19,721 research outputs found

    Modeling and Recognition of Smart Grid Faults by a Combined Approach of Dissimilarity Learning and One-Class Classification

    Full text link
    Detecting faults in electrical power grids is of paramount importance, either from the electricity operator and consumer viewpoints. Modern electric power grids (smart grids) are equipped with smart sensors that allow to gather real-time information regarding the physical status of all the component elements belonging to the whole infrastructure (e.g., cables and related insulation, transformers, breakers and so on). In real-world smart grid systems, usually, additional information that are related to the operational status of the grid itself are collected such as meteorological information. Designing a suitable recognition (discrimination) model of faults in a real-world smart grid system is hence a challenging task. This follows from the heterogeneity of the information that actually determine a typical fault condition. The second point is that, for synthesizing a recognition model, in practice only the conditions of observed faults are usually meaningful. Therefore, a suitable recognition model should be synthesized by making use of the observed fault conditions only. In this paper, we deal with the problem of modeling and recognizing faults in a real-world smart grid system, which supplies the entire city of Rome, Italy. Recognition of faults is addressed by following a combined approach of multiple dissimilarity measures customization and one-class classification techniques. We provide here an in-depth study related to the available data and to the models synthesized by the proposed one-class classifier. We offer also a comprehensive analysis of the fault recognition results by exploiting a fuzzy set based reliability decision rule

    Dissimilarity-based representation for radiomics applications

    Full text link
    Radiomics is a term which refers to the analysis of the large amount of quantitative tumor features extracted from medical images to find useful predictive, diagnostic or prognostic information. Many recent studies have proved that radiomics can offer a lot of useful information that physicians cannot extract from the medical images and can be associated with other information like gene or protein data. However, most of the classification studies in radiomics report the use of feature selection methods without identifying the machine learning challenges behind radiomics. In this paper, we first show that the radiomics problem should be viewed as an high dimensional, low sample size, multi view learning problem, then we compare different solutions proposed in multi view learning for classifying radiomics data. Our experiments, conducted on several real world multi view datasets, show that the intermediate integration methods work significantly better than filter and embedded feature selection methods commonly used in radiomics.Comment: conference, 6 pages, 2 figure

    A generalized framework for analyzing taxonomic, phylogenetic, and functional community structure based on presence-absence data

    Get PDF
    Community structure as summarized by presence–absence data is often evaluated via diversity measures by incorporating taxonomic, phylogenetic and functional information on the constituting species. Most commonly, various dissimilarity coefficients are used to express these aspects simultaneously such that the results are not comparable due to the lack of common conceptual basis behind index definitions. A new framework is needed which allows such comparisons, thus facilitating evaluation of the importance of the three sources of extra information in relation to conventional species-based representations. We define taxonomic, phylogenetic and functional beta diversity of species assemblages based on the generalized Jaccard dissimilarity index. This coefficient does not give equal weight to species, because traditional site dissimilarities are lowered by taking into account the taxonomic, phylogenetic or functional similarity of differential species in one site to the species in the other. These, together with the traditional, taxon- (species-) based beta diversity are decomposed into two additive fractions, one due to taxonomic, phylogenetic or functional excess and the other to replacement. In addition to numerical results, taxonomic, phylogenetic and functional community structure is visualized by 2D simplex or ternary plots. Redundancy with respect to taxon-based structure is expressed in terms of centroid distances between point clouds in these diagrams. The approach is illustrated by examples coming from vegetation surveys representing different ecological conditions. We found that beta diversity decreases in the following order: taxon-based, taxonomic (Linnaean), phylogenetic and functional. Therefore, we put forward the beta-redundancy hypothesis suggesting that this ordering may be most often the case in ecological communities, and discuss potential reasons and possible exceptions to this supposed rule. Whereas the pattern of change in diversity may be indicative of fundamental features of the particular community being studied, the effect of the choice of functional traits—a more or less subjective element of the framework—remains to be investigated

    The Evaluation Of Molecular Similarity And Molecular Diversity Methods Using Biological Activity Data

    Get PDF
    This paper reviews the techniques available for quantifying the effectiveness of methods for molecule similarity and molecular diversity, focusing in particular on similarity searching and on compound selection procedures. The evaluation criteria considered are based on biological activity data, both qualitative and quantitative, with rather different criteria needing to be used depending on the type of data available

    Learning Task Relatedness in Multi-Task Learning for Images in Context

    Full text link
    Multimedia applications often require concurrent solutions to multiple tasks. These tasks hold clues to each-others solutions, however as these relations can be complex this remains a rarely utilized property. When task relations are explicitly defined based on domain knowledge multi-task learning (MTL) offers such concurrent solutions, while exploiting relatedness between multiple tasks performed over the same dataset. In most cases however, this relatedness is not explicitly defined and the domain expert knowledge that defines it is not available. To address this issue, we introduce Selective Sharing, a method that learns the inter-task relatedness from secondary latent features while the model trains. Using this insight, we can automatically group tasks and allow them to share knowledge in a mutually beneficial way. We support our method with experiments on 5 datasets in classification, regression, and ranking tasks and compare to strong baselines and state-of-the-art approaches showing a consistent improvement in terms of accuracy and parameter counts. In addition, we perform an activation region analysis showing how Selective Sharing affects the learned representation.Comment: To appear in ICMR 2019 (Oral + Lightning Talk + Poster
    • …
    corecore