46 research outputs found

    Applications in GNSS water vapor tomography

    Get PDF
    Algebraic reconstruction algorithms are iterative algorithms that are used in many area including medicine, seismology or meteorology. These algorithms are known to be highly computational intensive. This may be especially troublesome for real-time applications or when processed by conventional low-cost personnel computers. One of these real time applications is the reconstruction of water vapor images from Global Navigation Satellite System (GNSS) observations. The parallelization of algebraic reconstruction algorithms has the potential to diminish signi cantly the required resources permitting to obtain valid solutions in time to be used for nowcasting and forecasting weather models. The main objective of this dissertation was to present and analyse diverse shared memory libraries and techniques in CPU and GPU for algebraic reconstruction algorithms. It was concluded that the parallelization compensates over sequential implementations. Overall the GPU implementations were found to be only slightly faster than the CPU implementations, depending on the size of the problem being studied. A secondary objective was to develop a software to perform the GNSS water vapor reconstruction using the implemented parallel algorithms. This software has been developed with success and diverse tests were made namely with synthetic and real data, the preliminary results shown to be satisfactory. This dissertation was written in the Space & Earth Geodetic Analysis Laboratory (SEGAL) and was carried out in the framework of the Structure of Moist convection in high-resolution GNSS observations and models (SMOG) (PTDC/CTE-ATM/119922/2010) project funded by FCT.Algoritmos de reconstrução algébrica são algoritmos iterativos que são usados em muitas áreas incluindo medicina, sismologia ou meteorologia. Estes algoritmos são conhecidos por serem bastante exigentes computacionalmente. Isto pode ser especialmente complicado para aplicações de tempo real ou quando processados por computadores pessoais de baixo custo. Uma destas aplicações de tempo real é a reconstrução de imagens de vapor de água a partir de observações de sistemas globais de navegação por satélite. A paralelização dos algoritmos de reconstrução algébrica permite que se reduza significativamente os requisitos computacionais permitindo obter soluções válidas para previsão meteorológica num curto espaço de tempo. O principal objectivo desta dissertação é apresentar e analisar diversas bibliotecas e técnicas multithreading para a reconstrução algébrica em CPU e GPU. Foi concluído que a paralelização compensa sobre a implementações sequenciais. De um modo geral as implementações GPU obtiveram resultados relativamente melhores que implementações em CPU, isto dependendo do tamanho do problema a ser estudado. Um objectivo secundário era desenvolver uma aplicação que realizasse a reconstrução de imagem de vapor de água através de sistemas globais de navegação por satélite de uma forma paralela. Este software tem sido desenvolvido com sucesso e diversos testes foram realizados com dados sintéticos e dados reais, os resultados preliminares foram satisfatórios. Esta dissertação foi escrita no Space & Earth Geodetic Analysis Laboratory (SEGAL) e foi realizada de acordo com o projecto Structure 01' Moist convection in high-resolution GNSS observations and models (SMOG) (PTDC / CTE-ATM/ 11992212010) financiado pelo FCT.Fundação para a Ciência e a Tecnologia (FCT

    Compressive sensing reconstruction of 3D wet refractivity based on GNSS and InSAR observations

    Get PDF
    In this work, the reconstruction quality of an approach for neutrospheric water vapor tomography based on Slant Wet Delays (SWDs) obtained from Global Navigation Satellite Systems (GNSS) and Interferometric Synthetic Aperture Radar (InSAR) is investigated. The novelties of this approach are (1) the use of both absolute GNSS and absolute InSAR SWDs for tomography and (2) the solution of the tomographic system by means of compressive sensing (CS). The tomographic reconstruction is performed based on (i) a synthetic SWD dataset generated using wet refractivity information from the Weather Research and Forecasting (WRF) model and (ii) a real dataset using GNSS and InSAR SWDs. Thus, the validation of the achieved results focuses (i) on a comparison of the refractivity estimates with the input WRF refractivities and (ii) on radiosonde profiles. In case of the synthetic dataset, the results show that the CS approach yields a more accurate and more precise solution than least squares (LSQ). In addition, the benefit of adding synthetic InSAR SWDs into the tomographic system is analyzed. When applying CS, adding synthetic InSAR SWDs into the tomographic system improves the solution both in magnitude and in scattering. When solving the tomographic system by means of LSQ, no clear behavior is observed. In case of the real dataset, the estimated refractivities of both methodologies show a consistent behavior although the LSQ and CS solution strategies differ

    Influence of station density and multi-constellation GNSS observations on troposphere tomography

    Get PDF
    Troposphere tomography, using multi-constellation observations from global navigation satellite systems (GNSSs), has become a novel approach for the three-dimensional (3-D) reconstruction of water vapour fields. An analysis of the integration of four GNSSs (BeiDou, GPS, GLONASS, and Galileo) observations is presented to investigate the impact of station density and single- and multi-constellation GNSS observations on troposphere tomography. Additionally, the optimal horizontal resolution of the research area is determined in Hong Kong considering both the number of voxels divided, and the coverage rate of discretized voxels penetrated by satellite signals. The results show that densification of the GNSS network plays a more important role than using multi-constellation GNSS observations in improving the retrieval of 3-D atmospheric water vapour profiles. The root mean square of slant wet delay (SWD) residuals derived from the single-GNSS observations decreased by 16&thinsp;% when the data from the other four stations are added. Furthermore, additional experiments have been carried out to analyse the contributions of different combined GNSS data to the reconstructed results, and the comparisons show some interesting results: (1) the number of iterations used in determining the weighting matrices of different equations in tomography modelling can be decreased when considering multi-constellation GNSS observations and (2) the reconstructed quality of 3-D atmospheric water vapour using multi-constellation GNSS data can be improved by about 11&thinsp;% when compared to the SWD estimated with precise point positioning, but this was not as high as expected.</p

    An improved pixel-based water vapor tomography model

    Get PDF
    As an innovative use of Global Navigation Satellite System (GNSS), the GNSS water vapor tomography technique shows great potential in monitoring three-dimensional water vapor variation. Most of the previous studies employ the pixel-based method, i.e., dividing the troposphere space into finite voxels and considering water vapor in each voxel as constant. However, this method cannot reflect the variations in voxels and breaks the continuity of the troposphere. Moreover, in the pixel-based method, each voxel needs a parameter to represent the water vapor density, which means that huge numbers of parameters are needed to represent the water vapor field when the interested area is large and/or the expected resolution is high. In order to overcome the abovementioned problems, in this study, we propose an improved pixel-based water vapor tomography model, which uses layered optimal polynomial functions obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF) by adaptive training for water vapor retrieval. Tomography experiments were carried out using the GNSS data collected from the Hong Kong Satellite Positioning Reference Station Network (SatRef) from 25 March to 25 April 2014 under different scenarios. The tomographic results are compared to the ECMWF data and validated by the radiosonde. Results show that the new model outperforms the traditional one by reducing the root-mean-square error (RMSE), and this improvement is more pronounced, at 5.88&thinsp;% in voxels without the penetration of GNSS rays. The improved model also has advantages in more convenient expression.</p

    Influence of station density and multi-constellation GNSS observations on troposphere tomography

    Get PDF
    Troposphere tomography, using multi-constellation observations from global navigation satellite systems (GNSSs), has become a novel approach for the three-dimensional (3-D) reconstruction of water vapour fields. An analysis of the integration of four GNSSs (BeiDou, GPS, GLONASS, and Galileo) observations is presented to investigate the impact of station density and single- and multi-constellation GNSS observations on troposphere tomography. Additionally, the optimal horizontal resolution of the research area is determined in Hong Kong considering both the number of voxels divided, and the coverage rate of discretized voxels penetrated by satellite signals. The results show that densification of the GNSS network plays a more important role than using multi-constellation GNSS observations in improving the retrieval of 3-D atmospheric water vapour profiles. The root mean square of slant wet delay (SWD) residuals derived from the single-GNSS observations decreased by 16&amp;amp;thinsp;% when the data from the other four stations are added. Furthermore, additional experiments have been carried out to analyse the contributions of different combined GNSS data to the reconstructed results, and the comparisons show some interesting results: (1) the number of iterations used in determining the weighting matrices of different equations in tomography modelling can be decreased when considering multi-constellation GNSS observations and (2) the reconstructed quality of 3-D atmospheric water vapour using multi-constellation GNSS data can be improved by about 11&amp;amp;thinsp;% when compared to the SWD estimated with precise point positioning, but this was not as high as expected

    A new approach for GNSS tomography from a few GNSS stations

    Get PDF
    The determination of the distribution of water vapor in the atmosphere plays an important role in the atmospheric monitoring. Global Navigation Satellite Systems (GNSS) tomography can be used to construct 3-D distribution of water vapor over the field covered by a GNSS network with high temporal and spatial resolutions. In current tomographic approaches, a pre-set fixed rectangular field that roughly covers the area of the distribution of the GNSS signals on the top plane of the tomographic field is commonly used for all tomographic epochs. Due to too many unknown parameters needing to be estimated, the accuracy of the tomographic solution degrades. Another issue of these approaches is their unsuitability for GNSS networks with a low number of stations, as the shape of the field covered by the GNSS signals is, in fact, roughly that of an upside-down cone rather than the rectangular cube as the pre-set. In this study, a new approach for determination of tomographic fields fitting the real distribution of GNSS signals on different tomographic planes at different tomographic epochs and also for discretization of the tomographic fields based on the perimeter of the tomographic boundary on the plane and meshing techniques is proposed. The new approach was tested using three stations from the Hong Kong GNSS network and validated by comparing the tomographic results against radiosonde data from King's Park Meteorological Station (HKKP) during the one month period of May 2015. Results indicated that the new approach is feasible for a three-station GNSS network tomography. This is significant due to the fact that the conventional approaches cannot even solve a network tomography from a few stations

    Comparisons between the WRF data assimilation and the GNSS tomography technique in retrieving 3-D wet refractivity fields in Hong Kong

    Get PDF
    Water vapor plays an important role in various scales of weather processes. However, there are limited means to accurately describe its three-dimensional (3-D) dynamical changes. The data assimilation technique and the Global Navigation Satellite System (GNSS) tomography technique are two of the limited means. Here, we conduct an interesting comparison between the GNSS tomography technique and the Weather Research and Forecasting Data Assimilation (WRFDA) model (a representative of the data assimilation models) in retrieving wet refractivity (WR) in the Hong Kong area during a wet period and a dry period. The GNSS tomography technique is used to retrieve WR from the GNSS slant wet delays. The WRFDA is used to assimilate the zenith tropospheric delay to improve the background data. The radiosonde data are used to validate the WR derived from the GNSS tomography, the WRFDA output, and the background data. The root mean square (rms) of the WR derived from the tomography results, the WRFDA output, and the background data are 6.50, 4.31, and 4.15&thinsp;mm&thinsp;km−1 in the wet period. The rms becomes 7.02, 7.26, and 6.35&thinsp;mm&thinsp;km−1 in the dry period. The lower accuracy in the dry period is mainly due to the sharp variation of WR in the vertical direction. The results also show that assimilating GNSS ZTD into the WRFDA only slightly improves the accuracy of the WR and that the WRFDA WR is better than the tomographic WR in most cases. However, in a special experimental period when the water vapor is highly concentrated in the lower troposphere, the tomographic WR outperforms the WRFDA WR in the lower troposphere. When we assimilate the tomographic WR in the lower troposphere into the WRFDA, the retrieved WR is improved.</p
    corecore