbed that compares the performance of a RIO network core with an H-MAQ network core

    A Survey on Data Plane Programming with P4: Fundamentals, Advances, and Applied Research

    Full text link
    With traditional networking, users can configure control plane protocols to match the specific network configuration, but without the ability to fundamentally change the underlying algorithms. With SDN, the users may provide their own control plane, that can control network devices through their data plane APIs. Programmable data planes allow users to define their own data plane algorithms for network devices including appropriate data plane APIs which may be leveraged by user-defined SDN control. Thus, programmable data planes and SDN offer great flexibility for network customization, be it for specialized, commercial appliances, e.g., in 5G or data center networks, or for rapid prototyping in industrial and academic research. Programming protocol-independent packet processors (P4) has emerged as the currently most widespread abstraction, programming language, and concept for data plane programming. It is developed and standardized by an open community and it is supported by various software and hardware platforms. In this paper, we survey the literature from 2015 to 2020 on data plane programming with P4. Our survey covers 497 references of which 367 are scientific publications. We organize our work into two parts. In the first part, we give an overview of data plane programming models, the programming language, architectures, compilers, targets, and data plane APIs. We also consider research efforts to advance P4 technology. In the second part, we analyze a large body of literature considering P4-based applied research. We categorize 241 research papers into different application domains, summarize their contributions, and extract prototypes, target platforms, and source code availability.Comment: Submitted to IEEE Communications Surveys and Tutorials (COMS) on 2021-01-2

    Traffic grooming and wavelength conversion in optical networks

    Get PDF
    Wavelength Division Multiplexing (WDM) using wavelength routing has emerged as the dominant technology for use in wide area and metropolitan area networks. Traffic demands in networks today are characterized by dynamic, heterogeneous flows. While each wavelength has transmission capacity at gigabit per second rates, users require connections at rates that are lower than the full wavelength capacity. In this thesis, we explore network design and operation methodologies to improve the network utilization and blocking performance of wavelength routing networks which employ a layered architecture with electronic and optical switching. First we provide an introduction to first generation SONET/SDH networks and wavelength routing networks, which employ optical crossconnects. We explain the need and role of wavelength conversion in optical networks and present an algorithm to optimally place wavelength conversion devices at the network nodes so as to optimize blocking performance. Our algorithm offers significant savings in computation time when compared to the exhaustive method.;To make the network viable and cost-effective, it must be able to offer sub-wavelength services and be able to pack these services efficiently onto wavelengths. The act of multiplexing, demultiplexing and switching of sub-wavelength services onto wavelengths is defined as traffic grooming. Constrained grooming networks perform grooming only at the network edge. Sparse grooming networks perform grooming at the network edge and the core. We study and compare the effect of traffic grooming on blocking performance in such networks through simulations and analyses. We also study the issue of capacity fairness in such networks and develop a connection admission control (CAC) algorithm to improve the fairness among connections with different capacities. We finally address the issues involved in dynamic routing and wavelength assignment in survivable WDM grooming networks. We develop two schemes for grooming primary and backup traffic streams onto wavelengths: Mixed Primary-Backup Grooming Policy (MGP) and Segregated Primary-Backup Grooming Policy (SGP). MGP is useful in topologies such as ring, characterized by low connectivity and high load correlation and SGP is useful in topologies, such as mesh-torus, with good connectivity and a significant amount of traffic switching and mixing at the nodes

    5G: 2020 and Beyond

    Get PDF
    The future society would be ushered in a new communication era with the emergence of 5G. 5G would be significantly different, especially, in terms of architecture and operation in comparison with the previous communication generations (4G, 3G...). This book discusses the various aspects of the architecture, operation, possible challenges, and mechanisms to overcome them. Further, it supports users? interac- tion through communication devices relying on Human Bond Communication and COmmunication-NAvigation- SENsing- SErvices (CONASENSE).Topics broadly covered in this book are; • Wireless Innovative System for Dynamically Operating Mega Communications (WISDOM)• Millimeter Waves and Spectrum Management• Cyber Security• Device to Device Communicatio

    Management, Optimization and Evolution of the LHCb Online Network

    Get PDF
    The LHCb experiment is one of the four large particle detectors running at the Large Hadron Collider (LHC) at CERN. It is a forward single-arm spectrometer dedicated to test the Standard Model through precision measurements of Charge-Parity (CP) violation and rare decays in the b quark sector. The LHCb experiment will operate at a luminosity of 2x10^32cm-2s-1, the proton-proton bunch crossings rate will be approximately 10 MHz. To select the interesting events, a two-level trigger scheme is applied: the rst level trigger (L0) and the high level trigger (HLT). The L0 trigger is implemented in custom hardware, while HLT is implemented in software runs on the CPUs of the Event Filter Farm (EFF). The L0 trigger rate is dened at about 1 MHz, and the event size for each event is about 35 kByte. It is a serious challenge to handle the resulting data rate (35 GByte/s). The Online system is a key part of the LHCb experiment, providing all the IT services. It consists of three major components: the Data Acquisition (DAQ) system, the Timing and Fast Control (TFC) system and the Experiment Control System (ECS). To provide the services, two large dedicated networks based on Gigabit Ethernet are deployed: one for DAQ and another one for ECS, which are referred to Online network in general. A large network needs sophisticated monitoring for its successful operation. Commercial network management systems are quite expensive and dicult to integrate into the LHCb ECS. A custom network monitoring system has been implemented based on a Supervisory Control And Data Acquisition (SCADA) system called PVSS which is used by LHCb ECS. It is a homogeneous part of the LHCb ECS. In this thesis, it is demonstrated how a large scale network can be monitored and managed using tools originally made for industrial supervisory control. The thesis is organized as the follows: Chapter 1 gives a brief introduction to LHC and the B physics on LHC, then describes all sub-detectors and the trigger and DAQ system of LHCb from structure to performance. Chapter 2 first introduces the LHCb Online system and the dataflow, then focuses on the Online network design and its optimization. In Chapter 3, the SCADA system PVSS is introduced briefly, then the architecture and implementation of the network monitoring system are described in detail, including the front-end processes, the data communication and the supervisory layer. Chapter 4 first discusses the packet sampling theory and one of the packet sampling mechanisms: sFlow, then demonstrates the applications of sFlow for the network trouble-shooting, the traffic monitoring and the anomaly detection. In Chapter 5, the upgrade of LHC and LHCb is introduced, the possible architecture of DAQ is discussed, and two candidate internetworking technologies (high speed Ethernet and InfniBand) are compared in different aspects for DAQ. Three schemes based on 10 Gigabit Ethernet are presented and studied. Chapter 6 is a general summary of the thesis

    Collaborative, Trust-Based Security Mechanisms for a National Utility Intranet

    Get PDF
    This thesis investigates security mechanisms for utility control and protection networks using IP-based protocol interaction. It proposes flexible, cost-effective solutions in strategic locations to protect transitioning legacy and full IP-standards architectures. It also demonstrates how operational signatures can be defined to enact organizationally-unique standard operating procedures for zero failure in environments with varying levels of uncertainty and trust. The research evaluates layering encryption, authentication, traffic filtering, content checks, and event correlation mechanisms over time-critical primary and backup control/protection signaling to prevent disruption by internal and external malicious activity or errors. Finally, it shows how a regional/national implementation can protect private communities of interest and foster a mix of both centralized and distributed emergency prediction, mitigation, detection, and response with secure, automatic peer-to-peer notifications that share situational awareness across control, transmission, and reliability boundaries and prevent wide-spread, catastrophic power outages

    5G: 2020 and Beyond

    Get PDF
    The future society would be ushered in a new communication era with the emergence of 5G. 5G would be significantly different, especially, in terms of architecture and operation in comparison with the previous communication generations (4G, 3G...). This book discusses the various aspects of the architecture, operation, possible challenges, and mechanisms to overcome them. Further, it supports users? interac- tion through communication devices relying on Human Bond Communication and COmmunication-NAvigation- SENsing- SErvices (CONASENSE).Topics broadly covered in this book are; • Wireless Innovative System for Dynamically Operating Mega Communications (WISDOM)• Millimeter Waves and Spectrum Management• Cyber Security• Device to Device Communicatio

    Artificial intelligence (AI) methods in optical networks: A comprehensive survey

    Get PDF
    Producción CientíficaArtificial intelligence (AI) is an extensive scientific discipline which enables computer systems to solve problems by emulating complex biological processes such as learning, reasoning and self-correction. This paper presents a comprehensive review of the application of AI techniques for improving performance of optical communication systems and networks. The use of AI-based techniques is first studied in applications related to optical transmission, ranging from the characterization and operation of network components to performance monitoring, mitigation of nonlinearities, and quality of transmission estimation. Then, applications related to optical network control and management are also reviewed, including topics like optical network planning and operation in both transport and access networks. Finally, the paper also presents a summary of opportunities and challenges in optical networking where AI is expected to play a key role in the near future.Ministerio de Economía, Industria y Competitividad (Project EC2014-53071-C3-2-P, TEC2015-71932-REDT
    corecore