15,879 research outputs found

    Shortest path routing algorithm for hierarchical interconnection network-on-chip

    Get PDF
    Interconnection networks play a significant role in efficient on-chip communication for multicore systems. This paper introduces a new interconnection topology called the Hierarchical Cross Connected Recursive network (HCCR) and a shortest path routing algorithm for the HCCR. Proposed topology offers a high degree of regularity, scalability, and symmetry with a reduced number of links and node degree. A unique address encoding scheme is proposed for hierarchical graphical representation of HCCR networks, and based on this scheme a shortest path routing algorithm is devised. The algorithm requires 5(k-1) time where k=logn4-2 and k>0, in worst case to determine the next node along the shortest path

    Symmetric Interconnection Networks from Cubic Crystal Lattices

    Full text link
    Torus networks of moderate degree have been widely used in the supercomputer industry. Tori are superb when used for executing applications that require near-neighbor communications. Nevertheless, they are not so good when dealing with global communications. Hence, typical 3D implementations have evolved to 5D networks, among other reasons, to reduce network distances. Most of these big systems are mixed-radix tori which are not the best option for minimizing distances and efficiently using network resources. This paper is focused on improving the topological properties of these networks. By using integral matrices to deal with Cayley graphs over Abelian groups, we have been able to propose and analyze a family of high-dimensional grid-based interconnection networks. As they are built over nn-dimensional grids that induce a regular tiling of the space, these topologies have been denoted \textsl{lattice graphs}. We will focus on cubic crystal lattices for modeling symmetric 3D networks. Other higher dimensional networks can be composed over these graphs, as illustrated in this research. Easy network partitioning can also take advantage of this network composition operation. Minimal routing algorithms are also provided for these new topologies. Finally, some practical issues such as implementability and preliminary performance evaluations have been addressed

    A Quality and Cost Approach for Comparison of Small-World Networks

    Full text link
    We propose an approach based on analysis of cost-quality tradeoffs for comparison of efficiency of various algorithms for small-world network construction. A number of both known in the literature and original algorithms for complex small-world networks construction are shortly reviewed and compared. The networks constructed on the basis of these algorithms have basic structure of 1D regular lattice with additional shortcuts providing the small-world properties. It is shown that networks proposed in this work have the best cost-quality ratio in the considered class.Comment: 27 pages, 16 figures, 1 tabl

    Learning about knowledge: A complex network approach

    Full text link
    This article describes an approach to modeling knowledge acquisition in terms of walks along complex networks. Each subset of knowledge is represented as a node, and relations between such knowledge are expressed as edges. Two types of edges are considered, corresponding to free and conditional transitions. The latter case implies that a node can only be reached after visiting previously a set of nodes (the required conditions). The process of knowledge acquisition can then be simulated by considering the number of nodes visited as a single agent moves along the network, starting from its lowest layer. It is shown that hierarchical networks, i.e. networks composed of successive interconnected layers, arise naturally as a consequence of compositions of the prerequisite relationships between the nodes. In order to avoid deadlocks, i.e. unreachable nodes, the subnetwork in each layer is assumed to be a connected component. Several configurations of such hierarchical knowledge networks are simulated and the performance of the moving agent quantified in terms of the percentage of visited nodes after each movement. The Barab\'asi-Albert and random models are considered for the layer and interconnecting subnetworks. Although all subnetworks in each realization have the same number of nodes, several interconnectivities, defined by the average node degree of the interconnection networks, have been considered. Two visiting strategies are investigated: random choice among the existing edges and preferential choice to so far untracked edges. A series of interesting results are obtained, including the identification of a series of plateaux of knowledge stagnation in the case of the preferential movements strategy in presence of conditional edges.Comment: 18 pages, 19 figure

    The failure tolerance of mechatronic software systems to random and targeted attacks

    Full text link
    This paper describes a complex networks approach to study the failure tolerance of mechatronic software systems under various types of hardware and/or software failures. We produce synthetic system architectures based on evidence of modular and hierarchical modular product architectures and known motifs for the interconnection of physical components to software. The system architectures are then subject to various forms of attack. The attacks simulate failure of critical hardware or software. Four types of attack are investigated: degree centrality, betweenness centrality, closeness centrality and random attack. Failure tolerance of the system is measured by a 'robustness coefficient', a topological 'size' metric of the connectedness of the attacked network. We find that the betweenness centrality attack results in the most significant reduction in the robustness coefficient, confirming betweenness centrality, rather than the number of connections (i.e. degree), as the most conservative metric of component importance. A counter-intuitive finding is that "designed" system architectures, including a bus, ring, and star architecture, are not significantly more failure-tolerant than interconnections with no prescribed architecture, that is, a random architecture. Our research provides a data-driven approach to engineer the architecture of mechatronic software systems for failure tolerance.Comment: Proceedings of the 2013 ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2013 August 4-7, 2013, Portland, Oregon, USA (In Print

    Notes on the connectivity of Cayley coset digraphs

    Full text link
    Hamidoune's connectivity results for hierarchical Cayley digraphs are extended to Cayley coset digraphs and thus to arbitrary vertex transitive digraphs. It is shown that if a Cayley coset digraph can be hierarchically decomposed in a certain way, then it is optimally vertex connected. The results are obtained by extending the methods used by Hamidoune. They are used to show that cycle-prefix graphs are optimally vertex connected. This implies that cycle-prefix graphs have good fault tolerance properties.Comment: 15 page

    Content addressable memory project

    Get PDF
    A parameterized version of the tree processor was designed and tested (by simulation). The leaf processor design is 90 percent complete. We expect to complete and test a combination of tree and leaf cell designs in the next period. Work is proceeding on algorithms for the computer aided manufacturing (CAM), and once the design is complete we will begin simulating algorithms for large problems. The following topics are covered: (1) the practical implementation of content addressable memory; (2) design of a LEAF cell for the Rutgers CAM architecture; (3) a circuit design tool user's manual; and (4) design and analysis of efficient hierarchical interconnection networks
    • …
    corecore