3,163 research outputs found

    An efficient GPU version of the preconditioned GMRES method

    Full text link
    [EN] In a large number of scientific applications, the solution of sparse linear systems is the stage that concentrates most of the computational effort. This situation has motivated the study and development of several iterative solvers, among which preconditioned Krylov subspace methods occupy a place of privilege. In a previous effort, we developed a GPU-aware version of the GMRES method included in ILUPACK, a package of solvers distinguished by its inverse-based multilevel ILU preconditioner. In this work, we study the performance of our previous proposal and integrate several enhancements in order to mitigate its principal bottlenecks. The numerical evaluation shows that our novel proposal can reach important run-time reductions.Aliaga, JI.; Dufrechou, E.; Ezzatti, P.; Quintana-Orti, ES. (2019). An efficient GPU version of the preconditioned GMRES method. The Journal of Supercomputing. 75(3):1455-1469. https://doi.org/10.1007/s11227-018-2658-1S14551469753Aliaga JI, Badia RM, Barreda M, Bollhöfer M, Dufrechou E, Ezzatti P, Quintana-Ortí ES (2016) Exploiting task and data parallelism in ILUPACK’s preconditioned CG solver on NUMA architectures and many-core accelerators. Parallel Comput 54:97–107Aliaga JI, Bollhöfer M, Dufrechou E, Ezzatti P, Quintana-Ortí ES (2016) A data-parallel ILUPACK for sparse general and symmetric indefinite linear systems. In: Lecture Notes in Computer Science, 14th Int. Workshop on Algorithms, Models and Tools for Parallel Computing on Heterogeneous Platforms—HeteroPar’16. SpringerAliaga JI, Bollhöfer M, Martín AF, Quintana-Ortí ES (2011) Exploiting thread-level parallelism in the iterative solution of sparse linear systems. Parallel Comput 37(3):183–202Aliaga JI, Bollhöfer M, Martín AF, Quintana-Ortí ES (2012) Parallelization of multilevel ILU preconditioners on distributed-memory multiprocessors. Appl Parallel Sci Comput LNCS 7133:162–172Aliaga JI, Dufrechou E, Ezzatti P, Quintana-Ortí ES (2018) Accelerating a preconditioned GMRES method in massively parallel processors. In: CMMSE 2018: Proceedings of the 18th International Conference on Mathematical Methods in Science and Engineering (2018)Bollhöfer M, Grote MJ, Schenk O (2009) Algebraic multilevel preconditioner for the Helmholtz equation in heterogeneous media. SIAM J Sci Comput 31(5):3781–3805Bollhöfer M, Saad Y (2006) Multilevel preconditioners constructed from inverse-based ILUs. SIAM J Sci Comput 27(5):1627–1650Dufrechou E, Ezzatti P (2018) A new GPU algorithm to compute a level set-based analysis for the parallel solution of sparse triangular systems. In: 2018 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2018, Canada, 2018. IEEE Computer SocietyDufrechou E, Ezzatti P (2018) Solving sparse triangular linear systems in modern GPUs: a synchronization-free algorithm. In: 2018 26th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp 196–203. https://doi.org/10.1109/PDP2018.2018.00034Eijkhout V (1992) LAPACK working note 50: distributed sparse data structures for linear algebra operations. Tech. rep., Knoxville, TN, USAGolub GH, Van Loan CF (2013) Matrix computationsHe K, Tan SXD, Zhao H, Liu XX, Wang H, Shi G (2016) Parallel GMRES solver for fast analysis of large linear dynamic systems on GPU platforms. Integration 52:10–22 http://www.sciencedirect.com/science/article/pii/S016792601500084XLiu W, Li A, Hogg JD, Duff IS, Vinter B (2017) Fast synchronization-free algorithms for parallel sparse triangular solves with multiple right-hand sides. Concurr Comput 29(21)Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. SIAM, PhiladelphiaSchenk O, Wächter A, Weiser M (2008) Inertia revealing preconditioning for large-scale nonconvex constrained optimization. SIAM J Sci Comput 31(2):939–96

    Taking advantage of hybrid systems for sparse direct solvers via task-based runtimes

    Get PDF
    The ongoing hardware evolution exhibits an escalation in the number, as well as in the heterogeneity, of computing resources. The pressure to maintain reasonable levels of performance and portability forces application developers to leave the traditional programming paradigms and explore alternative solutions. PaStiX is a parallel sparse direct solver, based on a dynamic scheduler for modern hierarchical manycore architectures. In this paper, we study the benefits and limits of replacing the highly specialized internal scheduler of the PaStiX solver with two generic runtime systems: PaRSEC and StarPU. The tasks graph of the factorization step is made available to the two runtimes, providing them the opportunity to process and optimize its traversal in order to maximize the algorithm efficiency for the targeted hardware platform. A comparative study of the performance of the PaStiX solver on top of its native internal scheduler, PaRSEC, and StarPU frameworks, on different execution environments, is performed. The analysis highlights that these generic task-based runtimes achieve comparable results to the application-optimized embedded scheduler on homogeneous platforms. Furthermore, they are able to significantly speed up the solver on heterogeneous environments by taking advantage of the accelerators while hiding the complexity of their efficient manipulation from the programmer.Comment: Heterogeneity in Computing Workshop (2014

    Sparse approximate inverse preconditioners on high performance GPU platforms

    Get PDF
    Simulation with models based on partial differential equations often requires the solution of (sequences of) large and sparse algebraic linear systems. In multidimensional domains, preconditioned Krylov iterative solvers are often appropriate for these duties. Therefore, the search for efficient preconditioners for Krylov subspace methods is a crucial theme. Recent developments, especially in computing hardware, have renewed the interest in approximate inverse preconditioners in factorized form, because their application during the solution process can be more efficient. We present here some experiences focused on the approximate inverse preconditioners proposed by Benzi and Tůma from 1996 and the sparsification and inversion proposed by van Duin in 1999. Computational costs, reorderings and implementation issues are considered both on conventional and innovative computing architectures like Graphics Programming Units (GPUs)

    A minimalistic approach for fast computation of geodesic distances on triangular meshes

    Full text link
    The computation of geodesic distances is an important research topic in Geometry Processing and 3D Shape Analysis as it is a basic component of many methods used in these areas. In this work, we present a minimalistic parallel algorithm based on front propagation to compute approximate geodesic distances on meshes. Our method is practical and simple to implement and does not require any heavy pre-processing. The convergence of our algorithm depends on the number of discrete level sets around the source points from which distance information propagates. To appropriately implement our method on GPUs taking into account memory coalescence problems, we take advantage of a graph representation based on a breadth-first search traversal that works harmoniously with our parallel front propagation approach. We report experiments that show how our method scales with the size of the problem. We compare the mean error and processing time obtained by our method with such measures computed using other methods. Our method produces results in competitive times with almost the same accuracy, especially for large meshes. We also demonstrate its use for solving two classical geometry processing problems: the regular sampling problem and the Voronoi tessellation on meshes.Comment: Preprint submitted to Computers & Graphic
    • …
    corecore