
UNIVERSIDADE DA BEIRA INTERIOR
Faculdade Engenharia

Parallelization and Implementation of Methods for
Image Reconstruction

Applications in GNSS Water Vapor Tomography

Fábio André de Oliveira Bento

Submitted to the University of Beira Interior in candidature for the
Degree of Master of Science in Computer Science and Engineering

Supervisor: Prof. Dr. Paul Andrew Crocker
Co-supervisor: Prof. Dr. Rui Manuel da Silva Fernandes

Covilhã, October 2013

Parallelization and Implementation of Methods for Image Reconstruction

ii

Parallelization and Implementation of Methods for Image Reconstruction

Acknowledgements

I would like to thank my supervisor Prof. Paul Crocker for all his support, enthusiasm, patience,
time and effort. I am grateful for all his guidance in all of the research and writing of this
dissertation. It was very important to me to work with someone with experience and knowledge
and that believed in my work.

I also would like to thank my co-supervisor Prof. Rui Fernandes for all his support in the research
and writing of this dissertation. His experience and knowledge was really helpful especially in
the GNSS area and the dissertation organization. I am really grateful for all his support and
availability.

The third person that I would like to thank is André Sá. He was always available to help me
with all my GNSS doubts, his support was really important for the progress of this dissertation.
i am really thankful for his time, enthusiasm and patience.

I am also very grateful to Prof. Cédric Champollion for all his support and providing the ES-
COMPTE data, David Adams for his support and providing the Chuva Project data and Michael
Bender for his support and for providing German and European GNSS data.

I would also like to thank all the other SEGAL members that accompanied, supported and
encouraged me in this journey. Thank you Miguel, João and Hugo.

Finally, I would like to thank my mother, father and my brother for all your support, patience
and encouragement. I would also to thank my grandmother Joaquina, who unfortunately is
no longer present, but always gave me strength and encouragement to achieve my dreams.
Without you this work would not be possible. I am really grateful to all of you.

iii

Parallelization and Implementation of Methods for Image Reconstruction

iv

Parallelization and Implementation of Methods for Image Reconstruction

Abstract

Algebraic reconstruction algorithms are iterative algorithms that are used in many area in-
cluding medicine, seismology or meteorology. These algorithms are known to be highly com-
putational intensive. This may be especially troublesome for real-time applications or when
processed by conventional low-cost personnel computers. One of these real time applications
is the reconstruction of water vapor images from Global Navigation Satellite System (GNSS)
observations. The parallelization of algebraic reconstruction algorithms has the potential to
diminish significantly the required resources permitting to obtain valid solutions in time to be
used for nowcasting and forecasting weather models.

The main objective of this dissertation was to present and analyse diverse shared memory
libraries and techniques in CPU and GPU for algebraic reconstruction algorithms. It was con-
cluded that the parallelization compensates over sequential implementations. Overall the GPU
implementations were found to be only slightly faster than the CPU implementations, depend-
ing on the size of the problem being studied.

A secondary objective was to develop a software to perform the GNSS water vapor reconstruc-
tion using the implemented parallel algorithms. This software has been developed with success
and diverse tests were made namely with synthetic and real data, the preliminary results shown
to be satisfactory.

This dissertation was written in the Space & Earth Geodetic Analysis Laboratory (SEGAL) and
was carried out in the framework of the Structure of Moist convection in high-resolution GNSS
observations and models (SMOG) (PTDC/CTE-ATM/119922/2010) project funded by FCT.

Keywords

Algebraic Reconstruction Algorithms, CPU Parallelization, GPU Parallelization, Image Recon-
struction, Water Vapor

v

Parallelization and Implementation of Methods for Image Reconstruction

vi

Parallelization and Implementation of Methods for Image Reconstruction

Extended Abstract

Algoritmos de reconstrução algébrica são algoritmos iterativos que são usados em muitas áreas
incluindo medicina, sismologia ou meteorologia. Estes algoritmos são conhecidos por serem bas-
tante exigentes computacionalmente. Isto pode ser especialmente complicado para aplicações
de tempo real ou quando processados por computadores pessoais de baixo custo. Uma destas
aplicações de tempo real é a reconstrução de imagens de vapor de água a partir de observações
de sistemas globais de navegação por satélite. A paralelização dos algoritmos de reconstrução
algébrica permite que se reduza significativamente os requisitos computacionais permitindo
obter soluções válidas para previsão meteorológica num curto espaço de tempo.

O principal objectivo desta dissertação é apresentar e analisar diversas bibliotecas e técnicas
multithreading para a reconstrução algébrica em CPU e GPU. Foi concluído que a paralelização
compensa sobre a implementações sequenciais. De um modo geral as implementações GPU
obtiveram resultados relativamente melhores que implementações em CPU, isto dependendo do
tamanho do problema a ser estudado. Um objectivo secundário era desenvolver uma aplicação
que realizasse a reconstrução de imagem de vapor de água através de sistemas globais de
navegação por satélite de uma forma paralela. Este software tem sido desenvolvido com sucesso
e diversos testes foram realizados com dados sintéticos e dados reais, os resultados preliminares
foram satisfatórios.

Esta dissertação foi escrita no Space & Earth Geodetic Analysis Laboratory (SEGAL) e foi real-
izada de acordo com o projecto Structure of Moist convection in high-resolution GNSS observa-
tions and models (SMOG) (PTDC/CTE-ATM/119922/2010) financiado pelo FCT.

vii

Parallelization and Implementation of Methods for Image Reconstruction

viii

Parallelization and Implementation of Methods for Image Reconstruction

Contents

1 Introduction 1
1.1 Objectives . 2

1.2 Main Contributions . 2

1.3 Dissertation Structure . 3

2 Algebraic Reconstruction 5
2.1 Image and projection representation . 5

2.2 Techniques . 9

2.2.1 ART methods . 9

2.2.2 SIRT methods . 10

2.3 Summary . 12

3 State of the Art 13
3.1 GNSS Water Vapor Tomography . 13

3.2 CPU Algebraic Reconstruction Algorithms Parallelization 15

3.3 GPU Algebraic Reconstruction Algorithms Parallelization 18

3.4 Hybrid CPU and GPU Algebraic Reconstruction Algorithms Parallelization 21

3.5 Summary . 22

4 Parallelizing Algebraic Reconstruction 23
4.1 Multi-threading Libraries . 23

4.1.1 OpenMP . 23

4.1.2 Intel Threading Building Blocks . 24

4.1.3 CUDA . 25

4.2 Underlying linear algebra libraries . 27

4.2.1 Basic Algebra / Math library . 27

4.2.2 Eigen3 library . 28

4.2.3 CUBLAS library . 29

4.2.4 Other linear algebra libraries . 30

4.3 Linear Algebra Parallelization . 31

4.3.1 Parallelization OMP . 34

4.3.2 Parallelization TBB . 36

4.3.3 Parallelization Eigen3 . 37

4.3.4 Parallelization CUDA / CUBLAS . 37

4.3.5 Results . 39

4.4 Algebraic Reconstruction Algorithms Parallelization 42

4.4.1 Validation . 43

4.4.2 Results . 45

4.5 Summary . 48

5 GNSS and Water Vapor 51
5.1 GNSS Overview . 51

5.2 Water Vapor Overview . 51

5.3 GNSS Water Vapor Estimation . 52

5.4 GNSS Water Vapor Image Reconstruction . 56

ix

Parallelization and Implementation of Methods for Image Reconstruction

5.5 Summary . 57

6 SEGAL GNSS Water Vapor Reconstruction Image Software 59
6.1 SWART Components . 59

6.1.1 WaterVaporReconstruction Component 59
6.1.2 SlantDelayJoinProcessing Component 60
6.1.3 GridRayIntersection Component . 64
6.1.4 AlgebraicAlgorithms Component . 65
6.1.5 PlotWaterVapor Component . 66

6.2 Comparison with LOFTT_K . 67
6.3 Synthetic data results . 68
6.4 Results of the Case Studies . 69

6.4.1 Marseilles Network . 70
6.4.2 Belem Network . 71

6.5 Summary . 72

7 Conclusions and Future Work 77
7.1 Conclusions . 77
7.2 Future Work . 78

References 79

A SWART Files 89

x

Parallelization and Implementation of Methods for Image Reconstruction

List of Figures

2.1 Unknown image on square grid. Each cell value is a unknown variable to be
determined using the various projections. 6

2.2 Kaczmarz method illustrated for two unknowns. 7
2.3 Case where the number of equations is greater than the number of unknowns and

projections have been corrupted by noise. 9

4.1 Example of CUDA kernel hierarchy. 26
4.2 Example of automatically scalability for 2 GPUs with different numbers of SMs. . 38
4.3 Matrix-matrix multiplication. 41
4.4 Matrix-vector multiplication. 42
4.5 Shepp-Logan phantom original Image . 43
4.6 Shepp-Logan phantom Landweber reconstruction. 44
4.7 Shepp-Logan phantom ART reconstruction. 44
4.8 Shepp-Logan phantom Kaczmarz reconstruction. 44
4.9 Landweber method. 46
4.10 SART method. 47
4.11 Kaczmarz method. 48

5.1 Vertical layers of the Earth’s atmosphere . 52
5.2 GPS signal between the satellites and receiver. 53
5.3 IWV, SIWV and Wet Gradient representation . 54
5.4 GNSS water vapor tomography. 56

6.2 Image created with PlotWaterVapor component in 43.25 latitude slice. 67
6.3 LOFTT_K 48.25 latitude slice. 68
6.4 SWART 48.25 latitude slice. 68
6.5 LOFTT_K 7.25 longitude slice. 69
6.6 SWART 7.25 longitude slice. 69
6.7 Convergence of SART algorithm for 1000 iterations. 70
6.8 Marseilles network area and receivers positions. 70
6.15 Belem network. 71
6.1 SWART UML component diagram. 73
6.9 SWART slice in latitude 43.25 for Marseilles network. 74
6.10 SWART slice in latitude 43.35 for Marseilles network. 74
6.11 SWART slice in longitude 5.35 for Marseilles network. 74
6.12 SWART slice in longitude 5.45 for Marseilles network. 74
6.13 SWART slice in height 500 for Marseilles network. 74
6.14 SWART slice in height 14500 for Marseilles network. 74
6.16 SWART slice in latitude -1.35 for Belem network. 75
6.17 SWART slice in latitude -1.45 for Belem network. 75
6.18 SWART slice in longitude -48.25 for Belem network. 75
6.19 SWART slice in longitude -48.45 for Belem network. 75
6.20 SWART slice in height 500 for Belem network. 75
6.21 SWART slice in height 14500 for Belem network. 75

xi

Parallelization and Implementation of Methods for Image Reconstruction

xii

Parallelization and Implementation of Methods for Image Reconstruction

List of Tables

4.1 Programming languages and applications programming interfaces supported by
the CUDA platform. 26

4.2 Computers Specifications. 39
4.3 Matrix-matrix multiplication in the same computer with logical and physical pro-

cessors. 40
4.4 Matrix-matrix multiplication. 40
4.5 Matrix-vector multiplication. 41
4.6 Shepp-Logan 80 x 80 - 50 iterations . 44
4.7 Shepp-Logan 50 x 50 - 50 iterations . 44
4.8 Shepp-Logan 80 x 80 - 1000 iterations . 45
4.9 Shepp-Logan 50 x 50 - 1000 iterations . 45
4.10 Shepp-Logan 80 x 80 - 10 000 iterations . 45
4.11 Shepp-Logan 50 x 50 - 10 000 iterations . 45
4.12 Landweber method. 45
4.13 SART method. 46
4.14 Kaczmarz method. 47

6.1 SlantDelayJoinProcessing Configuration File Options 61
6.2 Example of interpolation of satellites positions at the 300 seconds 62

xiii

Parallelization and Implementation of Methods for Image Reconstruction

xiv

Parallelization and Implementation of Methods for Image Reconstruction

Acronyms

ART Algebraic Reconstruction Techniques
BLAS Basic Linear Algebra Subprograms
CPU Central Processing Unit

CUBLAS CUDA Basic Linear Algebra Subroutines
CUDA Compute Unified Device Architecture
DMA Direct memory access
DOY Day Of Year
GNSS Global Navigation Satellite Systems
GPS Global Positioning System
GPU Graphics Processing Unit
IWV Integrated Water Vapor

LAPACK Linear Algebra PACKage
LOFTT_K LOgiciel Français de Tomographie Troposphérique -version Kalman

OMP OpenMP
PC Personal Computer
PPE Power Processor Element
SART Simultaneous Algebraic Reconstruction Technique
SEGAL Space Earth Geodetic Analysis Laboratory
SIRT Simultaneous Iterative Reconstruction Techniques
SIWV Slant Integrated Water Vapor
SMOG Structure of Moist convection in high-resolution GNSS observations and

models
SPE Synergistic Processing Element

SWART SEGAL GNSS Water Vapor Reconstruction Image Software
ScaLAPACK Scalable Linear Algebra PACKage

TBB Intel Threading Building Blocks

xv

Parallelization and Implementation of Methods for Image Reconstruction

xvi

Parallelization and Implementation of Methods for Image Reconstruction

Chapter 1

Introduction

The algebraic reconstruction algorithms are iterative algorithms that were initially developed
with success for medical imagery [1] although they are now used over other domains (e.g.
medicine, seismology and meteorology). The data retrieved for the image reconstruction can
be obtained from diverse sources such as X-ray, magnetic resonance imaging or seismic travel
times. Algebraic reconstruction algorithms were first described in [2] by Stefan Kaczmarz and
were later rediscovered in the field of image reconstruction from projections in [1] by Gordon
et. al. The algebraic reconstruction algorithms have some advantages over other inversion
algorithms, namely high numerical stability and computational efficiency [3]. In [3] Bender et.
al successful applied the algebraic reconstruction technique for the water vapor reconstruction.

Water vapor plays an important role in the weather and climate phenomena such as rainstorms,
thunderstorms and other strong convective weather events [4]. It is also important for precipi-
tation forecast and nowcasting [5]. Therefore it is very important to measure the water vapor
distribution and its variation in the atmosphere.

The signals of GNSS satellites must travel through the atmosphere in order to be received by the
GNSS receivers. The atmosphere’s atoms and molecules slow down the GNSS satellites signals
[6] causing a delay. It is possible to separate the water vapor delay from other dry gases delays
such as nitrogen, oxygen and carbon dioxide [6] and consequently estimate the water vapor in
the atmosphere using GNSS.

The GNSS water vapor estimation has many advantages over other methods (e.g., radiosonde,
satellite platforms using infrared, microwave sounders), such as good temporal resolution, it
operates in all weather conditions and it can run unattended [7]. GNSS water vapor tomography
(image reconstruction) was firstly described in [8] by Bevis et. al. The water vapor image can
be reconstructed using the diverse slant wet delays of a GNSS receiver in the direction of the
visible satellites1. There are several techniques to reconstruct the water vapor image in the
atmosphere using the slant wet delays, including the algebraic reconstruction algorithms.

Algebraic reconstruction algorithms are known to be highly computational intensive [9]. This
fact may be troublesome if they are used for real time image reconstruction of GNSS water
vapor fields, especially if processed in the conventional personal computers (PCs). Therefore,
the improvement of the performance of the estimation is a critical issue on the implementation
of these algorithms for water vapor tomography. Obviously the computational resources needed
depend on the size of the reconstruction problem and this depends on the quantity of data
available, satellites, receivers and slant wet delays, for instance in [3] large problems sizes
(matrix with 26000 x 8280 elements) are generated.

1The slant wet delay consists in the delay caused by the water vapor in the satellite’s signal mapped in
the satellite’s direction.

1

Parallelization and Implementation of Methods for Image Reconstruction

1.1 Objectives

The main objective of this dissertation was to study the the parallelization of algebraic recon-
struction algorithms in order to evaluate its potential advantages. Although the parallelized
algebraic reconstruction algorithms can also benefit other research areas, a complementary
goal was to investigate its application on the estimation of GNSS water vapor fields. Nowadays
there are several GNSS water vapor image reconstruction software packages, however none of
them implements parallelized algebraic reconstruction algorithms.

As consequence of this study, an application to perform the GNSS water vapor reconstruction
using the algorithms and techniques developed was implemented: SWART (SEGAL GNSS Water
Vapor Reconstruction Image Software). An additional objective of the development of this ap-
plication was to implement it in conventional low cost personal computers taking full advantage
of modern multicore and GPU architectures.

1.2 Main Contributions

The main contributions of this dissertation are here presented.

The first contribution is the analysis of a range of parallel libraries and implementations for the
linear algebra operations and consequently the parallelization of the algebraic reconstruction
algorithms.

The second contribution consists in the development of a GNSS water vapor image reconstruc-
tion application that gathers all the necessary GNSS observations and performs the correspon-
dent water vapor image reconstruction. The software parameters are also customizable to the
user.

During the course of this dissertation the following documents and conference papers were
written:

An article with the title “Analysis of algebraic reconstruction algorithms performance in CPU
and GPU” was submitted and accepted for the ICEUBI conference (http://iceubi2013.ubi.pt).

A conference paper with the title “A Study of GNSS Water Vapor Parameters” was written and
accepted as a presentation for the American Geophysical Union (AGU) 2013 Fall Meeting at San
Francisco. This presentation will present an analysis of the various parameters to the GNSS wa-
ter vapor reconstruction using the SWART program. Some of these parameters include covering
diverse grid sizes and different number of receivers for the same water vapor image recon-
struction. Also comparisons with LOFTT_K (LOgiciel Français de Tomographie Troposphérique
-version Kalman) using synthetic data and results from Belem, Brazil which data was acquired
in the framework of the project CHUVA will be presented. The AGU 2013 Fall Meeting website
can be consulted in http://fallmeeting.agu.org/2013/.

A detailed technical report describing and comparing multithreading algebraic reconstruction
algorithms was also written, “Multithreading ART: Comparison”2.

2Available in publications at http://segal.ubi.pt/

2

Parallelization and Implementation of Methods for Image Reconstruction

1.3 Dissertation Structure

The structure of this dissertation is here described. The current chapter contains the problem
definition, the principal objectives of this dissertation, the main contributions of this disserta-
tion.

In Chapter 2 algebraic reconstruction definition is defined and techniques described.

Chapter 3 presents the state of the art of two main topics: GNSS water vapor tomography and
algebraic reconstruction parallelization which consists in CPU, GPU and hybrid parallelization.

Chapter 4 introduces the parallelization of the algebraic reconstruction, namely the approach
used, the libraries tested and the parallel implementations and the results of these tests.

In Chapter 5 the relation between the GNSS and the water vapor is described in more detail
namely the definitions and the methods of estimating water vapor and reconstructing its image.

In Chapter 6 the GNSS water vapor image reconstruction software in development is presented.
It is compared with another GNSS water vapor image reconstruction software named LOFTT_K
and synthetic and case study results using the implemented software are presented and dis-
cussed.

And finally in Chapter 7 the conclusions of this dissertation are presented and future work is
described.

3

Parallelization and Implementation of Methods for Image Reconstruction

4

Parallelization and Implementation of Methods for Image Reconstruction

Chapter 2

Algebraic Reconstruction

Algebraic Reconstruction is an iterative approach for imaging reconstruction using data obtained
from a series of projections such as those obtained from electron microscopy, x-ray photography
and in medical imaging like in computed axial tomography (CAT scans). It consists of obtaining
data from cross sections of an object from measurements taken from different angular positions
around the object and then solving for an array of unknowns that represent the interior of the
object being analysed. In Figure 2.1 we can see 6 line projections from three angular positions
through an unknown object. For medical applications algebraic reconstruction algorithms lack
the accuracy and speed of implementation when compared to other methods [10]. However
there are situations where is not possible to measure a sufficiently large enough number of
projections or when the projections are not uniformly distributed over 180 or 360 degrees,
which prevents the use of other techniques such as transform based techniques that can obtain
higher accuracy. The algebraic reconstruction algorithms also have the advantages of having
high numerical stability even with inaccurate initial data and are also computationally efficient
and easily parallelized [3].

Algebraic techniques are also useful when energy propagation paths between the source and re-
ceiver positions are subject to ray bending on account of retraction or when energy propagation
undergoes attenuation along ray paths [10].

In the algebraic techniques studied in this dissertation is essential to determine the ray paths
that connect the corresponding transmitter and receiver positions. When refraction and diffrac-
tion effects are substantial it becomes impossible to predict ray paths which ends in obtaining
meaningless results [10].

In this section the concept of algebraic reconstruction is introduced and the main algorithms
are described.

2.1 Image and projection representation

Consider a two dimensional image I = f(x, y). Figure 2.1 shows a square grid superimposed
onto this image, we want to obtain this image from the projection data, shown as straight
lines which traverse the (x, y) plane. We assume that for each cell f(x, y) is a constant and let
fj : j = 1..N be the constant values for each cell of the image. N is the total number of cells
in the grid. A line integral will be defined as array-sum. This ray sum is referred as pi, where i
is the i-ray.

The relationship between fj and pi’s is expressed as:

5

Parallelization and Implementation of Methods for Image Reconstruction

Figure 2.1: Unknown image on square grid. Each cell value is a unknown variable to be determined using
the various projections.

N∑
j=1

wijfj = pi, i = 1, 2, · · · ,M (1)

M is the total number of rays (all projections), wij is the weight of the contribution of the jth
cell to the ith ray integral (this is proportional to fraction of the jth cell intercepted by the ith
ray as shown in Figure 2.1).

Depending on the context many of the wij may be zero because only a small number of the wij

actually contribute to each ray-sum.

The equation in (1) can be rewritten in matrix form as follows:

Ax = b (2)

where A is a matrix with all the wij contributions, b is a vector with every pi ray sum and x is
a vector that contains all fj cells constant values (the original image). M and N correspond
respectively to the rows and columns of A.

If M and N were small one could use traditional matrix theory methods to invert the equation
system of (1). In practice N may be large, for example for a 256 x 256 image N would be
65.536. If M had more or less the same value then for these values the size of the matrix [wij]
in (1) would be 65.536 x 65.536 which basically rules out any chance of direct matrix inversion
[10].

6

Parallelization and Implementation of Methods for Image Reconstruction

Also when noise is present in the measurement data and M < N, even for relatively small N
it is not possible to use direct matrix inversion. In this case one can use use a least square
method to obtain an approximate solution, however when M and N are large these methods
are computationally impracticable [10].

There are however some very attractive methods for solving these equations. These methods
are based on the “method of projections” which Kaczmarz first proposed [11]. First the equation
(1) will be expanded to explain the computational procedure of these methods:

w11f1 + w12f2 + w13f3 + · · ·+ w1NfN = p1

w21f1 + w22f2 + w23f3 + · · ·+ w2NfN = p2

...

wM1f1 + wM2f2 + wM3f3 + · · ·+ wMNfN = pM

(3)

A grid with N cells gives an image with N degrees of freedom. The image represented by
(f1, f2, · · · , fN) can be seen as a single solution in an N-dimensional space.

Each of the equations in (3) represents a hyperplane. When there is only one solution to the
equations it is represented as a single point, namely the intersection of all the hyperplanes.
This is the main concept that’s illustrated in Figure 2.2. In this figure we have only considered
two variables f1 and f2 which satisfy the follow equations:

w11f1 + w12f2 = p1

w21f1 + w22f2 = p2

(4)

Figure 2.2: Kaczmarz method illustrated for two unknowns.

7

Parallelization and Implementation of Methods for Image Reconstruction

The computational procedure to calculate the solution is the following:

1. Start with a initial guess

2. Project the initial guess onto the first line

3. Reproject the resulting point from 2 to the second line (3)

4. Reproject the result point from 3 to the first line and so on

5. If there’s a unique solution the algorithm will converge.

The initial guess is written as(f (0)
1 , f

(0)
2 , · · · , f (0)

N) or simply by the vector ~f (0). Often the initial
vector is simply a zero vector. This vector is then projected onto the hyperplane using the first
equation on (3) resulting in the ~f (1) vector. This can be seen in Figure 2.2 for a two dimensional
space. After that ~f (1) is projected by the second equation on (3) on the hyperplane resulting
on ~f (2) and so on. In 2.2 the projections are the green lines and the blue vectors represent the
next estimates of the solution.

When ~f (i−1) is projected on the hyperplane represented by the ith equation it can be mathe-
matically be described as:

~f (i) = ~f (i−1) −
~f (i−1) · ~wi − pi

~wi · ~wi
~wi (5)

where ~wi = (wi1, wi2, · · · , wiN) and ~wi · ~wi is the dot product of the vector ~wi by itself.

Regarding the algorithms convergence, it is easily seen that in the case of two perpendicular
hyperplanes then for any initial guess in the (f1, f2) plane it is possible to find the solution in
only two steps using (5). However if the two hyperplanes have a reduced angle between them
there will be a greater number of iterations (depending also on the initial guess).

In fact if the M hyperplanes in (3) could all be made orthogonal (perpendicular) with respect
to one another then the solution could be found in only one pass through all the equations in
(3) (assuming that only one solution exists) [10].

This is theoretically possible using for example a method for orthonormalising a set of vectors
such as the Gram-Schmidt procedure. However in practice it is not computationally viable as
the orthnomalizing process itself takes too much time. Another problem with orthogonalization
is that it amplifies the noise problem from the measurements into the final solution [10].

If we have M > N in (3) no unique solution may exist, although a solution in a zone may still
be determined. Figure 2.3 shows a two variable system with three noisy hyperplanes. In this
case we see the result after projecting the initial point onto the first line (in green) and then
iterating 100 times, the figure show the projections onto the hyperplanes. As can now be seen
the procedure in (5) does not converge to a unique solution but instead it oscillates in the
neighbourhood of the intersections of the hyperplanes.

In the case of M < N a unique solution also doesn’t exist, instead there are multiple solutions.
For instance if we have only one equation of the two in (4) to calculate the two variables, then
the solution can be on any point in the line that corresponds to this equation.

Another advantage of this method is the possibility of adding a priori information already known
about the image being reconstructed in order to guide the solution. If we know for example

8

Parallelization and Implementation of Methods for Image Reconstruction

Figure 2.3: Case where the number of equations is greater than the number of unknowns and projections
have been corrupted by noise.

that the image contains no negative values and if during the iterative process we obtain we
some negative value one can simply reset those values to zero.

2.2 Techniques

There are two different techniques for algebraic reconstruction, namely: Algebraic Reconstruc-
tion Techniques (ART) and Simultaneous Iterative Reconstruction Techniques (SIRT) which will
be described in the follow subsections.

Different methods of these techniques namely Kaczmarz, Symmetric Kaczmarz, Landweber,
Cimmino, CAV, DROP and SART which were implemented for this dissertation will now be pre-
sented.

2.2.1 ART methods

The Algebraic Reconstruction Techniques (ART) are row-action methods that treat the equations
one at time. This means that in each iteration each equation is solved individually. The updates
in each ith iteration are made using the equation on (5) plus a relaxation parameter λk resulting
in methods described by:

9

Parallelization and Implementation of Methods for Image Reconstruction

~f (i) = ~f (i−1) + λk
pi − ~f (i−1) · ~wi

~wi · ~wi
~wi (6)

What distinguishes the various methods is the order in which row is processed [12]. The ART
reconstructions usually suffer from so called “salt and pepper” noise, which is caused by the
fact that the values of wij are only approximations as they are usually measured by experiments
[10].

2.2.1.1 Kaczmarz

This is the most well know ART method in the literature [13] [14]. It uses a fixed λk = λ ∈ (0, 2)

in the original paper the value 1 was used. In the literature this method is also referred as
ART which can give rise to some confusion since it is also used for Algebraic Reconstruction
Techniques. Each kth iteration in Kaczmarz consists of one “sweep” in each row of A from the
top to the bottom: i = 1, 2, ...,m.

2.2.1.2 Symmetric Kaczmarz

This method is a variant of the previous Kaczmarz method. It adds a new “sweep” using the
rows in the reverse order. As result each kth iteration consists of 2 steps: i = 1, 2, · · · ,m −
1,m,m− 1, · · · , 3, 2.

This method supports both a fixed (λ ∈ (0, 2)) and iteration-dependent λk.

2.2.2 SIRT methods

The Simultaneous Iterative Reconstruction Techniques (SIRT) are “simultaneous” because all
equations are solved at the same time in one iteration (based on matrix multiplications) [12].
Usually these methods converge slower to the solution than the ART methods, however they
result in better looking images [10].

The SIRT methods work by first solving all the equations and updating only the cell values at the
end of each iteration. The change of each cell is the average of each of the changes for that
cell [10].

The general form of these methods is as follows:

~f (k) = ~f (k−1) + λkTA
TM(p−A~f (k−1)), k = 0, 1, 2, · · · (7)

where A is the matrix with the various projections, λk is a relaxation parameter and the ma-
trices M and T are symmetric positive definite. The various SIRT methods depend on these
matrices. λk is defined as 2/ρ(TATMA) − ε, where ρ is the spectral radius, ε the machine’s
epsilon and AT is the matrix transpose.

10

Parallelization and Implementation of Methods for Image Reconstruction

Three of the SIRT methods presented here include positive weights ti > 0, i = 1, · · · ,m. If the
weights are not specified then all the weights are set to 1. The methods that include these
weights are Cimmino, CAV and DROP and will be presented below.

2.2.2.1 Landweber

The Landweber method is described by the following form:

~f (k) = ~f (k−1) + λkA
T (p−A~f (k−1)), k = 0, 1, 2, · · ·

which corresponds to replacing M = T = 1 in (7).

2.2.2.2 Cimmino’s method

This method was first introduced in [15] and it’s often presented in a variant based on projec-
tions. The version presented in this dissertation is the same from [12]. This version includes a
relaxation parameter λk and also a weights vector ~t.

Using the matrix notation this method uses the equation (7) with M = D and T = I, where D
is defined as:

D =
1

m
diag

(
ti

‖~wi‖22

)
(8)

2.2.2.3 Component averaging (CAV)

Cimmino’s original method uses equal weighting of the contributions from the projections,
which looks fair when A is a dense matrix [12]. The CAV method was introduced in [16] as an
extension to the Cimmino’s method to take in account the sparsity information in a heuristic
away [12]. Let sj be the number of nonzero (NNZ) elements of column j:

sj = NNZ(aj), j = 1, · · · , n (9)

Also define the diagonally matrix S = diag(s1, · · · , sn) and the norm ‖~wi‖2S = ~wi · S ~wi =∑n
j=1 wijsj for i = 1, · · · ,m.

Using the matrix notation this method uses the equation (7) with M = Ds and T = I.

Ds is defined as:

Ds = diag

(
ti

‖~wi‖2S

)
(10)

11

Parallelization and Implementation of Methods for Image Reconstruction

2.2.2.4 Diagonally Relaxed Orthogonal Projections (DROP)

DROP is another Cimmino’s extension. Using the matrix notation it uses the equation (7) with
T = S−1, M = mD. The matrix D is from (8) [12].

In [17] it is proved that ρ(S−1ATMA) 6 maxi{ti}, this means that the convergence is guaran-
teed if λk 6 (2− ε)/maxi{ti}

2.2.2.5 Simultaneous Algebraic Reconstruction Technique (SART)

These methods were originally implemented as ART methods [18], but can also be implemented
as SIRT method. They are described by the following :

~f (k) = ~f (k−1) + λkD
−1
r ATD−1

c (p−A~f (k−1)), k = 0, 1, 2, · · ·

D−1
r and D−1

c are diagonal matrices corresponding respectively to the row and column sums:

Dr = diag(||~wi||1) Dc = diag(||~wj ||1).

where ~wj = (w1j , w2j , · · · , wNj).

There’s no need to include weights in this method as the convergence for this method was
established in [19] [20] and it was shown that ρ(D−1

r ATD−1
c A) = 1.

2.3 Summary

In this chapter an overview to algebraic reconstruction was realized. It was described the main
advantages and applications of these techniques. The two different categories of algebraic
reconstruction were presented (ART and SIRT) and some methods of each category were also
described. The current chapter is important as basis to the reader understand the following
chapter which will present the state of the art of GNSS Water Vapor Tomography and Parallel
Algebraic Reconstruction Algorithms.

12

Parallelization and Implementation of Methods for Image Reconstruction

Chapter 3

State of the Art

In this chapter the state of the art of the water vapor tomography plus the parallelization of
the algebraic reconstruction algorithms will be presented. The parallelization of the algebraic
reconstruction algorithms will consist in a brief overview of the various implementations namely
the cpu implementation, gpu implementation and the hybrid cpu/gpu implementation. This
chapter is organized by topic and inside each topic it is organized chronologically.

3.1 GNSS Water Vapor Tomography

GNSS Water Vapour tomography is a technique that allows the distribution of the water vapor
on the atmosphere to be calculated [21][22][5].

The calculation of the water vapor is and remains difficult to quantify due to the high variability
in time and space plus the sparse set of available measurements [21].

The GPS was proved to measure the integrated water vapor at zenith with similar accuracy as
other methods such as radiosondes [23] or water vapor radiometers [24][25]. Also compared
to water vapor radiometers the GPS operates in all weather conditions without the need of
difficult calibration procedures [21]. Studies have shown that it is possible to quantify the inte-
grated water vapor on the line of sight of the GPS satellite [26] [27] [28]. This quantification is
designated as slant integrated water vapor (SIWV) [21] and they are used to calculate the water
vapor distribution. Water vapor is a key item in numerical weather prediction, since it plays
an important role in atmospheric processes, especially precipitation forecast and nowcasting,
hazard mitigation and water management [22] [5]. In the last years, the development of tomo-
graphic methods to calculate the 3D distribution of water vapor in the troposphere has been a
main topic of research [29].

In [30] Michael Bevis et al. showed how to map zenith wet delays onto precipitable water (PW)
with an root mean square (r.m.s) error less than 2 mm + 1% of the PW and long-term biases of
less than 2 mm.

Niell has introduced in [31] two new mapping functions denominated as Niell Mapping Functions
(NMF). These functions are used to map a zenith delay in elevations angles down to 3◦. The
first function is an hydrostatic mapping function which depends on the latitude, the height of
the receiver and the day of year (DOY)

A. Flores et al. have shown in [32] how GPS data are processed to obtain the tropospheric
slant wet delays. It was confirmed that the tropospheric tomography is a practical approach to
the description of the spatio-temporal structure of the water vapor in the atmosphere. In [32]
the software LOTTOS for obtaining the tomographic solution using data from Kilauea network,
Hawaii in 1 February, 1997 is described.

13

Parallelization and Implementation of Methods for Image Reconstruction

In [33] John Braun and Christian Rocken used slant water observations as input into a tomog-
raphy software based on the algorithm used at [32]. In [33] the linear system is solved using
singular value decomposition on the original observation-state matrix without computing the
normal equations. This method improved the sensitivity of the solution and allowed a more
accurate determination of the water vapor.

Ulrich Foelsche and Gottfried Kirchengast developed in [34] a two dimensional, height-resolving
tomographic imaging technique following the Bayesian approach for optimal combination of the
information from different sources. This water vapor imaging technique combines ground based
line integral measurements with an occultation profile which uses optional estimation. The
authors mentioned that the occultation could be replaced by other profile data like radiosondes.
The image algorithm was tested using simulated data. It was concluded that the technique is
capable of reasonably reconstructing realistic atmosphere features. It was also concluded that
areas with high absolute humidities and small-scale variations of water vapor density usually
result in images of good quality.

In [35] LOTTOS software from [32] was used in a small scale GPS campaign (seven GPS receivers
distributed within a 3 km radius). To calculate the inversion of the data collected it was used
the singular value decomposition (SVD) technique described in [36]. The tomographic results
were compared with radiosonde data and the agreement between the solutions was shown to
be good. It was concluded that tropospheric tomography is reliable even with a reduced number
of stations and that tomography is a potential tool to describe the spatio-temporal structure of
the refractivity.

In 2005 a campaign denominated ESCOMPTE was used in [21] to run a GPS experiment. This
GPS experiment had the following objectives: to estimate the integrated water vapor (IWV) in
conjunction with the atmospheric dynamics, the study of the GPS-retrieved horizontal gradients
and the development of tomography for three-dimensional reconstruction of the atmospheric
humidity field. The campaign used 16 stations over the urban and northern border of Marseille
within a area of approximately 20 x 20 km. Additional observations were also acquired using
other type of systems: a water vapor radiometer, a solar spectrometer and a prototype water
vapor Raman LiDAR. These instruments allowed independent IWV measurements for comparison
and validation of the GPS results. The results of three inversions in [21] were shown to be
consistent when compared with three radiosondes launches. The ESCOMPTE campaign provided
the important data for the successful inversions, namely ZTD and horizontal gradient volumes
of sight of the GPS satellites which were used for the calculations of the SIWV values used in
the tomography.

An alternative approach to estimate the three-dimensional structure of the water vapor was
presented in [37]. It uses the raw GPS phase observations. More specifically, instead of using
one model for the slant delays in the GPS processing and another for the calculation of wet
refractivity field, the voxel discretization of the wet refractivity in the GPS processing step is
applied. The advantages of this method include that any error in the modelling of the slant
wet delays in terms of zenith delays and gradients will disappear and that the number of steps
required to obtain the wet refractivity field is reduced. The disadvantage is that there are
many parameters that need to be estimated in the processing. The results have shown that
having a spread in the station heights and using more than one GNSS will improve the retrievals
of the refractivity fields. The results also indicate that the refractivity field can be obtained
with an accuracy of approximately 20% or better to around 4 km with a height resolution of 1

14

Parallelization and Implementation of Methods for Image Reconstruction

km (provided that there are enough number of satellites and stations).

Troller et al. developed in [38] the software package AWATOS (atmospheric water vapor to-
mography software). This software is based on the assimilation of double differenced GPS
observations. AWATOS applies a least-squares inversion to reveal the inhomogeneous spatial
distribution of water vapor. Using this software an extensive investigation has been carried out
in Switzerland using the national AGNES GPS network. For validation, 22 radiosondes profiles
and the numerical weather model aLMo (alpine model in Switzerland, MeteoSwiss) were used
to compare with the tomographic results. An overall goal agreement was achieved between the
three methods with an root mean square (r.m.s) of better than 1.6g/m3 absolute humidity.

Miidla et al. have presented in [39] an overview of some mathematical methods for detection,
monitoring and modelling of the tropospheric water vapor. It was concluded that the modelling
environment works well for receiver-network geometry analysis. To finish Peep Miidla et al.
conclude that future work will focus on data filtering and how to improve the poor voxel ge-
ometry in an optimal way, since they believe to be key issues in the construction of effective
GPS-receiver networks for water vapor tomography.

Bender et al. developed a GNSS water vapour tomography system in [3] to reconstruct spatially
resolved humidity fields in the troposphere. This system was designed to process the slant
delays of about 270 German GNSS stations in near real-time with a temporal resolution of 30
minutes, horizontal resolution of 40 km and a vertical solution of 500 m or better. For the inver-
sion Michael Bender et al. implemented different iterative algebraic reconstruction techniques
(ART) comparing them with respect to their convergence and some numerical parameters. It
was found that the multiplicative techniques (MART) provided the best results with the least
time [3]. It was also found that noise added to data didn’t disturbed the ART algorithms too
much as long the noise did not exceed 50% of the SWV. This is a good feature since other inverse
techniques often produce meaningless results over noise addition. The authors concluded that
the iterative techniques were successful used in the GNSS tomography and could be parallelized
to run on multicore processors or computer clusters.

In [22] Perler et al. introduce two new parametrizations of voxels in the Kalman filter-based GPS
tomography software AWATOS 2 and their treatment in ellipsoidal coordinates. Also inter voxel
constraint are presented. The ability of these parametrizations to reconstruct a four-dimen-
sional water vapour field with high quality was demonstrated. These algorithms showed how
to reduce the discretization effects without significantly increasing the number of parameters
estimated. The tests performed indicated good performance of the parameterized algorithms.
The accuracy increased about 10-20% for simulated data. Besides the simulations, data were
also acquired from 40 GPS stations. The results using the real data also showed better per-
formance compared to the non parameterized approach. The authors highlight that for future
investigations the focus should be in the evaluation of longer periods and on comparisons with
additional quantities like zenith wet delays.

3.2 CPU Algebraic Reconstruction Algorithms Parallelization

In this section we present some of the algebraic reconstruction algorithms that have been
parallelized in recent years using multi-processors (CPU’s).

15

Parallelization and Implementation of Methods for Image Reconstruction

Melvin et al. designed and developed a parallel ART algorithm (PART) in [40]. Its performance
was studied for a network of workstations using the Message Passing Interface (MPI). In the
algorithm implemented the projections data (e.g. delay between source and receptor) are
partitioned and distributed over all processors. For each projection data of a processor, the
reconstruction projections are calculated, it is also calculated an adjustment vector and the
adjustments are applied to the image being reconstructed. In the last step the algorithm
normalizes the images values. The major bottleneck in the algorithm was said to be caused by
the communication time between processors.

In [41] a method to speed up a 3D simultaneous algebraic reconstruction technique using MPI
was proposed using a parallel programming method on a computer cluster system. The amount
of work is distributed to each computer node using a centralized dynamic load balancing and
a work-pool scheduling scheme. This method was considered to be simple, fast and highly
effective. The time cost of the reconstruction process decreases as the number of processing
nodes increases. Four nodes accelerated the process 4.55 times when comparing with the
sequential implementation. Also the proposed system decreased the reconstruction times up
to 78% percent when comparing with a normal image reconstruction form projection in a single
computer [41].

Gordon has shown in [42] that ART can be parallelized on a linear processor array. It was
demonstrated that the reconstruction of an image of n pixels using Θ(n) equations can be done
on a linear array of p = O(

√
n) processors with optimal efficiency (linear speed up) and O(n/p)

memory needed for each processor. This ART parallelization uses linear and rectangular arrays
of processors which are also known as meshes. In this systems each processor is only connected
directly to a small and fixed number of neighbouring processors. This PART implementation can
be applied to various geometric models of image reconstruction and be extended to spherically
symmetric volume elements (blobs) instead of voxels [42].

A tomographic reconstruction software, developed using Adaptive MPI (AMPI), was presented in
[43]. AMPI is a user level thread framework that provides a solution to port legacy MPI code
into a multithreaded environment where overlapping is possible (do not block objects involved
in the communication).

In [43] the block iterative of component averaging methods, BICAV, has been parallelized using
the Single Program Multiple Data (SPMD) approach. The volume being reconstructed is divided
into slabs of slices. The slabs of slices will be distributed over the processes (MPI) or virtual
processes (AMPI) for the parallelization. In MPI approach communication between the various
computer nodes is involved and reducing latency becomes an issue. The AMPI library permits
latency reduction using the computation-communication overlapping. In the same CPU while
one thread is waiting, another one can progress with the application. Some tests were realized
to compare the differences between the BICAV parallel implementation in both MPI and AMPI.
The results have shown that for AMPI the walltime and cputime are almost the same while in
MPI their differences may be significant, especially when increasing the number of processors.
It was concluded that the threaded version of BICAV (AMPI) scales significantly better than the
MPI version [43] and therefore concluded that user level threads are an attractive method for
parallel programming of scientific applications.

Melvin et al. had examined the efficiency of the parallel ART on a shared memory machine
on the Western Canada Research Grid Consortium [9]. Two algorithms using multithreading on
the shared memory machine were implemented. OpenMP library were used for the parallel

16

Parallelization and Implementation of Methods for Image Reconstruction

implementation. Some tests were also executed to time the performance of the parallel al-
gorithms. The results have shown a clear advantage with a greater number of threads. With
the increasing of the number of processors the speed up also increased, with efficiency ranging
from 59.52% to 96.75% [9]. A six processor IBM P-server reconstructs an image from 36 angles
in approximately 5.038 seconds, with an efficiency of 93.35%. This means that a parallel ART
algorithm can reconstruct the same image, in about the same time as a 180 angles sequential
FBP (Filtered Back Projection) reconstruction, with about the same image quality and less radi-
ation. With the same radiation the 5.038 parallel algorithm produces a higher quality image in
approximately the same time [9].

In [44] a Modified Simultaneous Algebraic Reconstruction (MSART) was implemented. This algo-
rithm implements a back projection technique (BPT) and an adaptive adjustment of corrections.
The experimental results have shown that MSART can improve significantly the quality of recon-
struction. A strategy to parallelize the MSART algorithm on DAWNING 4000H cluster system were
also implemented. The parallelization of MSART has made for 3D volumes on cluster systems.
Basically the 3D reconstruction problem is decomposed into a set of independent 2D reconstruc-
tion problems. The algorithm combines both MPI and OpenMP libraries. The MPI library is used
to perform the coarse-grained parallelization of the reconstruction. OpenMP is used to perform
the fine-grained parallelization [44]. This hybrid implementation has proven to be better than
only the MPI one [45]. In the algorithm each slabs of slices is assigned to an individual node in
the cluster and the reconstruction is made in parallel. The nodes communicate with each other
only to complete the final result of the 3D reconstruction [44]. The results have shown that
the speedup decreases with the increasing of the number of computer nodes. This is justified
by the increase of the communication time between the nodes since the number of nodes also
increase [44]. Overall the results on DAWNING 4000H cluster system show that the implemented
3D reconstruction parallel algorithm can achieve high and stable speed ups [44].

Xu and Thulasiraman have implemented a parallelized ordered subset [46] SART (OS-SART) on
cell broadband engine [47]. The algorithm takes advantage of Cell BE architecture, using the
SPEs (Synergistic Processing Elements) coprocessors to compute the fine grained independent
tasks and PPE (Power Processor Element) performs the tasks of data distributing and gathering.
The overlap of the computation and communication is realized with direct memory access
available on the Cell BE, this to reduce the synchronizing and communications overheads [47].
The algorithm consists in four parts: forward projection, rotating the image, back projection
and creating the reference matrix. The algorithm has tested in two different architectures:
Cell BE and Sun Fire x4600. The more time consuming parts of the algorithm are forward
and back projections the total complexity of the algoritm is O(n3) which turns the OS-SART
in a computation intensive algorithm. This algorithm is also memory intensive consisting in a
complexity of O(n4) [47]. Cell BE is a PowerXCell8i within a IBM QS22 Blade. This computer runs
at 3.2 GHz and contains 16 GB of shared memory. The sunfire x4600 machine is a distributed
shared memory system with an eight AMD dual-core opteron processor resulting in a total of 16
cores. Each core runs at 1 GHz with 1 MB cache per core and 4 GB memory per processor. In
this system OpenMP was used for the implementation. A series of tests were realized in [47]
comparing the execution time, number of subsets, number of cores, number of SPEs and the
number of images rows per DMA (Direct memory access) transfer. The tests have shown that
one drawback of the Cell BE is the limited memory storage on each of the SPEs. The approach
the authors used to circumvent this problem were to use a rotation based algorithm which
calculates the projection angles using less memory. However this rotation based algorithm

17

Parallelization and Implementation of Methods for Image Reconstruction

increases the number of transfers required to DMA from main memory to local memory on
the SPE, which turned to be a bottleneck how the number of SPEs increased. Even with this
bottleneck the Cell BE performed much better than the shared memory machine [47]. The tests
also exposed that the number of subsets impacts the sequential processing time on one SPE.
The Cell-based OS-SART on one SPE was five times faster than OS-SART on AMD opteron core
for one subset and one iteration. With the increase of the number of subsets the speedup also
increased. The authors referred that a future implementation the algorithm will use double
buffering, in order to reduce the DMA transfers impact.

3.3 GPU Algebraic Reconstruction Algorithms Parallelization

Algebraic reconstruction algorithms are highly computational intensive. With this in mind var-
ious hardware platforms have been tested along the years including the Graphics Processing
Units (GPUs) discussed in this section.

In 2000, Klaus Mueller and Roni Yagel made an implementation in OpenGL of the SART recon-
struction technique using 2-D texture mapping hardware in [48]. This implementation was
used for rapid 3-D cone-beam reconstruction. It was found that the graphics hardware allowed
3-D cone beam reconstructions with speed ups of over 50 comparing with the implementation
on a epoch’s CPU. The graphics hardware version of SART developed was named texture-map-
ping hardware accelerator SART (TMA-SART). Both the software implementation (SART) and the
hardware implementation (TMA-SART) used as test image the 3D-extension of the Shepp-Logan
phantom [49]. The projections were obtained by analytical integration of the phantom and
were used to reconstruct a 1283 volume in three iterations. Two graphic architectures groups
were used in the experiments: an epoch’s mid-range workstation, such the SGI Octane with a
12-bit framebuffer and low-end graphics PCs and graphics boards that only had a 8-bit frame-
buffer. The experiments indicated that the first group had speed ups between 35 and 68 when
compared to an optimized CPU version of the SART algorithm (in the same system CPU) [48].

In 2005, Fang Xu and Klaus Mueller have shown in [50] how the PC graphics board technology
had an enormous potential for the computed tomography. The authors decomposed three pop-
ular three-dimensional (3D) reconstruction algorithms (namely Feldkamp filtered backprojec-
tion, the simultaneous algebraic reconstruction technique and the expectation maximization)
into modules which could be executed on the CPU and their output linked internally. As an
added bonus the visualization of the reconstructions is easily performed since the reconstruc-
tion data are stored in the graphics hardware, which allowed to run a visualization module
at any time. Several tests were performed on the three algorithms developed, the Feldkamp
filtered backprojection, the simultaneous algebraic reconstruction technique and the expecta-
tion maximization. This test were performed on a 2.66 Ghz Pentium PC with 512 memory and
a NVIDIA FX 5900 GPU. A 3D version of the Shepp-Logan phantom with size of 1283 was used
for the reconstruction tests. The results have shown that the epoch’s inexpensive floating point
GPUs could reconstruct a volume with SART in about 12 times faster than the same generation
CPUs and five times faster than the older SGI hardware [48]. It was noticed that the projections
were much faster than the back projections. The authors concluded that the GPU implementa-
tion of Feldkamp FBP produced excellent results. The GPU Feldkamp FBT reconstruction was
seen to be very fast taking 5 seconds to reconstruct a 1283 volume with good quality. The au-

18

Parallelization and Implementation of Methods for Image Reconstruction

thors stated that for the first time the quality of the GPU reconstruction could rival that of the
CPU implementations. Also excellent GPU performance could be achieved in relatively cheap
equipment ($500 for the epoch’s).

Keck et al. have applied in 2009 the Common Unified Device Architecture (CUDA) to the SART
algorithm in [51]. Two different implementations were made one using CUDA 1.1 and another
using CUDA 2.0. Until this implementation the iterative reconstruction on graphics hardware
used OpenGL and Shadding languages [50] [48]. With CUDA is possible to use the standard C
programming language to program in a graphics hardware without any knowledge of graphics
programming [51].

The back projection component of the SART algorithm performs a voxel-base back projection.
The matrix-vector product is calculated for each voxel to determine the voxel corrective pro-
jection value.

The forward projection is parallelized using each thread to compute one corrective pixel of the
projection. In both the back and forward projection the CUDA grid sizes is chosen based on
experimental results [52].

After the implementation of the SART in the GPU (CUDA 1.1 and CUDA 2.0) and in the CPU some
experiments were made to evaluate the performance of each method. The GPU used for the
experiments were a NVIDIA Quadro FX 5600. For the CPU two different hardware were used: an
Intel Core2Duo 2 GHz PC and a workstation with two Intel Xeon Quadcore 2.33 GHz. The image
used for the reconstruction had a size of 512x512x350 [51].

Using CUDA 1.1 the implementation took approximately 1.15 seconds for a single texture update
[51]. Using 3D textures the authors measured 0.11 seconds for the texture update on CUDA 2.0
which improves the performance by a factor of 10 [51].

The slowest GPU SART implementation revealed to be CUDA 1.1 even so it still was 7.5 times
faster than the PC and 1.5 times faster than the workstation. Ordered subsets [46] optimiza-
tions in GPU had also been tested allowing even faster CUDA implementations. The CUDA 2.0
implementation with the ordered subset was 64 and 12 times faster compared to the PC and
workstation respectively.

The authors concluded that GPU-OS CUDA 2.0 implementation was already applicable for spe-
cific usage in clinical environment, since this reconstruction was less than 9 minutes [51].

In [53] is presented some comparisons between GPU and CPU implementations of some itera-
tive algorithms are presented: Kaczmarz’s, Cimmino’s, component averaging, conjugate gra-
dient normal residual (CGNR), symmetric successive overrelaxation-preconditioned conjugate
gradient and conjugate-gradient-accelerated component-averaged row projections (CARP-CG).
Elble et al. have made a preliminary search to find the most appropriate algorithms to be
implemented in the GPU [53]. It became clear that the Kackzmarz algorithm was not the most
appropriate, the only available steps that can be parallelized are the dot product and the vector
addition. Due to this it could only be superior in terms of performance when using very large
and dense linear systems. The BLAS library was used in the GPU for this hardware paralleliza-
tion. It parallelizes the algebra operations like matrix-matrix or matrix-vector multiplications.
The authors have made a series of tests using the various algorithms implementations both on
CPU and GPU. The GPU implementations were processed on a NVIDIA Tesla C870 system and the
CPUs implementations on a PC with a pentium IV 2.8 GHz processor with 1 GB memory. Also a

19

Parallelization and Implementation of Methods for Image Reconstruction

linux cluster with 16 of this PCs connected by a 1 Gbit/s Ethernet switch were used [54]. The
results have shown that CGNR was the most efficient algorithm for solving investigated partial
differential equations on the GPU. The CAV algorithm highest GFLOPS but its slow convergence
resulted in the slowest solution time [53]. The GPU had a clear advantage over the CPU, with
computational results from five to twenty times faster than the CPU. On the 16 node cluster the
GPU implementation was up to three times faster [53]. As conclusion the authors mentioned
that the GPU offered a low-cost and high-performance computation system to solve large-scale
partial differential equations [53].

In [55] some benchmarks tests were realized to determine the optional parameters in the itera-
tive algorithm OS-SIRT. The tests were processed on NVIDIA 8800 GT GPU and were programmed
GLSL. This tests showed to be decisive for obtaining optimal GPU performance also they show
that iterative reconstruction is a clear option for noisy and few-view scenarios.

Johnston et al. presents an implementation of family of iterative reconstruction algorithms
with total variation (TV) denoising on a GPU (NVIDIA Geforce GTX 280). A series of tests to
optimize and compare the efficiency of each algorithm to reduce the artefacts were also ex-
ecuted using a generated 2563 volume image. The results have shown that SART can achieve
better performance than other implementations, namely steepest descent (SD) and the non
linear conjugate gradient algorithm (CG).

In [56] implements the SART algorithm with motion compensation for a fast high quality com-
puted tomography reconstruction using a CUDA GPU. Several tests were made to the imple-
mented algorithm in order to test its performance, reconstruction quality and effect of the
parameters. These tests were performed on a desktop PC composed of a Core2Quad Q6600
CPU (2.4 GHz), 4 GB memory and a NVIDIA 8800 GTX GPU with 768 MB ram and CUDA 2.0 [56].
The Shepp-Logan Phantom was chosen as the image to be reconstructed with a grid size of 1283

voxels and from a set of 80 projections. The CPU implementation took nearly 18 minutes to
do the reconstruction while the GPU implementation took 7.52 seconds for ten iterations being
almost 150 times faster than the CPU implementation [56]. The quality of the reconstruction
this was evaluated using peak signal-to-noise ratio (PSNR), line profiles, visually and with met-
rics like signal-to-noise ratio (SNR) and Mean Square Error (MSE). All this evaluations revealed
satisfactory results [56]. The authors concluded that this SART GPU implementation allows
instantaneous presentation of 3D CT volume to physicians once the projections are collected
[56].

A distributed multi-GPU system (CUDA) was developed in [57]. The stated aim was to provide
computing power for rapid constrained, iterative reconstruction of very large volumes. Shawn
Q. Zheng et al. performed diverse tests with a system composed of 5 nodes where each node
contained one GTX 295 card. Each GTX 295 card contains 2 GPUs resulting in a system composed
by 10 GPUs. This system was connected using a high speed gigabit Ethernet network. For
10 iterations of SIRT reconstruction using a tomogram of 40962 x 512 from a input tilt series
containing 122 projection images of 40962 pixels (using single precision) took a total of 1845
seconds of which 1032 seconds are pure computation while the remainder are from the system
overhead. The same distributed multi-GPU system took only 39 seconds to reconstruct 10242 x
256 voxels from 122 10242 pixel projections. The authors concluded in [57] that even with the
additional system overhead the performance analysis indicated that adding extra GPUs would
improve the overall performance.

Alexey Buzmakov et al. presents in [58] a fast version of RegART [59] which uses the NVIDIA

20

Parallelization and Implementation of Methods for Image Reconstruction

CUDA technology for the improved performance.

The implementation in CUDA uses a rotation technique involving 2D texture fetching [60] in
order to reduce the memory usage. Two roughly independent stages are included in the bilinear
rotation algorithm. One its the calculation of the exact coordinates on the source image and
another it’s the bilinear interpolation of the value over this point [58].

The authors have realized some tests for performance comparison and reconstruction quality
comparison with the Filtered Back Projection (FBP) method. For this tests was used a PC with
2 AMD Opteron 275, 8 GB memory, NVIDIA GTX 285 with 240 cores executing Ubuntu Linux 9.10
64 bit as operating system. It was used double precision for the computations and Shepp-Logan
phantom as image to reconstruct.

For a image of size 1500x1500 the CUDA implementation obtained a speed up of 6.6 relatively
to the CPU implementation.

For the quality test a scanline of the reconstructed phantom was used, in this graph it is
possible to see that the RegART is superior to FBP, resulting in fewer fluctuations of the abortion
coefficient [58].

The authors concluded that the CUDA RegART algorithm allows its use in real tomography hard-
ware while further optimization would be a plus to compete with FBP in computational effi-
ciency.

In [61] it is demonstrated that making alternative design decisions in the GPU implementation
could result in an additional speed up of an order of magnitude comparing with the Xu et al.
implementation [62]. It is mentioned in [61] that as the bandwidth available for reading data
from the GPU global memory it is necessary to make use of the shared memory and cached mem-
ory, even if it requires extra synchronization or memory writes. This especially important since
tomography algorithms are very memory-read intensive. The projection and back projection
are the steps more computational intensive so they were optimized using diverse techniques
that exploit the memory locality. Same tests were carried to compare this implementation with
Xu et al. implementation on [62]. In this tests two different generations of NVIDIA GPUs were
used. A GTX 280 Geforce which contains a GT 200 GPU and was launched in 2008. This is the
same GPU used by Xu et al. in [62]. The other generation used consisted in a Geforce GTX
480 and a Tesla C2070 both containing a Fermi GPU and launched in 2010. The results have
shown that the optimizations that exploit the memory locality had an important impact on the
running time of the projection and back projection steps of the GPU algorithm. Also a speed up
of about 10 was obtained comparing with the results in [62] by Xu et al. using similar hardware
[61].

3.4 Hybrid CPU and GPU Algebraic Reconstruction Algorithms

Parallelization

Besides the CPU and GPU only implementations for the algebraic reconstruction other hybrid
solutions have emerged using both of this hardware.

In [63] a hybrid approach is presented that takes full advantage of the whole computer power
available in modern computers and that further reduces the processing time. This approach

21

Parallelization and Implementation of Methods for Image Reconstruction

makes the decomposition of a 3D reconstruction problem into a set of independent 2D recon-
struction subproblems corresponding to the slices perpendicular to the tilt axis. In this imple-
mentation the slices are clustered in slabs of four slices to reduce the latencies and overheads.
A pool of slabs to reconstruct is distributed over CPU (C-threads) and GPU (G-threads). As the
threads become idle they are assigned to a new slab to reconstruct, the process is repeated
until all slabs are processed. The authors explain in [63] that because GPU computation is much
faster than in CPU more slabs are assigned to the GPU threads than to CPU threads. The authors
also stated that for GPU was used a matrix approach (introduced in [64] that uses sparse struc-
tures to improve performance) of the iterative methods while in CPU it was used a vectorized
and optimized implementation (taking advantage of SSE, Streaming SIMD Extensions).

The results in [63] have show that the hybrid approach improves the performance over 1.5 to 2
times when comparing with strategies based on pure CPU or GPU implementations.

Another hybrid approach was presented in [65], this approach besides the CPU and GPU hard-
ware also includes a field-programmable array (FPGA). Here a new iterative reconstruction
algorithm based on expectation maximization and total variation nominated as EM+TV is de-
scribed.

In [65] the performance of the proposed hybrid architecture revealed to be the best when
comparing with CPU and GPU only architectures. This architecture also delivers the minimum
energy consumption, resulting in less than 1/3 of the CPU only implementation and 1/5 of the
GPU only implementation.

3.5 Summary

In this chapter the state of the art of GNSS Water Vapor Tomography and Algebraic Reconstruc-
tion Algorithms Parallelization was presented. This chapter was important to understand what
was been done in these areas and which approaches were followed. In the next chapter the
work done in this dissertation will be presented for the parallelization of the algebraic recon-
struction algorithms.

22

Parallelization and Implementation of Methods for Image Reconstruction

Chapter 4

Parallelizing Algebraic Reconstruction

One of the main objectives of this dissertation was to accelerate the algebraic reconstruction
algorithms reducing their processing time and thereby permitting real-time applications. Alge-
braic algorithms consist in a series of linear algebra operations as presented in Chapter 2. If we
parallelize these algebra operations we automatically parallelize the algebraic reconstructions
algorithms. This was the approach used in dissertation for the parallelization of the algebraic
reconstruction algorithms. The linear algebra operations parallelized were the vector-matrix
operation and the matrix-matrix operation. The programs were written and tested in regular
personal computers (pcs) which are accessible to every user.

4.1 Multi-threading Libraries

There are several multithreading libraries for C++. The most elemental approach is to use a
low threading library such as Pthreads (Posix Threads) or Boost, common higher level libraries
are OpenMP and Intel Threading Building Blocks (TBB) [66]. This work aims to use and then
compare the popular OpenMP and TBB libraries, since they provides a high level of abstraction
of the implementation and platform plus they are known to be stable [67].

4.1.1 OpenMP

OpenMP (OMP) is a collection of compiler directives, library routines and environment vari-
ables for shared-memory parallelism in C, C++ and Fortran programs. OMP is managed by the
non-profit organization OpenMP Architecture Review Board whose members include: AMD, Fu-
jitsu, HP, IBM, Intel, Microsoft, NEC, NVIDIA, Oracle Corporation, Texas Instruments and others
[68]. The OMP API requires that the programmer explicitly write the actions to be taken to ex-
ecute the program in parallel. While aiding the coding when compared to lower level API’s by
introducing a high level of abstraction, it is not an automatically parallel programming model.
OMP doesn’t check for data dependencies therefore conflicts such as race conditions, deadlocks
and other multithreading problems may still occur [69]. It is up to the programmer to ensure
correctness and deal with these specific problems. OMP supplies primitives for locks and other
multithreading primitives. OMP is included in many compilers by default including (but not
limited to) GCC, XL C/C++ / Fortran, Visual Studio 2008-2010 C++ and nagfor [70].

An example of the OMP library is the following extracted code from the multiplication algo-
rithm:

23

Parallelization and Implementation of Methods for Image Reconstruction

Listing 4.1 Example of use of the OMP library

1 #pragma omp parallel for
2 for (int i=0; i<M1−>rows−1;i+=2){
3 int k;
4 register double s00,s10;
5 s00=s10=0.0;
6 for (k=0;k<M2−>rows;k++){
7 s00 += M1−>theMatrix[i] [k] v1[k];
8 s10 += M1−>theMatrix[i+1][k] v1[k];
9 }

10 result−>theMatrix[i] [j] =s00;
11 result−>theMatrix[i+1][j] =s10;
12 }

Notice the #pragma omp parallel for directive which automatically parallelize the for loop using
the library.

4.1.2 Intel Threading Building Blocks

Intel Threading Building Blocks (TBB) is another library that helps the programmer write par-
allel programs that take advantage of multicore processors that is also portable and scalable.
Using TBB the programmer may build general purpose parallel programs and doesn’t require
any special languages or compilers. It is based on the use of C++ templates aiming to be si-
multaneously flexible and efficient. TBB contains parallel algorithms and data structures it also
provides scalable memory allocation and task scheduling [71].

The library uses tasks instead of threads and it internally maps the tasks onto threads [72].

TBB according to [72], was built with performance in mind, allowing computational intensive
work parallelization. TBB is also compatible with other thread packages (for instance it is
possible to write mixed OMP and TBB code).

An example of implemented code is given below which implements the same vector-matrix
multiplication algorithm as was used for the OMP example (the details of dealing with the cases
when the number of rows is odd are not shown):

24

Parallelization and Implementation of Methods for Image Reconstruction

Listing 4.2 Example of use of the TBB library

1 mMatrix M;
2 mVector V,result;
3
4 void operator()(const blocked_range<int>& range) const {
5
6 int i,j;
7 register double s00,s01;
8
9 for (i=range.begin(); i < range.end(); i+=2){

10 s00=s01=0.0;
11 for (j=0; j<M−>columns;j++){
12 s00 += V−>theVector[j] M−>theMatrix[i][j];
13 s01 += V−>theVector[j] M−>theMatrix[i+1][j];
14 }
15 result−>theVector[i] =s00;
16 result−>theVector[i+1] =s01;
17 }
18
19 //..case row number is not an even number
20 }
21
22 mVector Math::matrixVectorMultiplication(mMatrix M, mVector V){
23
24 mVector result=new mVector(M−>rows);
25 int i,j;
26 ITBvectorMatrixMultiplication myVMmultiplication;
27
28 myVMmultiplication.result=result;
29 myVMmultiplication.M=M;
30 myVMmultiplication.V=V;
31
32 parallel_for(blocked_range<int>(0, M−>rows−1), myVMmultiplication);
33
34 return result;
35 }

Notice the need of creating a new struct which is used for parallelizing the same loop as used in
the OMP directive. This struct is then initialized in the main function and all variables it needs
are then assigned. A call to the parallel_for function is made in the end so the for is executed
using threads.

4.1.3 CUDA

CUDA (Compute Unified Device Architecture) is a general purpose parallel computing platform
and programming model which uses the parallel compute engine in NVIDIA GPUs to solve com-
plex computational problems. The CUDA was introduced in November 2006 by NVIDIA [73].

The CUDA Toolkit [74] comes with a software environment that allows the developers to use the
C language to develop CUDA programs [73].CUDA allows the use of various languages, applica-
tion programming interfaces and directives-based approaches such as FORTRAN, DirectCompute
and OpenACC (Table 4.1) [73].

25

Parallelization and Implementation of Methods for Image Reconstruction

Table 4.1: Programming languages and applications programming interfaces supported by the CUDA
platform.

The CUDA applications of this dissertation used the C++ language and the CUBLAS library [75]
(see subsection 4.2.3).

Figure 4.1: Example of CUDA kernel hierarchy.

The CUDA parallel model was designed to transparently scale its parallelism to a different
number of GPU cores [73]. In this model the host (CPU) program launches a sequence of kernels
which are GPU functions. Each kernel is organized as an hierarchy of threads. A group of
threads is called block and a group of blocks is called grid. Each thread has a unique identifier
(id) within its block and each block has a unique id within its grid. Figure 4.1 illustrates this
CUDA hierarchy.

26

Parallelization and Implementation of Methods for Image Reconstruction

4.2 Underlying linear algebra libraries

4.2.1 Basic Algebra / Math library

For this work a basic computational linear algebra library was written with some essential
functions like matrix-matrix multiplication, vector-matrix multiplication, scalar-vector division,
matrix creation, vector creation. An ART and SIRT library was also written with the diverse algo-
rithms used in algebraic reconstruction algorithms including: kaczmarz, symmetric kaczmarz,
randomized kaczmarz, landweber, cimmino, component averaging, diagonally relaxed orthogo-
nal projections and simultaneous algebraic reconstruction technique. Not all these algorithms
have been used for the results of this dissertation but they were all implemented.

The language used to write these libraries was C++. C++ provides some advantages over other
languages such as being an object-oriented programming which is well suited for complex sys-
tems [76]. It’s also a compiled language which means it’s usually faster than the interpreted
and JIT-compiled languages. It’s an open ISO-standardized language. Is portable, existing di-
verse compilers for the various operating systems. It’s compatible with C code, which means
that we can write C code with few or no modifications plus user external C libraries. C++ have
also a great library support (including multithreading) with over 3000 results in the project
management website SourceForge [77].

Because of all these advantages this was the language which was chosen to write the libraries
and the tests discussed in this dissertation.

In order to illustrate what kind of libraries have been produced the headers of the Linear
Algebra and Algebraic Reconstruction algorithms are shown below:

Listing 4.3 Header files of the implemented Linear Algebra / Math library

1 struct mVector{...}
2 struct mMatrix{...}
3 class Math {
4 public:
5 Math();
6 virtual ~Math();
7
8 static vector<int> retreiveNonZeroRows(mMatrix myMatrix);
9 static void retreiveSjVector(mMatrix A, mVector result);

10 static mVector scalarVectorSum(mVector V, double scalar);
11 static mVector scalarVectorMultiplication(mVector V, double scalar);
12 static mVector scalarVectorDivision(double scalar, mVector V);
13 static mMatrix scalarMatrixMultiplication(mMatrix M, double scalar);
14 static mMatrix scalarMatrixDivision(mMatrix M, double scalar);
15 static mMatrix matrixMatrixMultiplication(mMatrix M1, mMatrix M2);
16 static mVector matrixVectorMultiplication(mMatrix M, mVector V);
17 static void vectorSum(mVector V1, mVector V2, mVector result);
18 static mVector vectorSubtraction(mVector V1, mVector V2);
19 static void vectorMultiplication(mVector V1, mVector V2, mVector result);
20 static void cumulativeVector(mVector myVector, mVector result);
21 static void transposeMatrix(mMatrix M,mMatrix result);
22 static void normalizeVector(mVector V, mVector result);
23 static mVector powerMethod(mMatrix A);
24 static void diagMatrix(mMatrix M, mMatrix result);
25 static void diagVector(mVector V, mMatrix result);
26 static void showMatrix(mMatrix A);
27 static void showVector(mVector V);
28 static double level1Norm(mVector myVector);
29 static double euclidianNorm(mVector myVector);

27

Parallelization and Implementation of Methods for Image Reconstruction

30 static double euclidianNorm(mMatrix myMatrix);
31 static double dotProduct(mVector firstVector, mVector secondVector);
32 static double getMaxOfVector(mVector A);
33 static double getMaxAbsoluteOfVector(mVector V);
34 static double spectralRadius(mMatrix myMatrix);
35
36 };

A simple example of creating two matrices and multiplying them with this library is:

Listing 4.4 Example of multiplication of two matrices using the developed algebra/math library

1 mMatrix A = new mMatrix(3,3);
2 A−>setMatrixToRand();
3 mMatrix B = new mMatrix(3,3);
4 B−>setMatrixToRand();
5
6 mMatrix result;
7
8 result=Math::matrixMatrixMultiplication(A,B);

These libraries can be later extended to support additional math/algebra operations.

4.2.2 Eigen3 library

The Eigen3 library is described as a “C++ template library for linear algebra: matrices, vectors,
numerical solvers, and related algorithms” [78].

The algebraic reconstruction methods were implemented again using Eigen3. As it is a linear
algebra library it was not necessary to used the developed basic math/algebra library.

This library implements both BLAS/LAPACK. BLAS has a complete implementation while LAPACK
has a partial implementation [79].

This is versatile, supports all matrix sizes, standard numeric types, various matrix decompo-
sitions and geometry features, includes user modules that provides many specialized features
like matrix functions and polynomial solver. It is also a fast library which includes explicit
vectorization support performed for SSE 2/3/4, ARM NEON and AltiVec instructions. Fixed-size
matrix are optimized. The Eigen3 algorithms are selected for reliability, it’s tested with its own
test suit, with the BLAS test suite and also with parts of the LAPACK test suite.

This library supports two different type of storages for matrices: row-major and column-major.
Row-major means that the matrix is stored row by row, the first row is stored first, followed by
second, the third and so on. Column-major in other side stores the matrix column by column,
first stores the first column, then the second, the third and so on. By default the matrices store
the data with column-major [80].

A illustrative example of the column-major and row-major is the follow.

Being A the matrix:

A =

 1 2 3

4 5 6

7 8 9

28

Parallelization and Implementation of Methods for Image Reconstruction

Storing A in the row-major order in memory it will be organized as follow:

1 2 3 4 5 6 7 8 9

However storing A with the column-major order in memory will organize it as:

1 4 7 2 5 8 3 6 9

Eigen3 also includes support for parallelization. This feature will be explained in the subsection
4.3.3.

4.2.3 CUBLAS library

CUBLAS (CUDA Basic Linear Algebra Subroutines) is a GPU accelerated version of the complete
standard BLAS library implemented on the top of the NVIDIA CUDA runtime [75]. According
to [81] it delivers 6 to 17 times faster performance than the latest MKL BLAS [82] which is a
commercial highly optimized CPU BLAS implementation.

To use CUBLAS is necessary to first allocate the matrices and vectors on GPU memory, fill them
with the data, call the desired CUBLAS functions and copy the results back to the computer
main memory [75].

This library uses column-major store format (see Section 4.2.2) and 1-based indexing (meaning
that the arrays begin at 1 position) for maintaining the maximum compatibility with the existing
FORTRAN environments [75]. This needs to be taken in account when using C or C++ languages
with CUBLAS (since they use row-major format and 0-based indexing).

An example of a simple matrix-matrix multiplication using CUDA is presented below. These
matrices are first initialized in the CPU (C_A and C_B variables) and then copied to the GPU
(G_A and G_B variables):

Listing 4.5 Simple CUDA CUBLAS multiplication

1
2 ... // Code to create and allocate CPU C_A and C_B arrays
3 ... // Code to create and allocate GPU G_A, G_B and G_C arrays
4 ... // Code to copy the CPU C_A and C_B arrays to GPU G_A and G_B arrays
5
6 int lda=m; //leading dimension of two−dimensional array used to store the matrix A.
7 int ldb=k; //leading dimension of two−dimensional array used to store matrix B.
8 int ldc=m; //leading dimension of a two−dimensional array used to store the matrix C.
9 const double alf = 1; //<type> scalar used for multiplication.

10 const double bet = 0; //<type> scalar used for multiplication. If beta==0, C does not have to be a valid input.
11 const double alpha = &alf;
12 const double beta = &bet;
13
14 cublasOperation_t transa, transb;
15
16 transa = transb = CUBLAS_OP_N;
17
18 //cuBlas call, result is stored in G_C
19 cublasDgemm(handle, transa, transb, m, n, k, alpha, G_A, lda, G_B, ldb, beta, G_C, ldc);

The result of this multiplication is stored in the G_C GPU variable.

29

Parallelization and Implementation of Methods for Image Reconstruction

4.2.4 Other linear algebra libraries

Before choosing Eigen3 and CUBLAS libraries (besides our own algebra/math library) other li-
braries were investigated. This libraries were respectively BLAS, LAPACK, ScaLAPACK and CVM
and will be introduced in this section.

4.2.4.1 BLAS

BLAS (Basic Linear Algebra Subprograms) are routines written in the FORTRAN language that pro-
vide basic operations over vectors and matrices [83]. Computer programmers have frequently
chosen to implement some operations such as dot product or matrix-vector product as separate
subprograms. The BLAS approach encourages structured programming, improves the self-docu-
menting quality of the software by using basic building blocks and identifying these operations
with mnemonic names. Also these operations are optimized resulting in faster execution time
programs [84].

Currently BLAS has 3 operations levels. The level 1 implements scalar and vector operations,
level 2 implements matrix-vector operations and level 3 implements matrix-matrix operations
[84].

There are machine-specific optimized BLAS libraries for a diverse number of computer architec-
tures [83]. Alternatively the user can use ATLAS (Automatically Tuned Linear Algebra Software)
to automatically generate a BLAS library optimized for his architecture [83].

A C interface is available that allows the use of the BLAS in C/C++ code [83].

4.2.4.2 LAPACK

LAPACK (Linear Algebra PACKage) is a set of routines for solving systems of simultaneous lin-
ear equations, least-squares solutions of linear systems of equations, eigenvalue problems and
singular value problems. There are also other operations included such as associated matrix
factorizations and reordering Schur factorizations. It also handles dense and banded matrices
but not general sparse matrices [85]. It supports real and complex matrices in both single and
double precision [83]. LAPACK routines are written on the top of BLAS making much use as
possible of the BLAS calls for the computations.

LAPACK was written in FORTRAN and a standard C language interface is available to use LAPACK
routines in C/C++ code [85].

4.2.4.3 ScaLAPACK

ScaLAPACK (Scalable Linear Algebra PACKage) is a set of high-performance routines for solving
linear algebra problems in parallel distributed memory machines [86]. It was initially investi-
gated for this dissertation because of the initial possibility of use parallel distributed memory
machines to use in the algebraic reconstruction algorithms. ScaLAPACK solves dense and banded
linear systems, least squares problems, eigen values problems and singular value problems.
ScaLAPACK uses three libraries as function basis: BLAS, LAPACK and BLACS (Basic Linear Algebra
Communication Subprograms).

30

Parallelization and Implementation of Methods for Image Reconstruction

The goals of ScaLAPACK are to provide efficiency, scalability, reliability, portability, flexibility
(build new routines from the existing ones) and ease-of-use (by making LAPACK and ScaLAPACK
look as similar as possible) [87].

This library is currently written in FORTRAN language but has some exceptions routines written
in C [86].

4.2.4.4 CVM

The CVM class library is a C++ class library that encapsulates the concept of vector and matrix
(including sparse, band, symmetric and hermitian) supporting single and double precision num-
bers. It internally uses the BLAS and LAPACK routines to achieve the best performance possible
[88]. Besides the basic vector and matrix operations like vector and matrix products it contains
other algorithms like algorithms to perform norms, solve linear systems of the kind Ax = b and
AX = B, singular value decomposition, matrix rank and determinant computation [88]. This
library simplifies the code that deals with matrices and vectors for example multiplying a vector
with a matrix is as simple as the following code:

Listing 4.6 Vector-matrix multiplication code using CVM library

1 rvector a(10), b(20);
2 rmatrix A(20,10);
3 // Fill the vector / matrix with random numbers between −10 and 10
4 a.randomize(−10.,10.);
5 A.randomize(−10.,10.);
6 b = A a;

4.3 Linear Algebra Parallelization

In this section it is presented the linear algebra libraries used for the parallelization, their
implementation and the results obtained from this parallelization. The parallelization of the
linear algebra operations also allow the parallelization of the algebraic algorithms (since they
consist in linear algebra operations).

The linear algebra libraries choose to implement besides our own algebra/math library were
the Eigen3 library and the CUBLAS library. Note that all these three chosen libraries are free to
use even on commercial projects [78] [89].

Eigen3 was chosen in relation with BLAS/LAPACK because it is much easy to implement complex
programs due to the simpler syntax and internally it also uses the BLAS/LAPACK routines so
comparable performance is achieved.

ScaLAPACK was not chosen because it was developed to be used in parallel distributed machines
which is an approach not used in this dissertation (while it was thought).

Due to Eigen3 support parallelization in matrix-matrix multiplications it was chosen in relation
with CVM. CVM also provides an easy interface for BLAS/LAPACK like Eigen3 but misses any
automatically parallelization.

31

Parallelization and Implementation of Methods for Image Reconstruction

CUBLAS was also chosen to implement because it allows one to experiment a different approach
than the other libraries. It parallelizes BLAS/LAPACK routines in GPU which is interesting to
compare with other CPU results.

The algorithms used in our own written algebra/math library will be described next, explaining
the implementations and optimizations.

The matrix-matrix algorithm pseudo-code used in OMP and TBB implementations is presented
as follows :

Listing 4.7 Matrix-matrix algorithm pseudo-code used in OMP and TBB implementations

1 Result <− Zero

2 for (j = 0; j<=M2−>columnsNumber−1; j+=2)
3 for (i = 0; i<=M2−>rows; i++)
4 Store M2−>column(i) in Vector1

5 Store M2−>column(i+1) in Vector2

6 for (i = 0; i<=M1−>rowsNumber−1; i+=2)
7 for (k = 0; k<=M2−>rowsNumber; k++)
8 Result(i,j) = Result(i,j) + M1(i,k) Vector1(k)
9 Result(i,j+1) = Result(i,j+1) + M1(i,k) Vector2(k)

10 Result(i+1,j) = Result(i+1,j) + M1(i+1,k) Vector1(k)
11 Result(i+1,j+1) = Result(i+1,j+1) + M1(i+1,k) Vector2(k)
12
13 //..case row number is not an even number
14
15 //..case columns number is not an even number
16
17 return Result

Where M1 and M2 are the first and second matrices respectively and Result the result matrix of
the multiplication. The details of dealing with the cases when the number of rows or columns
is odd are not shown.

The procedure can be described by the following steps:

1. For each two columns in M2

1.1. Store the two columns in two vectors

1.2. For each row in M1

1.2.1. Multiply each element of the row by each element of the vector 1 and vector 2

1.2.2. Store the result of the multiplications in the result matrix

The matrix-vector algorithm pseudo-code used in OMP and TBB is presented as follow:

32

Parallelization and Implementation of Methods for Image Reconstruction

Listing 4.8 Matrix-vector algorithm pseudo-code used in OMP and TBB implementations

1 for (i = 0; i<=M−>rows−1; i+=2)
2 for (j = 0; j<=M−>columns; j++)
3 Result(i) = Result(i) + V(j) M(i,j)
4 Result(i+1) = Result(i+1) + V(j) M(i+1,j)
5
6 if (M−>rows%2 is 1) then
7 set i to M−>rows−1
8 for (j = 0; j<=M−>columns; j++)
9 Result(i) = Result(i) + V(j) M(i,j)

10
11 return Result

Where M is the matrix, V the vector and Result the matrix of the multiplication.

The procedure can be described by the following steps:

1. For each two rows in M

1.1. Store the two rows in two vectors

1.2. Multiply each element of the vector V by each element of the vector 1 and vector 2

1.3. Store the result of the multiplications in the result vector

Some standard optimizations were made to these algorithms. For instance the explicit use
of the registers via the register keyword for the sums of the multiplications, since this avoids
accessing main memory every time the sum is updated. An example of this register optimization
is the following:

Listing 4.9 Example of the use of the register keyword

1 register double s00;
2 s00=0.0;
3 for (k=0;k<M2−>rows;k++){
4 s00 += M1−>theMatrix[i] [k] v1[k];
5 }
6 result−>theMatrix[i][j] =s00;

Notice the use of the register keyword in the multiplication accumulator.

This technique increases the program speed by eliminating the instructions that control the
loop, it also reduces the delay from reading data from the memory [90] [91].

The last optimization was to divide the matrices into vectors (known as block structure). Since
vectors can be much smaller than a matrix they can fit or partially fit into cache memory which
may decrease the time to retrieve their elements. This also makes the multiplications faster
[92].

In the matrix multiplication one of the matrices were divided into columns vectors while in the
vector multiplication the matrix were divided into rows vectors. An example of this optimiza-
tion is below:

33

Parallelization and Implementation of Methods for Image Reconstruction

Listing 4.10 Example of division of matrix into blocks to take advantage of cache

1 for (i=0; i<M2−>rows;i++){
2 v1[i]=M2−>theMatrix[i][j];
3 }
4
5 for (i=0; i<M1−>rows−1;i+=2){
6 register double s00,s10;
7 s00=s10=0.0;
8 for (k=0;k<M2−>rows;k++){
9 s00 += M1−>theMatrix[i] [k] v1[k];

10 s10 += M1−>theMatrix[i+1][k] v1[k];
11 }
12 result−>theMatrix[i] [j] =s00;
13 result−>theMatrix[i+1][j] =s10;
14 }

In this case it caches one of the columns of the matrices.

These optimizations were implemented in all algorithms including parallel algorithms and the
sequential one.

In next subsections the specific implementations of the various parallelization libraries namely
OMP and TBB are explained. The Eigen3 library which includes OMP parallelization and CUBLAS
which does GPU parallelization are also discussed.

4.3.1 Parallelization OMP

The OMP parallelization was by far the simplest to implement. For both cases (matrix-matrix
and matrix-vector multiplication) the OMP directive “#pragma omp parallel” and “#pragma
omp for” were used. The “#pragma omp parallel” directive initializes a parallel section which
means all threads will execute the code in it. In this case it was used to create the vectors. The
“#pragma omp for” directive distributes the number of threads available in a for loop. In the
matrix-matrix multiplication algorithm was also used the “#pragma omp parallel for” directive
which do the same of the other two directives combined. This means that it automatically
parallelizes a for section and distributes the available threads on it [69]. By default the number
of threads used in the Visual C++ implementation of OMP is the same as the number of processor
cores detected by the Operating System (including virtual processors and hyperthreading CPUs)
[93].

In the matrix-matrix multiplication algorithm the directive “#pragma omp parallel” was used
for each thread allocate memory independent vectors. The “#pragma omp for” directive was
used in the main matrix-matrix multiplication loop. This can been seen in the following ex-
tracted code:

34

Parallelization and Implementation of Methods for Image Reconstruction

Listing 4.11 Matrix-matrix use of “#pragma omp parallel” and “#pragma omp for” directives

1 #pragma omp parallel
2 {
3 double v1=new double[M2−>rows];
4 double v2=new double[M2−>rows];
5
6 #pragma omp for
7 for (j=0; j < M2−>columns−1; j+=2){ // Try to allocate 2 columns in cache each time
8 int i,k;
9 for (i=0; i<M2−>rows;i++) {

10 v1[i]=M2−>theMatrix[i][j]; // Fill the cache vector with the second matrix columns
11 v2[i]=M2−>theMatrix[i][j+1];
12 }
13
14 for (i=0; i<M1−>rows−1;i+=2){
15 register double s00,s01,s10,s11;
16 s00=s01=s10=s11=0.0;
17 for (k=0;k<M2−>rows;k++){
18 s00 += M1−>theMatrix[i] [k] v1[k]; // Multiplication operations
19 s01 += M1−>theMatrix[i] [k] v2[k];
20 s10 += M1−>theMatrix[i+1][k] v1[k];
21 s11 += M1−>theMatrix[i+1][k] v2[k];
22 }
23 result−>theMatrix[i] [j] =s00;
24 result−>theMatrix[i] [j+1] =s01;
25 result−>theMatrix[i+1][j] =s10;
26 result−>theMatrix[i+1][j+1] =s11;
27 }
28 ...
29 }
30 ...
31 }

In the vector-matrix multiplication the same process with “#pragma omp parallel” and “#pragma
omp for” directives was used in the main loop:

Listing 4.12 Vector-matrix use of “#pragma omp parallel” and “#pragma omp for” directives

1 #pragma omp parallel
2 {
3 int i,j;
4 register double s00,s01;
5
6 #pragma omp for
7 for (i=0; i < (M−>rows−1); i+=2){
8 s00=s01=0.0;
9 for (j=0; j<M−>columns; j++){

10 s00 += V−>theVector[j] M−>theMatrix[i][j];
11 s01 += V−>theVector[j] M−>theMatrix[i+1][j];
12 }
13 result−>theVector[i] =s00;
14 result−>theVector[i+1] =s01;
15 }

Note that the original code was not modified, the only code added was the OMP pragma direc-
tives so OMP know what to parallelize and how.

35

Parallelization and Implementation of Methods for Image Reconstruction

4.3.2 Parallelization TBB

The TBB parallelization required much more modifications than the OMP case. The paralleliza-
tion was applied exactly in the same loops of the OMP, however there was the need of creating
a new struct for every new parallelized block of code.

For the matrix-matrix multiplication two structs were created. One for the multiplication of
two columns simultaneously by two rows and another for the multiplication of only one column
by two rows.

In the following code the implementation of the struct of only one column is shown:

Listing 4.13 TBB structure implementation for multiplication using one column

1 struct ITBmatrixMultiplication1C {
2 mMatrix M1, M2, result;
3 double v1;
4 int j;
5
6 void operator()(const blocked_range<int>& range) const {
7
8 for(int i=range.begin(); i<range.end(); i+=2){
9 register double s00,s10;

10 s00=s10=0.0;
11 for (int k=0;k<M2−>rows;k++){
12 s00 += M1−>theMatrix[i] [k] v1[k];
13 s10 += M1−>theMatrix[i+1][k] v1[k];
14 }
15 result−>theMatrix[i] [j] =s00;
16 result−>theMatrix[i+1][j] =s10;
17 }
18 }
19 };

The operator() is the function that gets called by the TBB library to be parallelized. The
variables declared in the struct are variables that the function operator() needs in order to
work properly. For example in this code we need the matrices we are going to multiply plus a
result matrix to store the calculations. The majority of the variables are pointers because it’s
much more efficient to pass big objects via reference than via copy.

Besides these modifications it’s also necessary to initialize the structs created. This is done
with the following code:

Listing 4.14 Example of initialization of TBB structure

1 ITBmatrixMultiplication1C my1CMultiplication;
2
3 my1CMultiplication.result=result;
4 my1CMultiplication.j=j;
5 my1CMultiplication.M1=M1;
6 my1CMultiplication.M2=M2;
7 my1CMultiplication.v1=v1;
8
9 parallel_for(blocked_range<int>(0, M1−>rows−1), my1CMultiplication);

The first line declares and initialize the struct. The variables necessary to the struct are then
assigned. In the end the parallel code is executed using the function call parallel_for. This

36

Parallelization and Implementation of Methods for Image Reconstruction

function receives an object of the type blocked_range which receives the initializer for the
loop condition, the for loop conditional expression and the struct that contains the code to be
executed.

The call to the parallel_for must be made in the same place where the code of the struct is in
the sequential program. As stated before the range.begin() and range.end() are calculated by
the library for each thread using the blocked_range parameters especially defined for the loop.

Vector-matrix multiplication was parallelized using this method. It uses a struct for the main
for loop which receives the matrix, vector and result vector. Then the structure is initialized
and parallelized using a parallel_for call.

4.3.3 Parallelization Eigen3

The Eigen3 library include support for CPU parallelization. For this it uses the OMP library inter-
nally and automatically with the user only having the need to activate the OMP library in the
project. Unfortunately this support is limited, Eigen3 only currently supports the parallelization
of general matrix-matrix products [94].

Using Eigen3 the code for implementing the matrix-matrix multiplication is very simply. An
example is shown below:

Listing 4.15 Matrix-matrix multiplication using Eigen3

1 MatrixXd a(2700,2500);
2 a.setRandom();
3
4 MatrixXd b(2500,2700);
5 b.setRandom();
6
7 MatrixXd result = ab;

In this example two matrices are created one with 2700 x 2500 dimensions and another with
2500 x 2700, then their are set values to random. To execute the multiplication of both matrices
we only need to use the (overloaded) operator *. The result is then saved in the result matrix.
All the matrices used in this example consist of the type MatrixXd which means that their
element type is double. If OMP is enabled the operation will be parallelized.

4.3.4 Parallelization CUDA / CUBLAS

As stated in subsection 4.1.3 the CUDA parallel model was designed to transparently scale its
parallelism to a different number of GPU cores. A GPU is built using an array of Streaming
Multiprocessors (SMs). A multithread program is partitioned into blocks of threads that execute
independently from each other. Consequently a GPU with more multiprocessors automatically
execute the program in less time than one with less multiprocessors. This is illustrated in Figure
4.2.

37

Parallelization and Implementation of Methods for Image Reconstruction

Figure 4.2: Example of automatically scalability for 2 GPUs with different numbers of SMs.

CUDA C extends C and allows the program to create kernels which are C functions and that differ
of C regular functions by being executed in parallel by multiple CUDA threads. The kernels are
defined using the __global__ keyword and the number of threads, blocks and grids that executes
the kernel are specified using the <<< · · · >>> syntax. As stated in the subsection 4.1.3 each
thread has a unique id and this id is accessible within the kernel using the built in threadIdx
variable [73].

An example of a simple CUDA C program which calculates the sum of the vector A and B and
saves the result in the C vector is seen below.

Listing 4.16 Example of CUDA vector-vector sum

1 // Kernel definition
2 __global__ void VecAdd(float A, float B, float C)
3 {
4 int i = threadIdx.x;
5 C[i] = A[i] + B[i];
6 }
7 int main()
8 {
9 ...

10 // Kernel invocation with N threads
11 VecAdd<<<1, N>>>(A, B, C);
12 ...
13 }

In this code each of the N threads perform one element addition. The kernel here presented
only has one thread block containing the N threads.

For the CUDA parallelization in this dissertation it was used CUBLAS routines for the linear
algebra operations. In this dissertation CUDA implementations were only parallelized for a

38

Parallelization and Implementation of Methods for Image Reconstruction

single GPU, multiple GPU support will be left for future work.

4.3.5 Results

In this section the results obtained from the paralellization of the linear algebra operations ma-
trix-matrix multiplication and vector-matrix multiplication are presented. Five parallel imple-
mentations namely a sequential implementation, an OpenMP implementation, an Intel Thread-
ing Building Blocks implementation, an Eigen3 implementation and a CUBLAS implementation.
The CUBLAS implementation is presented in two different ways, one which takes in account the
CPU-GPU memory transfers (CUBLAS WT) and one without (CUBLAS NT). The implementation
is exactly the same, except that in CUBLAS NT the transfer times between the CPU-GPU are
ignored in the benchmark. These different forms of measuring the CUBLAS implementation are
to demonstrate the impact that CPU-GPU memory transfers have in the CUDA programs.

All these tests were made on three different computers whose specifications are given in Table
4.2.

Table 4.2: Computers Specifications.

Computer 1 Computer 2 Computer 3
CPU Name Intel Core i7-3610QM Six-Core AMD Opteron 2435 Intel Core i7 CPU 920

CPU Speed (GHz) 2,30 (up to 3,3) 2,60 2,66 (up to 2,93)
CPU Number Cores 4 6 4

CPU Number Logical Processors 8 6 8
Number CPUs 1 2 1
Main Memory 6 GB 16 GB 8 GB
Video card GeForce GT 650M None GeForce GTX 295

Video card Memory 2 GB None 896 MB

The specifications for these tests were the follow:

Matrix-matrix multiplication:

• Matrix A with the size of 2700 x 2500, Matrix B with the size of 2500 x 2700.

• The results were obtained after calculating an average of 50 multiplications.

Matrix-vector multiplication:

• Matrix with the size of 7700 x 7000.

• Vector with the size of 7000.

• The results were obtained after calculating an average of 50 operations.

All implementations had the SSE2 (Streaming SIMD Extensions 2) instructions activated in the
compiler. For all the CPU tests the number of threads used was the same as the number of
the physical processors detected. This decision was made because it was detected in various
tests that the Eigen3 performance was significantly altered if the number of logical processors
were used instead of the number of physical processors. An example of this effect can be
seen in Table 4.3 where it is possible to see the matrix-matrix multiplication using the logical
processors and physical processors for the parallel implementations. Note that the number
of logical processors in computer 2 is the same as the number of physical processors while in
the computer 1 and computer 2 the number of logical processors is the double of the physical

39

Parallelization and Implementation of Methods for Image Reconstruction

processors (hyperthreading technology). The CUBLAS tests were not performed in the computer
2 because it does not have a video card.

Table 4.3: Matrix-matrix multiplication in the same computer with logical and physical processors.

In Table 4.3 it is possible to see that the Eigen3 results using logical and physical processors are
very distinct: the implementation with physical processors is more than two times faster (the
same was also detected in other tests not included here). Using only physical processors there
is a difference of more than 2 seconds to the other parallel implementations. This fact was
taken in consideration for the final GNSS water vapor reconstruction algorithms.

In the next subsections the tests matrix-matrix multiplication and matrix-vector multiplication
are presented.

4.3.5.1 Matrix-matrix multiplication

The results of the matrix-matrix multiplication are displayed below in Table 4.4 and in Figure
4.3. The Eigen3 library automatically parallelizes the multiplication of the matrices being only
necessary to activate OpenMP option in the compiler.

Table 4.4: Matrix-matrix multiplication.

40

Parallelization and Implementation of Methods for Image Reconstruction

Figure 4.3: Matrix-matrix multiplication.

It is visible a large difference between the sequential implementation and the parallel versions.
This difference allow us to conclude that the parallelization of matrices is essential for a fast
execution of the algebraic reconstruction algorithms, more specifically the SIRT algorithms.
The OMP version is faster than the TBB implementation. The faster CPU implementation is the
Eigen3, reaching up to twelve seconds of difference to the TBB implementation in computer 2.
The overall faster version is the CUBLAS version with computer 3 being faster than computer 1.
Note that the CUBLAS method without counting the CPU-GPU transfers (CUBLAS NT) is about 65
000 times faster than the CUBLAS method with transfers (CUBLAS WT) in the computer 1. This
demonstrates that the main bottleneck in the CUBLAS implementation is the CPU-GPU transfer
time as it is not possible to create these CUDA applications without these transfers.

4.3.5.2 Matrix-vector multiplication

The results of the matrix-vector multiplication are displayed below in Table 4.5 and in Figure
4.4. Note that the Eigen3 library don’t make any parallelization of this multiplication although
being a sequential implementation it contains some optimizations.

Table 4.5: Matrix-vector multiplication.

41

Parallelization and Implementation of Methods for Image Reconstruction

Figure 4.4: Matrix-vector multiplication.

Analysing the results is possible to verify that the parallel versions are more efficient than the
sequential and Eigen3 versions. The difference between the parallel versions (OMP and TBB) are
minimal. The Eigen3 implementation is slower in this test (than the parallel implementations)
since is not parallelized, which indicates that perhaps it would be appropriate to parallelize
this library matrix-vector multiplication. Also it is important to note that even though the
difference between the sequential version and the parallel versions may be significant (case of
computer 2) this multiplications does not have so much importance on the overall performance
as the matrix-matrix multiplication. For example in the matrix-vector multiplication there are
not any implementation which reaches one second (even with a matrix and vector much bigger
than in matrix-matrix multiplication test), on the other hand in the matrix-matrix multiplication
even with smaller matrices sizes the execution time reaches up to 44 seconds in the sequential
version of computer 2 and the faster parallel version which is the CUBLAS implementation of
computer 3 is still about four times slower than the slowest implementation of matrix-vector
multiplication version. In the CUBLAS implementation it is possible to see that the CPU-GPU
transfer are still the main bottleneck of the operation like it already was in the matrix-matrix
multiplication, this is checked by the difference between CUBLAS WT and CUBLAS NT methods
of measuring.

4.4 Algebraic Reconstruction Algorithms Parallelization

In this section the results obtained from the parallelization of the algebraic algorithms with
the linear algebra operations (matrix-matrix and matrix-vector multiplications) are presented.
Note that what is being tested is only the performance of each implementation, the ART/SIRT
algorithms convergence are not tested. There will be tested five implementations namely a
sequential implementation, an OpenMP implementation, an Intel Threading Building Blocks im-
plementation, an Eigen3 implementation and a CUBLAS implementation. For the ART methods
only four implementations: sequential, Eigen3 Column-major, Eigen3 Row-major and CULAS will

42

Parallelization and Implementation of Methods for Image Reconstruction

be tested. When not specified in the Eigen3 tests, is is assumed that the column-major order
was used. All these tests were made in the same computers were the linear algebra operations
were also tested. The specification can be checked in Table 4.2.

The specifications for the SIRT Landweber, SIRT SART and ART Kaczmarz tests were as follows:

• Matrix with the size of 2700 x 2500.

• Vector with the size of 2700.

• The number of iterations for each algorithm was 50.

• The results were obtained after calculating the average of 50 algorithm calls.

Note that all SIRT implementations (including Eigen3 and CUBLAS) calculate the spectral radius
using the power method since it is very efficient in terms of performance. Also like the lin-
ear algebra operations testes every implementation had the SSE2 instructions activated in the
compiler and for all the CPU implementations the number of threads used was the same as the
number of the physical processors detected.

4.4.1 Validation

The algorithms implemented were validated using the Shepp-Logan phantom [49] image which
is a standard image for image reconstruction tests. Two tests were performed one presenting
only the resultant reconstructions images and another validating mathematically the reconstruc-
tions.

The first test used a original image with a resolution of 80 x 80. The projection data was
generated using 75 parallel rays over 36 different angles.

All the implemented algebraic reconstruction algorithms namely Kaczmarz, Symmetric kacz-
marz, Randomized kaczmarz, Landweber, Cimmino, CAV, DROP and SART were validated using
this test. However here will only be presented the algorithms that were tested in this chapter:
Landweber, SART and Kaczmarz. In Figure 4.5 the original image can be seen and in the figures
4.6, 4.7, 4.8 the Landweber, SART and Kaczmarz reconstructions using 50 iterations of the CPU
parallel implementations described earlier in this chapter are presented. As can be seen all
algorithms reconstructed the original image reasonably well.

Figure 4.5: Shepp-Logan phantom original Image

43

Parallelization and Implementation of Methods for Image Reconstruction

Figure 4.6: Shepp-Logan phantom Landweber
reconstruction.

Figure 4.7: Shepp-Logan phantom ART
reconstruction.

Figure 4.8: Shepp-Logan phantom Kaczmarz
reconstruction.

In the second test, Shepp-Logan phantom was again used as image to reconstruct. It was used
two different resolutions one being 80 x 80 and another being 50 x 50. The projection data
was the same of previous test: 75 parallel rays over 36 different angles. Using Kaczmarz,
Landweber and SART algorithms the two different resolutions images were reconstructed using
50, 1000 and 10 000 iterations. The standard deviation (std) of the residuals1 was calculated
for each reconstruction. The max (z max) and min (z min) of the residuals were also calculated.
The results are presented in Tables 4.6, 4.7, 4.8, 4.9, 4.10 and 4.11.

Table 4.6: Shepp-Logan 80 x 80 - 50 iterations

std z min z max
Kaczmarz 0.116510 -0.4746 0.639204

Landweber 0.122607 -0.47022 0.692239
SART 0.119124 -0.46668 0.651125

Table 4.7: Shepp-Logan 50 x 50 - 50 iterations

std z min z max
Kaczmarz 0.074213 -0.298224 0.341835

Landweber 0.098106 -0.395006 0.519073
SART 0.095274 -0.432999 0.508764

From the results is possible to draw some conclusions. Firstly all algorithms continued to con-
verge to original solution with the increasing of the number of iterations. It is important to
mention that while there are no noise in the reconstruction, the reconstruction is not perfect
due to the round-off errors. In all reconstructions the Kaczmarz algorithm obtained a standard
deviation smaller than Landweber or SART. However all three algorithms obtained similar re-

1The residuals are the difference between the original image and the reconstructed image.

44

Parallelization and Implementation of Methods for Image Reconstruction

Table 4.8: Shepp-Logan 80 x 80 - 1000
iterations

std z min z max
Kaczmarz 0.116133 -0.477247 0.636647

Landweber 0.116482 -0.475663 0.640159
SART 0.114891 -0.495548 0.591570

Table 4.9: Shepp-Logan 50 x 50 - 1000
iterations

std z min z max
Kaczmarz 0.057617 -0.214230 0.256787

Landweber 0.073086 -0.296873 0.335897
SART 0.071769 -0.279004 0.335304

Table 4.10: Shepp-Logan 80 x 80 - 10 000
iterations

std z min z max
Kaczmarz 0.116052 -0.947615 0.634917

Landweber 0.116259 -0.476399 0.636267
SART 0.114778 -0.498273 0.587139

Table 4.11: Shepp-Logan 50 x 50 - 10 000
iterations

std z min z max
Kaczmarz 0.047456 -0.201650 0.2053409

Landweber 0.060048 -0.222268 0.2663149
SART 0.058609 -0.220531 0.2605460

sults without be possible to favor one unequivocally. Additionally is possible to see that the 80
x 80 reconstructions have more difficulty to converge than the 50 x 50 reconstructions. This is
explained because there are less projections than cells.

4.4.2 Results

In this subsection several tests including SIRT Landweber, SIRT SART and ART Kaczmarz are
presented. The main objectives of this section is to compare the parallel techniques (see
which one performs better) and also to compare the speedup of the parallel versions over the
sequential versions.

4.4.2.1 SIRT Landweber

The results of the Landweber method are displayed below in Table 4.12 and in Figure 4.9.

Table 4.12: Landweber method.

45

Parallelization and Implementation of Methods for Image Reconstruction

Figure 4.9: Landweber method.

At the first glance it is possible to notice a big difference between the sequential version
and the others. This can be explained because the matrix-matrix multiplication contained
in this algorithm are extremely slow compared with the other operations, the matrix-vector
multiplications are also included but have obviously less impact. The fastest implementation
is the GPU CUBLAS implementation which does not reach one second in the computer 3. It is
interesting to find out that relatively to the CPU implementations the computer 1 is faster than
the computer 3 while looking at the GPU implementations the inverse is verified. This reveals
that while computer 1 has a faster CPU than computer 3, computer 3 has a faster GPU than
computer 1. Also it can be seen that the difference between the parallel CPU versions and
the Eigen3 version which occurred in the matrix multiplications tests (especially in computer 2)
are not so obvious here. This fact is due to SIRT methods that contain diverse multiplications
of matrix-vector. In this specific case the algorithm is executed with 50 iterations where each
iteration contains two matrix-vector multiplications summing a total of 100 multiplications.
The matrix-matrix multiplication case only occurs one time for the calculation of the spectral
radius.

4.4.2.2 SIRT SART

The results of the SART method are displayed below in Table 4.13 and in Figure 4.10.

Table 4.13: SART method.

46

Parallelization and Implementation of Methods for Image Reconstruction

Figure 4.10: SART method.

The SART algorithm presents similar results when compared to the Landweber algorithm. SART
takes however some more time to execute than the Landweber. The difference between the
sequential version and the others are still high (approximately the double in computer 1/com-
puter 2 and triple in computer 3 when comparing to the slower parallel implementation). This
difference can be explained because there are one additional multiplication of matrices in this
algorithm. The CUBLAS version is still the fastest version and in computer 3 is approximately
17 times faster than the sequential implementation. Like Landweber, it also contains two mul-
tiplications of matrix-vector per iteration.

4.4.2.3 ART Kaczmarz

Regarding the ART algorithms only the sequential, Eigen3 and CUBLAS implementations were
tested. This is because these algorithms don’t include matrix-matrix and matrix-vector mul-
tiplications which were what was parallelized in OMP and TBB versions. There were tested
two different Eigen3 methods: column-major and row-major which were discussed in Section
4.2.2 of this dissertation. This two different versions were tested because each one have very
different performance results in this ART methods. The results of the Kaczmarz method are
displayed below in Table 4.14 and in Figure 4.11.

Table 4.14: Kaczmarz method.

47

Parallelization and Implementation of Methods for Image Reconstruction

Figure 4.11: Kaczmarz method.

The results presented confirm the big difference between each of the Eigen3 implementations.
All the ART methods make use of the diverse rows of the input matrix in the various iterations.
How can be checked the row-major is the more efficient because the matrix is organized se-
quentially in the memory by rows, being the access to the rows sequential. The sequential
implementation performance is similar to the row-major this because in its implementation the
matrix is also organized in the memory by rows. The version column-major is much more slower
than the row-major. Since the matrix in this implementation is organized in memory by columns
the access to each row is not sequential. Besides the Eigen3 implementations differences we
can observe that there is a large difference between the CPU implementation and GPU imple-
mentation (in computer 1 the GPU version is about 15 times slower and in the computer 3 is
about 10 times slower).

The symmetric version of Kaczmarz method was also tested, however it took approximately the
double of the time in all implementations because of the “double sweep” which this symmetric
Kaczmarz implements.

4.5 Summary

In this chapter it was presented diverse multi-threading libraries and linear algebra libraries in-
cluding the basic algebra / math library developed. The parallelization approach in these linear
algebra libraries and the respective results were also presented and discussed. The results of
the parallization and the validation of the algebraic reconstruction algorithms were also shown.
The reconstruction algorithms were validated using two different tests, one presenting only the
resultant reconstructions images and another validating mathematically the reconstructions.
The results shown that the three methods produce similar results without be possible to favor
one unequivocally.

Some conclusion may be taken from the algorithms tests. Looking first at the CPU implementa-
tions the Eigen3 library proved to has the best overall performance. It was always faster than

48

Parallelization and Implementation of Methods for Image Reconstruction

OMP and TBB solutions. Over the sequential versions and looking only at the computer 1 Eigen3
had a speedup of about 4.5 in SIRT Landweber, 5 in SIRT SART and 1.5 in ART Kaczmarz.

The CUBLAS solution was even faster than Eigen3 with the larger difference occurring in com-
puter 3. In SIRT methods CUBLAS proved to be the faster solution with the exception of ART
methods where it proved to be much slower. If we look at the Kaczmarz equation (5) we can
easily see that the only operations are two dot products, a scalar division, a scalar multiplica-
tion, a scalar-vector multiplication and one vector-vector sum. None of these operations seem
to be highly computational intensive, so parallelizing them should not bring much improvement.
Also taking into account that all GPU kernal calls contain a fixed time cost (latency) [95] and
that there are 5 kernel launches per ith iteration and in this case there are 2700 ith iterations
this will lead to about 13500 kernel launches per kth iteration which is a very large number of
transactions. With this in mind we rapidly can conclude that Kaczmarz, and more generally the
ART approach type of algorithms, are not the best type of algorithms to execute in the GPU.
The same conclusion was also reached in [53]. However it was still interesting to demonstrate
this in practice and compare CPU with GPU results.

Based on these tests, it was concluded that the Eigen3 is the better solution for CPU implemen-
tations and that CUBLAS is the ideal solution in GPU implementations with the exception of the
ART algorithms where Eigen3 should also be used.

In the next chapter an overview to the GNSS and Water Vapor will be presented. It will be also
demonstrated how the GNSS Water Vapor Estimation works and how the reconstruction of water
vapor image is done.

49

Parallelization and Implementation of Methods for Image Reconstruction

50

Parallelization and Implementation of Methods for Image Reconstruction

Chapter 5

GNSS and Water Vapor

5.1 GNSS Overview

Global positioning system (GPS) is a technology that has revolutionized the surveying and map-
ping industry. This technology involves satellites, ground reference station infrastructure and
user equipment. It can estimate the position and velocity continually and accurately around
the world [96]. Besides GPS there are other similar systems: Russia operates Russia Global Navi-
gation Satellite System (GLONASS), Europe is developing Galileo and China is developing BuiDou
Navigation Satellite System (BDS). To refer to all these systems the term Global Navigation
Satellite Systems (GNSS) is currently employed.

GPS is currently the most used and well known space-based satellite navigation system con-
sequently and it will be primary focus in this dissertation. GPS is composed of 24 satellites
arranged in 6 orbital planes where each plane contains 4 satellites. Besides the position / ve-
locity information already mentioned, GPS also provides a form of Coordinated Universal Time
(UTC). The services of the GPS can be used by an unlimited number of users because receivers
communicate passively (they only receive the data) [97].

The GPS satellites broadcast ranging codes and navigation data on two frequencies: L1 (1575.42
MHz) and L2 (1227.6 MHZ). All the satellites transmit these frequencies however each one
transmits a different ranging code [97]. The ranging code allows each receiver to determine
the propagation time of the signal and consequently determine the satellite-to-user range while
the navigation data allows each receiver to determine the location of each satellite at the
transmission signal [97]. This technique is known as one-way time of arrival (TOA).

Together with satellite’s location and the delay of the signal (between the satellite and the
receiver) it is possible to calculate the receivers three-dimensional location. However to deter-
mine the receiver location requires at least four satellites for the TOA ranging measurements
[97].

5.2 Water Vapor Overview

Water vapour has a crucial role in atmospheric processes that act over a wide range of temporal
and spatial scales from global climate to micrometeorology [8]. Some of the atmospheric pro-
cesses that are significantly influenced by the water vapor distribution are, radiation transfer,
energy balance, cloud formation/composition and the convective initiation and development
of precipitation systems [98]. It is the constituent that most contributes to the greenhouse
effect [8]. Water vapor is also the most variable constituent of the atmosphere and is an essen-
tial component of climate and numerical weather prediction because of its relation with the
atmosphere processes [99].

51

Parallelization and Implementation of Methods for Image Reconstruction

Due to water vapor’s importance scientists have developed a variety of methods to measure
the distribution of water vapor in the atmosphere. Some of these methods are radiosondes,
microwave radiometers, spectrometers, lidars and GPS which is the method described in this
dissertation.

5.3 GNSS Water Vapor Estimation

GNSS water vapor estimation has large advantages over other existing methods. The advantages
include good temporal resolution (down to 15 minutes), the fact that it can operate in all
weather conditions and can be run unattended [7]. Also the number of GNSS stations continues
to increase in many regions of the world.

Figure 5.1: Vertical layers of the Earth’s atmosphere

When the GPS signal passes through the atmosphere it suffers a number of propagation effects.
The magnitude of those effects depends on the satellite-receiver elevation angle and the atmo-
spheric environment. The atmosphere causes the following effects [99]:

1. Ionospheric delay and scintillation

2. Delay caused by the wet and dry troposphere

3. Atmospheric attenuation in the troposphere and stratosphere

The various atmosphere, the vertical layers, can be seen in Figure 5.1. The prime source of error
in GPS is the tropospheric group delay which is caused by the tropospheric refractivity [99]. The
Zenith Total Delay (ZTD) is the atmospheric delay of the GPS signal which arrives from the zenith
direction. In Figure 5.2 an illustration of the GPS signal, zenith direction and elevation angle
(e) can be seen. ZTD can be divided in two major delay effects in the troposphere. The first is
Zenith Hydrostatic Delay (ZHD) which has the larger effect and it is caused by dry air containing

52

Parallelization and Implementation of Methods for Image Reconstruction

Figure 5.2: GPS signal between the satellites and receiver.

mainly N2 (nitrogen gas) and O2 (oxygen). This delay corresponds to about 2.1 meters at
sea level and it varies mainly with the temperature and atmospheric pressure. This makes it
predictable [99]. The second effect is called Zenith Wet Delay (ZWD) and is normally smaller
than ZHD. The normal values of ZWD oscillate between 1 and 80 centimetres. The ZWD usually
have higher variation and is more difficult to predict than ZHD [99].

The ZHD can be calculated easily and with precision, using measurements of surface atmo-
spheric pressure using the following formula [100] [101]:

ZHD = 2.2768± 0.0015
P0

f(φ,H)
(11)

f(φ,H) = 1− 0.00265cos(2φ)− 0.000285H (12)

where P0 is the surface pressure in millibars, φ is the latitude and H is geodetic height in
kilometres. ZHD is given in millimetres.

Calculating ZHD and knowing ZTD we can calculate the ZHD using the formula:

ZTD = ZHD + ZWD (13)

After the ZWD has been calculated it can be multiplied by the variable Π [101] to obtain the
quantity of water vapour integrated in the zenith direction (IWV):

53

Parallelization and Implementation of Methods for Image Reconstruction

Figure 5.3: IWV, SIWV and Wet Gradient representation

IWV = Π · ZWD (14)

where Π is given by:

Π =
106mw

(k2 − k1mw

md
+ k3

Tm
)R∗

(15)

where Tm is the weighted mean temperature of the atmosphere, mw is the molar mass of
water vapour, md is the molar mass of dry air, R∗ the ideal gas constant, k1, k2 and k3 are
physical constants that are based in part on theory and in part on experimental observations
[102]. According to [30] k1 = 77.60 ± 0.05K/hPa, k2 = 70.4 ± 2.2K/hPa, k3 = (3.739 ± 0.012) ·
105K2/hPa.

Bevis et. al [8] have derived the following formula:

Tm = 0.72t+ 70.2(◦K) (16)

A slant water vapour delay (SWVD) can be divided in two components, the first component
is a isotropic part, which is essentially the IWV . The second components of SWVD is a
nonisotropic part. This last component describes the deviation of the water vapour field from
the isotropic field.

54

Parallelization and Implementation of Methods for Image Reconstruction

The Slant Water Vapour Delay (SWVD) for each individual satellite can be calculated with base
in the following formula [103]:

SWVD = M(e)IWV + S (17)

where M(e) is the mapping function which maps the zenith IWV to the elevation ray e. This
mapping function can be the Niell mapping function or any other. The Niell mapping function
is widely used because it is highly accurate and does not need any meteorological parameters
[31]. S represents the nonisotropic component of water vapour. From the equation is possible
to observe that SWVD can be calculated once we calculate S.

GPS signals contain two frequencies L1 and L2, which can be affected by ionosphere clock
error and troposphere. The phase delay can be linearly combined to remove the effects of
ionosphere. The clock error can be nullified using double differences. The total delay of
troposphere (STD) [104] can be presented as:

STD = Mh(e)ZHD +Mw(e)ZWD +M∆(e)[(GN cos θ +GE sin θ)] +Re (18)

GN and GE are the north and east components of atmospheric delay gradients. Re corresponds
to the residual. e and θ are the elevation and azimuth angle respectively. Mh is the hydrostatic
mapping function, Mw is the wet mapping function and M∆ is the gradients mapping function.
There are several M∆ which can be used [105]. Chen and Herring have proposed in [106] the
use of the following function:

M∆(e) =
1

sin e tan e+ c
(19)

In [106] the value of 0.0032 was used for c.

The residual represents the difference between the observation and the model. The residual
is used to cover the deficiency for modelling the inhomogeneous atmosphere by using only the
gradients. If residual is not used the delay will depend mainly of the mapping function and
would be larger at lower elevations [105].

To obtain the SWVD it is necessary to remove the hydrostatic gradients from the total gradi-
ents. Two methods exist for removing the hydrostatic gradients. The first one is to estimate the
gradients parameters using a numerical model. The second method consists in the assumption
that the hydrostatic gradient is stable and that it is constant over a period (e.g. 12 hours) so
it can be removed or reduced to a minimum by averaging the gradient solution on that period
[107]. With the hydrostatic gradient calculated the wet gradient can be determined. It’s still
necessary to remove the hydrostatic gradient or it will affect SWVD calculation.

Removing the hydrostatic parameters and adding residue the slant water vapour can be calcu-
lated using [103]:

55

Parallelization and Implementation of Methods for Image Reconstruction

SWVD = M(e)IWV + S = M(e)IWV + Π[M∆(e)(GN cos θ +GE sin θ) +Re] (20)

where GN is the north component of wet gradient and GE is the east component.

The representation of the IWV , SIWV and wet gradients can be seen in Figure 5.3. As seen
the main difference between the IWV and SIWV is the direction where the integrated water is
calculated: IWV is in zenith direction while SIWV is in the satellite direction.

5.4 GNSS Water Vapor Image Reconstruction

The tropospheric tomography consists of the retrieval of a 3D scalar field of the water vapour
in the troposphere [21].

The first tropospheric tomography studies of water vapour were performed by Flores et al. [32]
and Flores [108] on the Kilauea volcano and by Gradinarsky [109] in Göteborg region.

The GNSS water vapor reconstruction defines an inversion that is ill-posed, the solutions gener-
ally are not unique and stable [3].

A spatial grid is superimposed over the atmosphere and in the area that we want to know the
water vapor distribution. The vertical axis of the grid usually does not exceed above 15 km
which is the approximate size of the troposphere.

The slant wet delays are used to calculate the water vapor distribution over all the grid. Usually
the ray bending which occur in the atmosphere is neglected and it is assumed that slant paths
are completely straight-lines. To calculate the slant wet delays we apply the formulas of Section
5.3.

Figure 5.4: GNSS water vapor tomography.

56

Parallelization and Implementation of Methods for Image Reconstruction

The cell grids structure can within reasonable limits be freely chosen [3]. In Figure 5.4 an
illustration of the mentioned GNSS water vapor tomography principles is presented.

The GNSS water vapor tomography problem is described mathematically with the equation (2).

Where b are all the observations, i.e. the slant wet delays, A is the contribution of each voxel
for each slant wet delay i.e. the length crossed by the slant in the voxel and x is the current
atmosphere water vapor distribution.

The equation (2) can be inverted using various techniques as SVD. In this dissertation the al-
gebraic reconstruction methods will be used to perform the tomography inversion because the
advantages discussed in Chapter 2.

A good spatial coverage of the atmosphere by the slant wet delays is required or there will be
many voxels without any slant wet delay resulting in a highly indeterminable reconstruction.
To minimize this problem slant wet delay data is usually collected over a time interval e.g. 30
minutes [3]. Additionally other GNSS systems can be used, e.g. combining GPS with GLONASS
the number of the slant wet delay doubles [110].

Another technique to minimize the spatial coverage problem is to make use of extra informa-
tion and constraints. For example data obtained form using synoptic observations, radiosonde
profiles, radio occultation profiles or other independent observations [110].

5.5 Summary

In this chapter an overview to the GNSS and Water Vapor was done. It was also presented
how the GNSS Water Vapor estimation is calculated and how it is performed the GNSS Water
Vapor Image reconstruction. The following chapter will present the SEGAL GNSS Water Vapor
Reconstruction Image Software which has been developed to perform GNSS Water Vapor Recon-
struction. The various components will be described and some preliminary test presented.

57

Parallelization and Implementation of Methods for Image Reconstruction

58

Parallelization and Implementation of Methods for Image Reconstruction

Chapter 6

SEGAL GNSS Water Vapor Reconstruction Image
Software

A GNSS water vapor image reconstruction software has been developed, this software was
nominated SEGAL GNSS WAter Vapor ReconsTruction Image Software (SWART). This software
can compute the IWV distribution over a user’s specified area using GPS observations. It can
also perform the water vapor reconstruction using algebraic reconstruction algorithms and plot
the result in latitude, longitude and height slices.

6.1 SWART Components

SWART is composed by five executables that will be called as components from now. Each of
these components contribute in some way to the GNSS tomography. Specifically the SWART
components are WaterVaporReconstruction, SlantDelayJoinProcessing, GridRayIntersection, Al-
gebraicAlgorithms and PlotWaterVapor. This division in components was taken because it allow
the users to only execute some steps of the GNSS water vapor image reconstruction easily and
giving the user more flexibility. For example it allows the user to only plot the water vapor
image of previous made tomography inversions. All these components are console executables
with the only exception being the PlotWaterVapor executable which was generated with MATLAB
(MATrix LABoratory) compiler [111]. The console applications were developed using C++. For
the WaterVaporReconstruction, GridRayIntersection and AlgebraicAlgorithms components boost
C++ libraries [112] were used for the command line parameters parsing. Please note while this
software has been developed in Windows platform it has been developed thinking that it can
ported to other operating systems like Linux or MacOS. Because this portable code was written
and portable libraries were used. A UML component diagram of SWART can be seen in Figure
6.1.

6.1.1 WaterVaporReconstruction Component

This component has the purpose to link and call the other components of SWART in order to
provide all the functionalities needed for the GNSS water vapor.

The command line options available for this component are the following:

59

Parallelization and Implementation of Methods for Image Reconstruction

WaterVaporReconstruction Command Line Options

-h [--help] produce help message

-c [--config] arg SWART configuration file to use.

-s [--SlantDelayJoinProcessing] Reads and synchs rinex files, meteo files

and sp3 files to produce a file with slant

delays.

-g [--GridRayIntersection] Calculates the distance crossed by each

cell in the grid by each slant delay

-a [--AlgebraicAlgorithms] Uses one algebraic algorithm to

reconstruct the image with base in the

grid ray intersections and slant delays

-p [--PlotWaterVapour] Plots the reconstructed image, contour is

used.

The configuration file specified with -c or –config option is used for the user customize the
options for all other components, namely: SlantDelayJoinProcessing, GridRayIntersection, Al-
gebraicAlgorithms and PlotWaterVapor. The options are specified using the option name and
value, separated by a ’tab’ character. This file allow comments. The components start with ’#’
character. All the other configurations files of other components of SWART have this syntax and
work in the same way. A sample SWART configuration file an be visualized in A.0.1.

6.1.2 SlantDelayJoinProcessing Component

The SlantDelayJoinProcessing component synchronizes all the files needed for the GNSS Water
Vapor Tomography and produces as result a file with slant wet delays between the GNSS re-
ceivers and GNSS satellites. The slant wet delays are produced with the Neill Wet Mapping
function. Besides the slant wet delays it also outputs the following information associated
with them: time of the slant delay, satellite number, satellite Cartesian coordinates, receiver
name, receiver Cartesian coordinates, elevation angle in degrees/radians and azimuth angle in
degrees/radians. An example of this file can be found in Appendix A.0.2.

This component only accepts one parameter which is a configuration file. This configuration
file contains everything that this component needs to work. An example of this component
configuration file can be found in Appendix A.0.3.

The available options are described in Table 6.1, the options grayed out can be specified multi-
ple times (one per receiver).

60

Parallelization and Implementation of Methods for Image Reconstruction

Table 6.1: SlantDelayJoinProcessing Configuration File Options

Option Description
SP3FILE SP3 orbits filename
STARTSECONDS Seconds to begin the files synchronization
ENDSECONDS Seconds to end the files synchronization
SP3INTERPOLATION True or False. Specifies if the user wants to perform satellites position

interpolation (produces about 3 times more slant wet delays)
RECEIVER Name of the receiver
RINEXFILE RINEX observation file of the current receiver
VARSFILE File with meteorological data (with pressure and temperature)
ZTDFILE File containing ZTD value and gradients

The SP3FILE refers to a National Geodetic Survey Standard GPS Format SP3 file [113]. SP3 files
contain the orbits of the GPS satellites for one determined day specified by its filename. The
filename is of the type GPS Week + Day of Week. For example a SP3 file with the filename
’igs16383.sp3’ corresponds to GPS orbits of the 1638 week and the 3th day of week which
converting to day/month/year format corresponds to 01/06/2011.

The SP3 file format contains also other information besides the time and position of each satel-
lite like satellite clock correction [113]. The complete description of the SP3 format can be
found in [113]. An example file can also be found in Appendix A.0.4.

The SlantDelayJoinProcessing component only retrieves the satellites Cartesian coordinates and
the its time from this files.

The STARTSECONDS and ENDSECONDS option allow the user to specify the interval to retrieve
the tomography image, its only necessary to specify the seconds for a day, this means that
the seconds consist of the instance hours + minutes + seconds converted to seconds. For ex-
ample with STARTSECONDS=41400 and ENDSECONDS=43200 the interval that will generate the
reconstructed image will consist in the day specified by the SP3 file starting at 11 hours and 30
minutes and ending at 12 hours of that day.

The SP3INTERPOLATION allow the SlantDelayJoinProcessing component to interpolate the satel-
lite positions within the SP3 file. The SP3 files only give the position for each satellite for
one day within 15 minutes of interval. The other files used by this component namely rinex
files, meteorological files and ZTD files all contain data available in intervals of 5 minutes. This
means if the SP3 interpolation is made for every 5 minutes the number of the slant wet delays
generated can be increased in about 3 times (because there are 3 times more information for
its calculation).

The interpolation strategy used in this component is the same that in [114]:

C = A0 +A1T +A2T
2 +A3T

3 + · · ·+ANT
N (21)

where C represents the X, Y, Z, interpolated coordinates, T is the time and A0 to AN are the
coefficients of the polynomial which are adjusted to fit the satellite orbits.

In [114] the author explain that using the typical 32-bit architecture of a PC the formula (21)
rapidly begins to fail due to a dynamic range problem. However the Neville’s algorithm avoids

61

Parallelization and Implementation of Methods for Image Reconstruction

this limitation providing a simple recursive algorithm for computing the function’s value [114].
Because of this Neville’s algorithm [115] was selected to perform the polynomial interpolation.

To improve the numerical precision all the satellite position datasets, represented as c, were
normalized using the same manner as [116]:

c′i =
(ci − c̄)
σc

(22)

where c̄ is the mean value of satellite dataset, σc is the dataset standard deviation, ci is the
position to be normalized and c′i is the normalized position.

Table 6.2: Example of interpolation of satellites positions at the 300 seconds

X Y Z t (s)
-20927 14289 -8245 0
? ? ? 300
-22223 14305 -2748 900

Note that because each satellite position has three coordinates (X, Y, Z) it is necessary to calcu-
late the interpolation for each of the three coordinates separately at each time. For example to
interpolate the satellite’s position in Table 6.2 at the 300 seconds, firstly it is interpolated the
X coordinate with the -20927 and -22223 values, then the Y coordinate it is interpolated with
14289 and 14305 values respectively and finally the Z coordinate it is interpolated with -8245
and -2748. After all the interpolations we obtain the satellite position at the 300 seconds at the
interpolated X, Y, Z coordinates. In [114] the polynomial interpolation with 11 terms showed the
best results, with this in mind the same 11 terms parameter was chosen for neville’s polynomial
interpolation in SlantDelayJoinProcessing component.

Using the options RECEIVER, RINEXFILE, VARSFILE and ZTDFILE in the SlantDelayJoinProcessing
configuration file, the various receivers information is passed to the SlantDelayJoinProcessing
component. The RECEIVER option just specifies the name of the receiver. The RINEX file corre-
sponds to the RINEX (Receiver Independent EXchange Format) observation file. This file contains
diverse information and a full description can be found in [117]. For the SlantDelayJoinProcess-
ing component we use this file to retrieve which satellites were available at a determined time
to the receiver. An example of this file can be found at in Appendix A.0.5. VARSFILE option spec-
ifies a meteorological file with diverse meteorological data. The data that this component takes
from the file is surface pressure (mbar) and surface temperature (Celsius). An example of this
file can be found in Appendix A.0.6. The ZTDFILE is the last option and specifies a SINEX_TRO
(Solution INdependent EXchange Format for combination of TROpospheric estimates) file [118].
It includes the ZTD value (mm) and the gradients values. A full description of this format can
be found in [118]. An example of this file can be found in Appendix A.0.7.

Overall the SlantDelayJoinProcessing component works as follow:

1. For the receivers that need to be processed, both the SP3 file and Rinex file are read
and the program retreives every satellite instance which is at the two files at the same
time (Rinex file allows us to know which sattelites the receiver had visible at a time.
This operation results in a file named “rinexsp3.sync” containing all the synchronization
instances.

62

Parallelization and Implementation of Methods for Image Reconstruction

1.1. If specified the SP3 interpolation is executed here. The SP3 interpolation is executed
over the existing 15 minutes data interval to provide 5 minutes data interval. The
interpolated data is then used for the synchronization in 1. .

1.2. In this step the program also calculates the elevation and the azimuth angle accord-
ingly with the following formulas [119]:

e = arcsin(~V · ~U) (23)

~V =

(x′ − x)/d

(y′ − y)/d

(z′ − z)/d

 (24)

d =
√

(x′ − x)2 + (y′ − y)2 + (z′ − z)2 (25)

~U =

x/ry/r

z/r

 (26)

r =
√
x2 + y2 + z2 (27)

where e is the elevation angle, {x, y, z} are ECEF (Earth-Centered, Earth-Fixed) re-
ceiver’s coordinates, {x′, y′, z′} are the ECEF satellite’s coordinates, ~V is the unit
direction vector from the receiver to the satellite, d is the distance from the re-
ceiver to the satellite, ~U is the “up” unit vector, r is the norm of the receiver ECEF
vector.

θ = atan(
VE
VN

) (28)

VE = ~V · ~E (29)

VN = ~V · ~N (30)

63

Parallelization and Implementation of Methods for Image Reconstruction

~E =

−y/px/p

0

 (31)

~N =

−x · z/(p/r)−y · z/(p/r)
p · r

 (32)

where θ is the azimuth angle, ~N is the north unit vector, ~E is the east unit vector
and p is the norm of the cross product of the unit vector ~z = {0, 0, 1} by the receiver
position {x, y, z} vector.

2. Both the VarsFile and ZTDFile are read and the program synchronizes the data over the
time interval. Finally it outputs the result to the file “ztdvars.sync”. This file contains the
synchronized temperature, pressure, ZTD and gradients.

3. After the previous two steps the application synchronizes the their output: the “rinexsp3.sync”
file containing the satellites position and elevation, azimuth angles and the “ztdvars.sync”
file containing temperature, pressure, ZTD and the gradients. Their synchronization re-
sults in the file “elevationSatInfo.sync”.

4. In this step the application reads the file generated in the previous step (“elevationSat-
Info.sync”), calculates the IWV and the Slant Wet Delays for each instance in the file using
the procedure of Chapter 5.3. Finally this output is written to the “SlantResults.sync”
file.

5. If there is more receivers, one is selected and is processed going back to the step 1. . This
is repeated until there are no any more receivers to process. The data of all receivers is
saved in the “SlantsJoined.sync” file.

6.1.3 GridRayIntersection Component

This component takes care of the process of superimposing a grid over the atmosphere, obtain
the intersections with the Slant Wet Delays and measuring the line segments for each Slant Wet
Delay which allows us to determine the contribution of each ith voxel to the jth Slant Wet Delay
(wij). This process was explained in Chapter 2 and in Chapter 5.

The options available for this component are the following:

WaterVaporReconstruction Command Line Options

--help produce help message

--gridfile arg grid file name (to be generated or used)

--slantsfile arg slant delays file name

--cutoff arg cutoff angle, only use observations above this

--gengrid arg generates the grid using a file with grid

specifications

64

Parallelization and Implementation of Methods for Image Reconstruction

The –gengrid option allows the generation of a regular grid automatically, specifying only a few
parameters: latitude max, latitude min, longitude min, longitude max, height max, height min
and latitude/longitude/height intervals. An example file that can be used is the following:

Example configuration file to generate a grid

Grid parameters

Comments start with '#'

Latitude

LatitudeMin -1.5

LatitudeMax -1.1

LatitudeInterval 0.1

Longitude

LongitudeMin -48.5

LongitudeMax -48.1

LongitudeInterval 0.1

Height

HeightMin 0

HeightMax 16000

HeightInterval 1000

The –gridfile when used with –gengrid allows to specify the filename of the file to be generated
while when used alone specifies the grid file to be used. The slant delays file is specified with
the –slantsfile option. A cut off angle may be specified using the –cutoff option, the program
will only use slant delays with elevation angle above the specified value.

The intersections of the slant delays with the grid are performed here in the following away:
Each slant delay line is projected from the receiver to the satellite using the elevation and
azimuth angles. Then this slant delay is decomposed by a constant. The constant used is 10
meters. This means that each ray segment of the slant delay will have a length of 10 meters.
Each ray segment is then checked to see if it is inside each voxel. If the ray segment is
inside the voxel, the distance which relates the slant delay and that voxel is updated. At the
end this component generates a matrix and a vector file. The matrix file generated is called
“outputFileM.txt” and saves the matrix A of the equation (2) in the ASCII Market format (a
standard sparse matrix file format) [120]. This format is a usual text format to save sparse
matrices which is the case. The advantage of using this format is that it saves space and time
(to writing and reading the file). This matrix contains every contribution of slant delays to each
of the voxels of the grid. The vector file generated in this component is called “outputFileV.txt”
and it saves every slant delay value in binary format, this improves the time for reading and
saving the file. This vector corresponds to the vector b in the equation (2).

6.1.4 AlgebraicAlgorithms Component

This component loads the matrix A and the vector b created by the GridRayIntersection compo-
nent and executes the inversion of the equation (2) to compute the vector x with the solution

65

Parallelization and Implementation of Methods for Image Reconstruction

of the tomography inversion.

The options available for this component are the following:

AlgebraicAlgorithms Command Line Options

--help produce help message

--matrixfile arg matrix file name (market sparse format)

--vectorfile arg vector file name (binary)

--algorithm arg Algebraic algorithm to use. Possible options:

kaczmarz, kaczmarzSymetric, kaczmarzRandomized,

landweber, cimmino, cav, drop, sart

-iterations arg number of iterations desired

The –matrixfile argument specifies the ASCII Market format matrix file, –vectorfile specifies
the vector binary file, –algorithm specifies the algebraic reconstruction algorithm to use in
the inversion and the –iterations argument specifies how many iterations should the selected
algebraic reconstruction algorithm execute. The algorithms avaiable for the inversion are the
of the sections 2.2.1 and 2.2.2. This component saves the result vector of the 3D inversion in
the file “reconsImage.dat” in the binary format.

6.1.5 PlotWaterVapor Component

This component simply plots the result image of the tomography inversion problem. The 3D
image of the water vapor is presented in 2D slices. The slices can be in latitude, longitude or
height. It reads the binary vector file created in AlgebraicAlgorithms component. It also reads
the grid file to know which are the grid specifications.

The options available for this component are the following:

PlotWaterVapor Command Line Options

Example: PlotWaterVapour.exe reconsImage.dat GridFile_BELEM.dat 48 lat-height

param1 vector file which contains the reconstructed image

param2 grid file name which was used to create the image

param3 slice to show the image (for example 48)

param4 slice type, possible options: lat-lon, lat-height, lon-height

param5(opt) type of countour used with contourf function [default: 15]

param6(opt) limitTo5000, limits the plot to 5000 altitude [default: false]

Parameter 1 specifies the filename of the vector file created with the AlgebraicAlgorithms com-
ponent, parameter 2 specifies the grid file, parameter 3 specifies the slice which the component
will present, parameter 4 specifies the slice type (latitude/longitude/height), parameter 5 spec-
ifies the type of contour and parameter 6 specifies if the height to be displayed will be limited to
5 km. Parameters 5 and 6 are optional. The contour command displays isolines calculated from
the image matrix and fills the areas between the isolines using constant colors corresponding to
the figure’s colormap. If it was not used the images would look pixelated.

An image of the water vapor in the atmosphere created with the PlotWaterVapor can be visual-
ized in Figure 6.2. The water vapor density can be checked looking at the color bar. The density

66

Parallelization and Implementation of Methods for Image Reconstruction

values are in g/m3.

Figure 6.2: Image created with PlotWaterVapor component in 43.25 latitude slice.

6.2 Comparison with LOFTT_K

In this section a brief introduction to LOgiciel Français de Tomographie Troposphérique -version
Kalman (LOFTT_K) is made and a comparison with SWART is presented.

LOFTT_K is a GNSS water vapor tomography software developed in the laboratoire dynamique
de la lithosphere and the service d’aéronomie by C. Champollion et al. [21]. It also reconstructs
the 3D water vapor distribution in the atmosphere like SWART. We now give a comparison of the
main features of LOFTT_K and SWART.

• LOFTT_K was written in FORTRAN language while SWART was mainly written in C++ with a
component written in MATLAB.

• LOFTT_K uses a digital terrain model which results in a grid that takes in account the
actual terrain form like if it has mountains or rivers. SWART does not use a digital terrain
model yet.

• LOFTT_K LOFTT_K supports irregular grids (voxels with different sizes), SWART also sup-
ports irregular grids, however the grid generation procedure is more complex.

• The method to calculate the length of the voxel intersections for each slant wet delay
(see Chapter 2).) is the same in both softwares.

• LOFTT_K implements a Kalman filter which allow the program to take in account the rapid
or slow variation of the water vapor in the atmosphere [121]. SWART doesn’t implement
a Kalman filter yet.

• The principal difference between SWART and LOFTT_K consists in the matrix inversion
method. While LOFTT_K uses the Single Value Decomposition (SVD) method SWART uses

67

Parallelization and Implementation of Methods for Image Reconstruction

parallel algebraic reconstruction algorithms. Algebraic reconstruction algorithms have
several advantages over other methods for the water vapor tomography (see Chapter 2).

Both the programs enable the resulting images to be presented in several slices of the 3D image,
namely slices in latitude/longitude and height.

6.3 Synthetic data results

SWART was firstly tested with synthetic data. In these tests synthetic slant (artificial) wet
delay data was used. Some real data from the COPS (Convective and Orographically-induced
Precipitation Study) campaign (https://www.uni-hohenheim.de/spp-iop/index.htm), was also
used including the grid data, satellite positions and receiver positions. The results were also
compared with LOFTT_K in order to evaluate our SWART program. For the SWART software the
SART algorithm was chosen with 500 iterations; this choice was determined by convergence
results and advantages over other algorithms which will presented in the next section (Section
6.4). The area covered by these tests was the eastern of France. The matrix used in both
programs had a size of 1087x350 (1087 slant wet delays and 350 voxels).

Two images enabling a comparison of the results of both programs are shown in the next two
figures. Each pair of images uses a different 2D slice (latitude and longitude). The values
measured correspond to the density of water vapor in g/m3.

Figure 6.3: LOFTT_K 48.25 latitude slice. Figure 6.4: SWART 48.25 latitude slice.

Figure 6.3 shows the reconstruction using LOFT_K in the 48.25 latitude slice. Figure 6.4 is the
same slice but using SWART. One large observable difference is the use of the digital terrain
model in LOFTT_K. With the digital terrain model the tomography does not begin exactly at the
zero height. While in our implementation it always begins at zero height. The SWART image
also does not seem to be as smooth as the LOFTT_K image e.g. especially between 2 and 8 km.
This may be a consequence of not using the Kalman filter that LOFTT_K implements. The values
of the density of the water are approximately the same for both figures.

68

Parallelization and Implementation of Methods for Image Reconstruction

Figure 6.5: LOFTT_K 7.25 longitude slice. Figure 6.6: SWART 7.25 longitude slice.

Figure 6.5 and Figure 6.6 shows an other comparison of the program results but now for the
7.25 longitude slice. The values of the density of water remain very close and the images are
also very alike. SWART still does not have the digital terrain model that LOFTT_K implements.
Also it is observable the SWART image is not as smooth as LOFTT_K between 2 and 8 km.

6.4 Results of the Case Studies

In this dissertation two case studies were analysed. The two networks of GPS receivers that
were used to perform the water vapour image reconstruction were located in Brazil and the
other in France. The parallel SART algorithm was chosen for the water vapor image recon-
struction. This decision was taken because SART has some advantages over other algebraic
reconstruction algorithms including faster convergence and computational efficiency [18]. The
convergence of the SART algorithm can be seen in Figure 6.7, this figure was produced recon-
structing a real GNSS water vapor image and calculating the root mean square (rms) of each
reconstructed imaged in each iteration. According with [3] the number of necessary iterations
depends on the quality of the initial field, the data quality and other parameters. Looking at
Figure 6.7 we can conclude that less than 50 iterations is not sufficient in order to obtain a good
image reconstruction. For the tests and figures of this section 500 iterations was chosen as the
variation of the convergence in Figure 6.7 seem to be very small at this number of iterations.
In the next sections these two case studies will be described and the results of the GNSS water
vapor tests using the SART algorithm with 500 iterations are presented.

69

Parallelization and Implementation of Methods for Image Reconstruction

Figure 6.7: Convergence of SART algorithm for 1000 iterations.

6.4.1 Marseilles Network

The first network used is a dense network used in the ESCOMPTE [21] campaign with 17 dual
frequency GPS receivers within a 20 x 20 km area around Marseilles, France. This campaign was
run in 2001 in June and July months [21]. The altitude of this GNSS network area varies from
the sea level to the top of Etoile chain (up to 700 meters). The Marseilles network area and
receivers position can be seen in Figure 6.8 [21].

Figure 6.8: Marseilles network area and receivers positions.

70

Parallelization and Implementation of Methods for Image Reconstruction

The Marseilles network tests were realized with a horizontal step size of 0.1◦x 0.1◦and a vertical
step size of 1000 meters for. The tests were realized using data from June 24,2001 (DOY 175)
for the 14 hours.

The Marseilles network tests are presented in two different slices of latitude, longitude and
height and can be seen in the figures 6.9, 6.10, 6.11, 6.12, 6.13 and 6.14.

Looking at the reconstructed images we can see that the distribution of the water vapor is
concentrated up to the 2 km mark. In [122] it is mentioned that half of the water vapor in
the atmosphere is distributed below an altitude of about 1.5 km, less than 5% is above 5 km
and 1% above 12 km. The Marseilles network images are in line with this general description of
the water vapor distribution. The results obtained also show that the maximum density of the
water does not surpass the 15-20 g/m3.

6.4.2 Belem Network

The second case study is a GPS network project that was installed in Belem, Brazil for the Chuva
Project [123]. This campaign was run in 2011 between May and July. The Belem network was
composed of 15 receivers within an area of approximately 110 x 110 km. The Belem area and
receivers position can be seen in Figure 6.15.

Figure 6.15: Belem network.

From previous tests it was concluded that the best results were obtained if only the area within
the red rectangle area of Figure 6.15 was used as the receivers are denser in this sub area when
compared to the total number of stations available in the much larger area. This sub-area is
about 45 x 35 km and was used in the following network tests.

The tests were made using a horizontal step size of 0.1◦x 0.1◦and a vertical step size of 1000
meters for the 6th June (DOY 157) at 11:30 hours. As in the Marseilles network tests the results

71

Parallelization and Implementation of Methods for Image Reconstruction

are presented in two different slices of latitude, longitude and height and are shown in figures
6.16, 6.17, 6.18, 6.19, 6.20 and 6.21.

The Belem network reconstructions also seem to generally fit with [122] water vapor distribution
descriptions for this area of Brazil. The maximum water vapor density is distributed below the
2 km and reaches up to 30 g/m3, clearly more than the Marseilles experiment. Please note that
the area of this reconstruction is larger than the Marseilles (35 x 45 km against 20 x 20 km) and
less receivers were available (15 against 17).

Notice that the distribution of water vapor in figures 6.17 and 6.18 shows regions with significant
water vapor density between 4 and 7 km. However as the main focus of this dissertation has not
been to compare or validate our software with real data produced by for instance radiosondes,
a discussion of such effects is best left to future and continued work using our software.

6.5 Summary

In this chapter the SWART software that has been developed for Water Vapor Image recon-
struction was presented. The various components were described and explained. It was also
compared with LOFTT_K an another GNSS Water Vapor Image Reconstruction software. Some
preliminary tests were realized namely with synthetic data and the results were compared with
LOFTT_K. Also some preliminary tests with case of studies were realized. This tests were re-
alized with data from campaigns in Brazil and in France. The campaigns water vapor image
reconstruction results showed to be coherent with the normal distribution of the water vapor in
the atmosphere which was described in this chapter. For all the tests SART algorithm was used
due to its advantages over other algorithms [18] and was concluded that the SART algorithm
reconstruction needed at least 50 iterations to begin to reconstruct the image and up to 500
iterations to attain the final result.

In the next and final chapter the overall conclusions and future work will be presented.

72

Parallelization and Implementation of Methods for Image Reconstruction

Figure 6.1: SWART UML component diagram.

73

Parallelization and Implementation of Methods for Image Reconstruction

Figure 6.9: SWART slice in latitude 43.25 for
Marseilles network.

Figure 6.10: SWART slice in latitude 43.35 for
Marseilles network.

Figure 6.11: SWART slice in longitude 5.35 for
Marseilles network.

Figure 6.12: SWART slice in longitude 5.45 for
Marseilles network.

Figure 6.13: SWART slice in height 500 for Marseilles
network.

Figure 6.14: SWART slice in height 14500 for
Marseilles network.

74

Parallelization and Implementation of Methods for Image Reconstruction

Figure 6.16: SWART slice in latitude -1.35 for Belem
network.

Figure 6.17: SWART slice in latitude -1.45 for Belem
network.

Figure 6.18: SWART slice in longitude -48.25 for
Belem network.

Figure 6.19: SWART slice in longitude -48.45 for
Belem network.

Figure 6.20: SWART slice in height 500 for Belem
network.

Figure 6.21: SWART slice in height 14500 for Belem
network.

75

Parallelization and Implementation of Methods for Image Reconstruction

76

Parallelization and Implementation of Methods for Image Reconstruction

Chapter 7

Conclusions and Future Work

7.1 Conclusions

The main objective of this dissertation was to perform a detailed study on the advantages of
implementing parallel algebraic reconstruction algorithms and this was completed with success.

The main algebraic reconstruction algorithms were implemented (Kaczmarz, Symmetric Kacz-
marz, Randomized Kaczmarz, Landweber, Cimmino, CAV, DROP and SART) resulting in a software
suite of C++ that will be used and made available by SEGAL. The implementations were tested
by reconstructing a Shepp-Logan phantom image. In this dissertation the results of the SART,
Landweber and Kaczmarz Shepp-Logan reconstructions were presented and it was observed that
the original image that the main features of the original image could be reproduced by all the
algorithms. The results of the tests performed show that the three methods produce similar
results without be possible to favor one unequivocally, even if the Kaczmarz was slightly better.
More tests using different original images and number of iterations could help to better clarify
if the results that we obtained here could be more generalized. One particular issue that the
tests performed using the Shepp-Logan phantom image could not clarify is the identified noise
that several images reconstructed with the Kaczmarz method can suffer. Such issue can be a
major problem for GNSS water vapor tomography. Therefore, in the following implementations,
the SART method was adopted.

Regarding the parallelization of the algebraic reconstruction algorithms, it was concluded that
the parallelization compensates over sequential implementations. In the CPU tests the Eigen3
library was shown to have the best overall performance, although it was found that this library
is less efficient when the architecture of the machine has more virtual than physical cores.
The overall speedup for the CPU implementation of the algorithms was found to be much more
significant for the SART and Landweber algorithms than for the ART Kaczmarz. Overall the GPU
(CUBLAS) implementations were found to be slightly faster than the CPU implementations and
the speedups obtained were better, except for the Kaczmarz case. The choice of algorithm and
architecture for any particular problem depends on many factors, if a GPU is available, the size
of the problem, etc.. Nevertheless, the results obtained in the test carried out are sufficient to
act as a guide for real problems, such as the water vapor tomography software also developed
in this dissertation.

The acquired experience permitted to start the developing of a dedicated software package
called SWART for GNSS water vapor tomography. Although not finalized, the preliminary results
were shown to be satisfactory. Such software package is particular important for the scientific
community attending the lack of reliable (and free available) software for GNSS water vapor
tomography. The synthetic data results were shown to be almost identical to results obtained
from the software described in [121] for exactly the same data. Regarding the results from
the two case studies, it was observed that the SART algorithm reconstruction needed at least
50 iterations to begin to properly reconstruct the image. After 500 iterations, the image did

77

Parallelization and Implementation of Methods for Image Reconstruction

not suffer significant improvements. Furthermore, the results obtained using real data (from
a network in Marseille) were coherent with the normal distribution of the water vapor in the
atmosphere as shown in Section 6.4. The density of the water did not surpass the 15-20 g/m3 in
the analysed images. The results for Belem also generically fit the results generally also fit with
normal distribution of the water vapor in the atmosphere. The maximum water vapor density in
Belem reached approximately 30 g/m3, which is considerable more than the maximum density
in Marseille. This is expected attending to the humidity of both regions.

In respect to the GNSS water vapor reconstruction it must be referred that obtaining real cam-
paign data was not an easy task, e.g. the Marseilles’ data was only recently received and
also the data needed to be converted and synchronized to different formats because it was
different than the expected formats and in fact completely different again from the formats
used for Belem reconstruction. A lack of standardization in data formats is in fact a significant
problem and one that hopefully will be addressed by projects that drive data and meta-data
standardization such as EPOS (The European Plate Observing System, http://www.epos-eu.org).

There were also many other limitations to a complete and thorough analysis of the software
being developed e.g. the lack of other data to compare with SWART results such as radiosondes
data, microwave radiometers or meteorological reports for the date and times studied.

7.2 Future Work

There are many possibilities for future work. Relatively to the algebraic reconstruction algo-
rithms it will be important:

• to analyse the converge and the quality of the images of the different parallelized algo-
rithms for different parameters;

• to extend the GPU parallelization for multiple GPUs;

• create hybrid parallelization approaches that make use of both CPU and GPU power;

• evaluate a cloud based approach to parallelize these algorithms such as Windows Azure.

Relatively to the GNSS water vapor image reconstruction software there are several topics still
should be considered:

• validate the image reconstructions with data from other instruments such as radiosondes,
microwave radiometers and Lidars;

• implement other more recent mapping functions besides the Niell’s, for example the
Vienna Mapping Functions (VMF) [124] or the Global Mapping Functions (GMF) [125];

• integrate digital terrain models in order that the program take into account the actual
terrain form;

• implement a Kalman Filter approach to take into account the temporal variation vapor in
the atmosphere.

78

Parallelization and Implementation of Methods for Image Reconstruction

References

[1] R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques
(art) for three-dimensional electron microscopy and x-ray photography.” Journal
of Theoretical Biology, vol. 29, no. 3, pp. 471–481, 1970. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/5492997 1

[2] S. Kaczmarz, “Angenaherte auflosung von systemen linearer gleichungen,” Bull. Acad.
Polon, vol. Sci Lett. A, pp. 355–357, 1937. 1

[3] M. Bender, G. Dick, M. Ge, Z. Deng, J. Wickert, H.-G. Kahle, A. Raabe, and G. Tetzlaff,
“Development of a gnss water vapour tomography system using algebraic reconstruction
techniques,” Advances in Space Research, vol. 47, no. 10, pp. 1704–1720, 2011. [Online].
Available: http://linkinghub.elsevier.com/retrieve/pii/S0273117710003790 1, 5, 15, 56,
57, 69

[4] W. Hao, L. Guoping, and W. Dan, “A method of inserting and mending for the gps pre-
cipitable water vapor,” in Multimedia Technology (ICMT), 2011 International Conference
on, 2011, pp. 3350–3353. 1

[5] M. Bender and A. Raabe, “Preconditions to ground based gps water vapour tomography,”
Annales geophysicae, vol. 25, no. 8, pp. 1727–1734, 2007. [Online]. Available:
http://hal.archives-ouvertes.fr/hal-00318359/ 1, 13

[6] S. Lutz, M. Troller, D. Perler, A. Geiger, and H.-G. Kahle. (2013) Innovation: Better
weather prediction using gps. GPS World. Accessed: 15/12/2012. [Online]. Available:
http://gpsworld.com/innovation-better-weather-prediction-using-gps/ 1

[7] J. Van Baelen, J.-P. Aubagnac, and A. Dabas, “Comparison of near-real time estimates
of integrated water vapor derived with gps, radiosondes, and microwave radiometer,”
Journal of Atmospheric and Oceanic Technology, vol. 22, no. 2, pp. 201–210, 2005.
[Online]. Available: http://journals.ametsoc.org/doi/abs/10.1175/JTECH-1697.1 1, 52

[8] M. Bevis, S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, “Gps
meteorology - remote sensing of atmospheric water vapor using the global positioning
system,” Journal of Geophysical Research, vol. 97, no. D14, pp. 15 787–15 801, 1992.
[Online]. Available: http://dx.doi.org/10.1029/92JD01517 1, 51, 54

[9] C. Melvin, M. Xu, and P. Thulasiraman, “HPC for iterative image reconstruction in CT,” in
Canadian Conference on Computer Science & Software Engineering, 2008, pp. 61–68. 1,
16, 17

[10] A. C. Kak and M. Slaney, Eds., Principles of Computerized Tomographic Imaging. New
York: IEEE Press, 1988. 5, 6, 7, 8, 10

[11] S. Kaczmarz, “Angenäherte Auflösung von Systemen linearer Gleichungen,” Bulletin In-
ternat. Acad. Polon. Sciences et Lettres, pp. 355–357, 1937. 7

[12] P. C. Hansen and M. Saxild-Hansen, “AIR tools - A MATLAB package of algebraic iterative
reconstruction methods,” J. Computational Applied Mathematics, vol. 236, no. 8, pp.
2167–2178, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.cam.2011.09.039 10,
11, 12

79

http://www.ncbi.nlm.nih.gov/pubmed/5492997
http://linkinghub.elsevier.com/retrieve/pii/S0273117710003790
http://hal.archives-ouvertes.fr/hal-00318359/
http://gpsworld.com/innovation-better-weather-prediction-using-gps/
http://journals.ametsoc.org/doi/abs/10.1175/JTECH-1697.1
http://dx.doi.org/10.1029/92JD01517
http://dx.doi.org/10.1016/j.cam.2011.09.039

Parallelization and Implementation of Methods for Image Reconstruction

[13] G. T. Herman, Fundamentals of Computerized Tomography: Image Reconstruction from
Projections. Springer-Verlag, 2009. [Online]. Available: http://www.springer.com/
computer/computer+imaging/book/978-1-85233-617-2 10

[14] C. D. C. D. Meyer, Matrix analysis and applied linear algebra. pub-
-SIAM:adr: Society for Industrial and Applied Mathematics, 2000. [Online].
Available: http://www.loc.gov/catdir/enhancements/fy0668/00029725-d.html;http:
//www.loc.gov/catdir/enhancements/fy0668/00029725-t.html 10

[15] G. Cimmino, “Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari,” Ric.
Sci. Progr. Tecn. Econom. Naz., vol. 9, pp. 326–333, 1939. 11

[16] Y. Censor, D. Gordon, and R. Gordon, “Component averaging: An efficient
iterative parallel algorithm for large and sparse unstructured problems,” Parallel
Computing, vol. 27, no. 6, pp. 777–808, 2001. [Online]. Available: http:
//dx.doi.org/10.1016/S0167-8191(00)00100-9 11

[17] Y. Censor, T. Elfving, G. T. Herman, and T. Nikazad, “On diagonally relaxed orthogonal
projection methods,” SIAM Journal on Scientific Computing, vol. 30, no. 1, pp. 473–504,
2008. 12

[18] A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique
(SART): A superior implementation of the art algorithm,” Ultrasonic Imaging, vol. 6,
no. 1, pp. 81–94, Jan. 1984. [Online]. Available: http://cobweb.ecn.purdue.edu/RVL/
Publications/SART_84.pdf 12, 69, 72

[19] Y. Censor and T. Elfving, “Block-iterative algorithms with diagonally scaled
oblique projections for the linear feasibility problem,” SIAM Journal on Matrix
Analysis and Applications, vol. 24, pp. 40–58, 2002. [Online]. Available: http:
//www.optimization-online.org/DB_HTML/2001/12/418.html 12

[20] M. Jiang and G. Wang, “Convergence of the simultaneous algebraic reconstruction
technique (SART),” IEEE Trans. Image Processing, vol. 12, no. 8, pp. 957–961, Aug. 2003.
[Online]. Available: http://dx.doi.org/10.1109/TIP.2003.815295 12

[21] C. Champollion, F. Masson, M.-n. Bouin, A. Walpersdorf, E. Doerflinger, O. Bock, and
J. Van Baelen, “Gps water vapour tomography: preliminary results from the escompte
field experiment,” Atmospheric Research, vol. 74, no. 1-4, pp. 253–274, 2005. [Online].
Available: http://linkinghub.elsevier.com/retrieve/pii/S0169809504001474 13, 14, 56,
67, 70

[22] D. Perler, A. Geiger, and F. Hurter, “4D GPS water vapor tomography: new parameterized
approaches,” Journal of Geodesy, vol. 85, pp. 1–12, 2011. 13, 15

[23] P. Tregoning and M. Hendy, “Accuracy of absolute precipitable water vapor estimates from
gps observations,” Journal of Geophysical Research, vol. 103, no. D22, pp. 28 701–28 710,
1998. [Online]. Available: http://www.agu.org/pubs/crossref/1998/98JD02516.shtml 13

[24] C. Rocken, T. V. Hove, J. Johnson, F. Solheim, R. Ware, M. Bevis, S. Chiswell, and
S. Businger, “GPS/STORM—GPS Sensing of Atmospheric Water Vapor for Meteorology,”
Journal of Atmospheric and Oceanic Technology, vol. 12, 1995. 13

[25] E. Doerflinger, R. Bayer, J. Chery, and B. Burki, “The global positioning system in moun-
tainous areas: effect of the troposphere on the vertical gps accuracy,” Comptes Rendus

80

http://www.springer.com/computer/computer+imaging/book/978-1-85233-617-2
http://www.springer.com/computer/computer+imaging/book/978-1-85233-617-2
http://www.loc.gov/catdir/enhancements/fy0668/00029725-d.html; http://www.loc.gov/catdir/enhancements/fy0668/00029725-t.html
http://www.loc.gov/catdir/enhancements/fy0668/00029725-d.html; http://www.loc.gov/catdir/enhancements/fy0668/00029725-t.html
http://dx.doi.org/10.1016/S0167-8191(00)00100-9
http://dx.doi.org/10.1016/S0167-8191(00)00100-9
http://cobweb.ecn.purdue.edu/RVL/Publications/SART_84.pdf
http://cobweb.ecn.purdue.edu/RVL/Publications/SART_84.pdf
http://www.optimization-online.org/DB_HTML/2001/12/418.html
http://www.optimization-online.org/DB_HTML/2001/12/418.html
http://dx.doi.org/10.1109/TIP.2003.815295
http://linkinghub.elsevier.com/retrieve/pii/S0169809504001474
http://www.agu.org/pubs/crossref/1998/98JD02516.shtml

Parallelization and Implementation of Methods for Image Reconstruction

De L Academie Des Sciences Serie Ii Fascicule a Sciences De La Terre Et Des Planetes, vol.
326, no. 5, pp. 319–325, 1998. 13

[26] R. Ware, C. Alber, C. Rocken, and F. Solheim, “Sensing integrated water vapor along gps
ray paths,” Geophysical Research Letters, vol. 24, no. 4, pp. 417–420, 1997. [Online].
Available: http://www.agu.org/pubs/crossref/1997/97GL00080.shtml 13

[27] C. Alber, R. Ware, C. Rocken, and J. Braun, “Obtaining single path phase delays from
gps double differences,” Geophysical Research Letters, vol. 27, no. 17, p. 2661, 2000.
[Online]. Available: http://www.agu.org/pubs/crossref/2000/2000GL011525.shtml 13

[28] J. Braun, C. Rocken, and J. Liljegren, “Comparisons of Line-of-Sight Water Vapor Observa-
tions Using the Global Positioning System and a Pointing Microwave Radiometer,” Journal
of Atmospheric and Oceanic Technology, vol. 20, 2003. 13

[29] P. MIIDLA, K. RANNAT, and P. UBA, “Simulated studies of water vapour tomography,” in
WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT, 2008, pp. 181 – 190. 13

[30] M. Bevis, S. Businger, S. Chiswell, T. A. Herring, R. A. Anthes, C. Rocken, and R. H.
Ware, “GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water,” Journal
of Applied Meteorology, vol. 33, pp. 379–386, 1994. 13, 54

[31] A. E. Niell, “Global mapping functions for the atmosphere delay at radio wavelengths,”
Journal of Geophysical Research, vol. 101, no. B2, pp. 3227–3246, 1996. [Online].
Available: http://www.agu.org/pubs/crossref/1996/95JB03048.shtml 13, 55

[32] A. Flores, G. Runi, and A. Rius, “4D tropospheric tomography using GPS slant wet delays,”
Oct. 13 1999. [Online]. Available: http://citeseer.ist.psu.edu/290077.html;http:
//www.ieec.fcr.es/gps/Annales_Preprint.ps 13, 14, 56

[33] J. J. BRAUN and C. ROCKEN, “Water vapor tomography within the planetary boundary
layer using gps,” in International Workshop on GPS Meteorology, Tsukuba, Japan, January
2003, http://dbx.cr.chiba-u.jp/Gps_Met/gpsmet. 14

[34] U. Foelsche and G. Kirchengast, “Tropospheric water vapor imaging by combination of
ground-based and spaceborne GNSS sounding data,” Journal of Geophysical Research,
vol. 106, pp. 27 221–27 232, 2001. 14

[35] A. Flores, L. P. Gradinarsky, P. Elósegui, G. Elgered, J. L. Davis, and A. Rius, “Sensing
atmospheric structure: Tropospheric tomographic results of the small-scale GPS campaign
at the Onsala Space Observatory,” Earth and Planetary Science Letters, vol. 52, pp.
941–945, 2000. 14

[36] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes 3rd
Edition: The Art of Scientific Computing. Cambridge University Press, 2007, vol. 1.
[Online]. Available: http://www.amazon.com/Numerical-Recipes-3rd-Edition-Scientific/
dp/0521880688?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=
xm2&camp=2025&creative=165953&creativeASIN=0521880688 14

[37] T. Nilsson and L. Gradinarsky, “Water vapor tomography using GPS phase observations:
simulation results,” IEEE T. Geoscience and Remote Sensing, vol. 44, no. 10-2, pp.
2927–2941, 2006. [Online]. Available: http://dx.doi.org/10.1109/TGRS.2006.877755 14

81

http://www.agu.org/pubs/crossref/1997/97GL00080.shtml
http://www.agu.org/pubs/crossref/2000/2000GL011525.shtml
http://www.agu.org/pubs/crossref/1996/95JB03048.shtml
http://citeseer.ist.psu.edu/290077.html; http://www.ieec.fcr.es/gps/Annales_Preprint.ps
http://citeseer.ist.psu.edu/290077.html; http://www.ieec.fcr.es/gps/Annales_Preprint.ps
http://www.amazon.com/Numerical-Recipes-3rd-Edition-Scientific/dp/0521880688?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0521880688
http://www.amazon.com/Numerical-Recipes-3rd-Edition-Scientific/dp/0521880688?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0521880688
http://www.amazon.com/Numerical-Recipes-3rd-Edition-Scientific/dp/0521880688?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0521880688
http://dx.doi.org/10.1109/TGRS.2006.877755

Parallelization and Implementation of Methods for Image Reconstruction

[38] M. Troller, A. Geiger, E. Brockmann, J.-M. Bettems, B. Bürki, and H.-G. Kahle, “Tomo-
graphic determination of the spatial distribution of water vapor using GPS observations,”
Advances in Space Research, vol. 37, pp. 2211–2217, 2006. 15

[39] P. MIIDLA, K. RANNAT, and P. UBA, “Simulated studies of water vapour tomography,” 2008.
15

[40] C. Melvin, P. Thulasiraman, and R. Gordon, “Parallel algebraic reconstruction technique
for computed tomography,” in Parallel and Distributed Processing Techniques and Appli-
cations, 2003, pp. 532–536. 16

[41] K. Kalarat, W. Narkbuakaew, C. Pintavirooj, and M. Sangworasil, “Rapid simultaneous
algebraic reconstruction technique (sart) for cone-beam geometry on clustering system,”
in TENCON 2005 2005 IEEE Region 10, 2005, pp. 1–4. 16

[42] D. Gordon, “Parallel ART for image reconstruction in CT using processor arrays,” Interna-
tional Journal of Parallel, Emergent and Distributed Systems, vol. 21, pp. 365–380, 2006.
16

[43] J. A. Alvarez, J. Roca, and J. J. Fernandez, Multithreaded tomographic reconstruction,
2007, vol. 4757, pp. 81–88. 16

[44] X. Wan, F. Zhang, and Z. Liu, “Modified simultaneous algebraic reconstruction technique
and its parallelization in cryo-electron tomography,” in Parallel and Distributed Systems
(ICPADS), 2009 15th International Conference on, 2009, pp. 384–390. 17

[45] B. Wilkinson and M. Allen, Parallel Programming: Techniques and Applications Using Net-
worked Workstations and Parallel Computers. Upper Saddle River, New Jersey: Pren-
tice-Hall, 2004. 17

[46] H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets
of projection data,” Aug. 24 1994. [Online]. Available: http://citeseer.ist.psu.edu/
459212.html;http://www.osem.server-web.com/osem_IEEE_TMI.ps 17, 19

[47] M. Xu and P. Thulasiraman, “Mapping iterative medical imaging algorithm on cell acceler-
ator,” International Journal of Biomedical Imaging, vol. 2011, p. 843924. 17, 18

[48] K. Mueller and R. Yagel, “Rapid 3-d cone-beam reconstruction with the simultaneous
algebraic reconstruction technique (sart) using 2-d texture mapping hardware,” 2000.
18, 19

[49] L. Shepp and B. Logan, “The fourier reconstruction of a head section,” Nuclear Science,
IEEE Transactions on, vol. 21, no. 3, pp. 21–43, 1974. 18, 43

[50] F. Xu and K. Mueller, “Accelerating popular tomographic reconstruction algorithms on
commodity pc graphics hardware,” Nuclear Science, IEEE Transactions on, vol. 52, no. 3,
pp. 654–663, 2005. 18, 19

[51] B. Keck, H. Hofmann, H. Scherl, M. Kowarschik, and J. Hornegger, “Gpu-accelerated
sart reconstruction using the cuda programming environment,” Proceedings of SPIE, vol.
7258, pp. 72 582B–72 582B–9, 2009. [Online]. Available: http://link.aip.org/link/PSISDG/
v7258/i1/p72582B/s1&Agg=doi 19

[52] A. Weinlich, B. Keck, H. Scherl, M. Kowarschik, and J. Hornegger, Comparison of
High-speed ray casting on GPU using CUDA and OpenGL. KIT Scientific Publishing,

82

http://citeseer.ist.psu.edu/459212.html; http://www.osem.server-web.com/osem_IEEE_TMI.ps
http://citeseer.ist.psu.edu/459212.html; http://www.osem.server-web.com/osem_IEEE_TMI.ps
http://link.aip.org/link/PSISDG/v7258/i1/p72582B/s1&Agg=doi
http://link.aip.org/link/PSISDG/v7258/i1/p72582B/s1&Agg=doi

Parallelization and Implementation of Methods for Image Reconstruction

2008, vol. 1, p. 25. [Online]. Available: http://books.google.com/books?hl=en&lr=&id=
1dihoTBSy3QC&oi=fnd&pg=PA25&dq=Comparison+of+High-Speed+Ray+Casting+on+GPU+
using+CUDA+and+OpenGL&ots=CaCfOwEX2H&sig=9vLUyMgTPJWjRzOR3dTKIJFgOxg 19

[53] J. M. Elble, N. V. Sahinidis, and P. Vouzis, “Gpu computing with kaczmarz’s and other
iterative algorithms for linear systems.” Parallel Computing, vol. 36, no. 5-6, pp.
215–231, 2010. [Online]. Available: http://www.pubmedcentral.nih.gov/articlerender.
fcgi?artid=2879082&tool=pmcentrez&rendertype=abstract 19, 20, 49

[54] R. Bramley and A. Sameh, “Row projection methods for large nonsymmetric linear sys-
tems,” SIAM J. Scientific and Statistical Computing, vol. 13, pp. 168–193, 1992. 20

[55] W. Xu and K. Mueller, “Accelerating regularized iterative ct reconstruction on commodity
graphics hardware (gpu),” in Biomedical Imaging: From Nano to Macro, 2009. ISBI ’09.
IEEE International Symposium on, 2009, pp. 1287–1290. 20

[56] W.-M. Pang, J. Qin, Y. Lu, Y. Xie, C.-K. Chui, and P.-A. Heng, “Accelerating simultaneous
algebraic reconstruction technique with motion compensation using cuda-enabled gpu,”
International Journal of Computer Assisted Radiology and Surgery, vol. 6, no. 2, pp.
187–199, 2010. [Online]. Available: http://dx.doi.org/10.1007/s11548-010-0499-3 20

[57] S. Q. Zheng, E. Branlund, B. Kesthelyi, M. B. Braunfeld, Y. Cheng, J. W. Sedat, and
D. A. Agard, “A distributed multi-gpu system for high speed electron microscopic
tomographic reconstruction.” Ultramicroscopy, vol. 111, no. 8, pp. 1137–1143, 2011.
[Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0304399111001227 20

[58] A. Buzmakov, D. Nikolaev, M. Chukalina, and G. Schaefer, “Efficient and effective reg-
ularised art for computed tomography,” in Engineering in Medicine and Biology Soci-
ety,EMBC, 2011 Annual International Conference of the IEEE, 2011, pp. 6200–6203. 20,
21

[59] M. Chukalina, D. Nikolaev, and A. Simionovici, “Art in x-ray tomography: Image noise re-
duction,” in 21th European Conference on Modelling and Simulation, 2007, pp. 309–312.
20

[60] Nvidia, “Nvidia cuda programming guide version 2.3.1,” p. 31, 2009. 21

[61] W. J. Palenstijn, K. J. Batenburg, and J. Sijbers, “Performance improvements for
iterative electron tomography reconstruction using graphics processing units (gpus).”
Journal of Structural Biology, vol. 176, no. 2, pp. 250–3, 2011. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/21840398 21

[62] W. Xu, F. Xu, M. Jones, B. Keszthelyi, J. Sedat, D. Agard, and K. Mueller,
“High-performance iterative electron tomography reconstruction with long-object
compensation using graphics processing units (gpus).” Journal of Structural Biology, vol.
171, no. 2, pp. 142–153, 2010. [Online]. Available: http://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=2885506&tool=pmcentrez&rendertype=abstract 21

[63] J. I. Agulleiro, F. Vázquez, E. M. Garzón, and J. J. Fernández, “Hy-
brid computing: Cpu+gpu co-processing and its application to tomographic
reconstruction,” Ultramicroscopy, vol. 115, pp. 109–114, 2012. [Online]. Avail-
able: http://www.scopus.com/inward/record.url?eid=2-s2.0-84859853592&partnerID=
40&md5=37d460156c136496b9d19732140f1005 21, 22

83

http://books.google.com/books?hl=en&lr=&id=1dihoTBSy3QC&oi=fnd&pg=PA25&dq=Comparison+of+High-Speed+Ray+Casting+on+GPU+using+CUDA+and+OpenGL&ots=CaCfOwEX2H&sig=9vLUyMgTPJWjRzOR3dTKIJFgOxg
http://books.google.com/books?hl=en&lr=&id=1dihoTBSy3QC&oi=fnd&pg=PA25&dq=Comparison+of+High-Speed+Ray+Casting+on+GPU+using+CUDA+and+OpenGL&ots=CaCfOwEX2H&sig=9vLUyMgTPJWjRzOR3dTKIJFgOxg
http://books.google.com/books?hl=en&lr=&id=1dihoTBSy3QC&oi=fnd&pg=PA25&dq=Comparison+of+High-Speed+Ray+Casting+on+GPU+using+CUDA+and+OpenGL&ots=CaCfOwEX2H&sig=9vLUyMgTPJWjRzOR3dTKIJFgOxg
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2879082&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2879082&tool=pmcentrez&rendertype=abstract
http://dx.doi.org/10.1007/s11548-010-0499-3
http://linkinghub.elsevier.com/retrieve/pii/S0304399111001227
http://www.ncbi.nlm.nih.gov/pubmed/21840398
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2885506&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2885506&tool=pmcentrez&rendertype=abstract
http://www.scopus.com/inward/record.url?eid=2-s2.0-84859853592&partnerID=40&md5=37d460156c136496b9d19732140f1005
http://www.scopus.com/inward/record.url?eid=2-s2.0-84859853592&partnerID=40&md5=37d460156c136496b9d19732140f1005

Parallelization and Implementation of Methods for Image Reconstruction

[64] F. Vázquez, E. Garzón, and J. Fernández, “A matrix approach to tomographic
reconstruction and its implementation on {GPUs},” Journal of Structural Biology, vol.
170, no. 1, pp. 146 – 151, 2010. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S104784771000033X 22

[65] J. Cong, L. A. Vese, J. Villasenor, M. Yan, and Y. Zou, “A hybrid architecture for
compressive sensing 3-d ct reconstruction,” Emerging and Selected Topics in Circuits
and Systems IEEE Journal on, vol. 2, no. 3, pp. 616–625, 2012. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6338301 22

[66] J. Reinders, Intel threading building blocks - outfitting C++ for multi-core processor
parallelism. O’Reilly, 2007. [Online]. Available: http://www.oreilly.com/catalog/
9780596514808/index.html 23

[67] P. Wang. (2008) Compare windows* threads, openmp*, intel® thread-
ing building blocks for parallel programming. Accessed: 15/12/2012.
[Online]. Available: http://software.intel.com/en-us/blogs/2008/12/16/
compare-windows-threads-openmp-intel-threading-building-blocks-for-parallel-programming/
23

[68] R. Friedman. (2012, Oct.) About the openmp arb and openmp.org. Accessed:
15/12/2012. [Online]. Available: http://openmp.org/wp/about-openmp/ 23

[69] OpenMP Architecture Review Board, “Openmp application program interface,”
Specification, 2011. [Online]. Available: http://www.openmp.org/mp-documents/
OpenMP3.1.pdf 23, 34

[70] O. ARB. (2012) Openmp compilers. Accessed: 18/12/2012. [Online]. Available:
http://openmp.org/wp/openmp-compilers/ 23

[71] Intel. Why use intel® tbb? Accessed: 15/12/2012. [Online]. Available: http:
//threadingbuildingblocks.org/ 24

[72] ——. Intel® threading building blocks benefits. Accessed: 15/12/2012. [Online]. Avail-
able: http://software.intel.com/sites/products/documentation/doclib/tbb_sa/help/
index.htm 24

[73] Nvidia, “Nvidia cuda c programming guide,” Changes, no. 350, p. 175, 2012. 25, 26, 38

[74] ——. Cuda toolkit. Accessed: 16/09/2013. [Online]. Available: https://developer.nvidia.
com/cuda-toolkit 25

[75] ——, “Cublas library user guide v5.0,” p. 104, 2012. 26, 29

[76] B. Overland, C++ Without Fear: A Beginner’s Guide That Makes You Feel Smart. Upper
Saddle River, NJ, USA: Prentice Hall PTR, 2011. 27

[77] S. Amaya. Information on the c++ language: A brief description. Accessed: 15/12/2012.
[Online]. Available: http://www.cplusplus.com/info/description/ 27

[78] G. Guennebaud, B. Jacob et al. (2011) Eigen v3. Accessed: 15/12/2012. [Online].
Available: http://eigen.tuxfamily.org 28, 31

[79] ——. (2011) Some important changes between eigen 2 and eigen 3. Accessed:
15/12/2012. [Online]. Available: http://eigen.tuxfamily.org/index.php?title=3.0 28

84

http://www.sciencedirect.com/science/article/pii/S104784771000033X
http://www.sciencedirect.com/science/article/pii/S104784771000033X
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6338301
http://www.oreilly.com/catalog/9780596514808/index.html
http://www.oreilly.com/catalog/9780596514808/index.html
http://software.intel.com/en-us/blogs/2008/12/16/compare-windows-threads-openmp-intel-threading-building-blocks-for-parallel-programming/
http://software.intel.com/en-us/blogs/2008/12/16/compare-windows-threads-openmp-intel-threading-building-blocks-for-parallel-programming/
http://openmp.org/wp/about-openmp/
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://openmp.org/wp/openmp-compilers/
http://threadingbuildingblocks.org/
http://threadingbuildingblocks.org/
http://software.intel.com/sites/products/documentation/doclib/tbb_sa/help/index.htm
http://software.intel.com/sites/products/documentation/doclib/tbb_sa/help/index.htm
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
http://www.cplusplus.com/info/description/
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org/index.php?title=3.0

Parallelization and Implementation of Methods for Image Reconstruction

[80] ——. (2011) Column-major and row-major storage. Accessed: 15/12/2012. [Online].
Available: http://eigen.tuxfamily.org/dox/TopicStorageOrders.html 28

[81] Nvidia. Cublas. Accessed: 16/09/2013. [Online]. Available: https://developer.nvidia.
com/cublas 29

[82] Intel. Intel math kernel library. Accessed: 17/09/2013. [Online]. Available:
http://software.intel.com/en-us/intel-mkl 29

[83] B. Team. (2005) Blas frequently asked questions (faq). Accessed: 17/09/2013. [Online].
Available: http://netlib.org/blas/faq.html 30

[84] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, M. Heroux,
L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, and R. C. Whaley, “An
updated set of Basic Linear Algebra Subprograms (BLAS),” ACM Transactions on Mathe-
matical Software, vol. 28, no. 2, pp. 135–151, Jun. 2002. 30

[85] L. Team. Lapack linear algebra package. Accessed: 17/09/2013. [Online]. Available:
http://netlib.org/lapack/ 30

[86] S. Team. (2012) Scalapack scalable linear algebra package. Accessed: 17/09/2013.
[Online]. Available: http://www.netlib.org/scalapack/ 30, 31

[87] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet, K. Stanley,
D. Walker, and R. C. Whaley, “ScaLAPACK: A portable linear algebra library for distributed
memory computers — design issues and performance,” Lecture Notes in Computer Sci-
ence, vol. 1041, p. 95, 1996. 31

[88] S. Nikolaev. (2013) Cvm class library. Accessed: 18/09/2013. [Online]. Available:
http://cvmlib.com 31

[89] Intel. (2012) Intel(r) threading building blocks - release notes. Accessed: 15/12/2012.
[Online]. Available: http://threadingbuildingblocks.org/sites/default/files/resources/
tbb-release-notes-4-1.txt 31

[90] A. V. Aho and J. D. Ullman, Principles of Compiler Design. Reading, MA: Addison-Wesley,
1979. 33

[91] W. Petersen, Introduction to parallel computing : [a practical guide with examples in C.
Oxford New York: Oxford University Press, 2004. 33

[92] V. C. V. Rao, “Tutorial notes on optimizing performance of parallel programs,” Presenta-
tion on 5th International Conference and Exhibition on High-Performance Computing in
the Asia-Pacific Region, June 2002. 33

[93] MSDN. Visual studio omp library reference. Accessed: 15/12/2012. [Online]. Available:
http://msdn.microsoft.com/en-us/library/yw6c0z19(v=vs.80).aspx 34

[94] G. Guennebaud, B. Jacob et al. (2011) How does eigen compare to blas/lapack? Accessed:
15/12/2012. [Online]. Available: http://eigen.tuxfamily.org/index.php?title=FAQ 37

[95] V. Pistulkar and C. Uttarwar, “Analyzing the cuda applications with its latency and band-
width tolerance,” 2012. 49

85

http://eigen.tuxfamily.org/dox/TopicStorageOrders.html
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
http://software.intel.com/en-us/intel-mkl
http://netlib.org/blas/faq.html
http://netlib.org/lapack/
http://www.netlib.org/scalapack/
http://cvmlib.com
http://threadingbuildingblocks.org/sites/default/files/resources/tbb-release-notes-4-1.txt
http://threadingbuildingblocks.org/sites/default/files/resources/tbb-release-notes-4-1.txt
http://msdn.microsoft.com/en-us/library/yw6c0z19(v=vs.80).aspx
http://eigen.tuxfamily.org/index.php?title=FAQ

Parallelization and Implementation of Methods for Image Reconstruction

[96] C. Rizos, M. B. Higgins, and S. Hewitson, “NEW GNSS DEVELOPMENTS AND THEIR IMPACT
ON SURVEY SERVICE PROVIDERS AND SURVEYORS,” in Sequences, Subsequences, and Con-
sequences. 51

[97] E. D. Kaplan, Understanding GPS-Principles and Applications. Boston: Artech House
Publisher, 1996. 51

[98] J. van Baelen, J.-P. Aubagnac, and A. Dabas, “Comparison of Near Real Time Estimates
of Integrated Water Vapor Derived with GPS, Radiosondes, and Microwave Radiometer,”
Journal of Atmospheric and Oceanic Technology, vol. 22, 2005. 51

[99] G. Guerova, “Application of gps derived water vapour for numerical weather prediction
in switzerland,” Ph.D. dissertation, University of Bern, 2003. 51, 52, 53

[100] J. Saastamoinen, “Atmospheric correction for the troposphere and stratosphere in radio
ranging of satellites, in the use of artificial Satellites for geodesy,” Geophysical Mono-
graph 15, vol. 16, pp. 247–251, 1972. 53

[101] J. Askne and H. Nordius, “Estimation of tropospheric delay for microwaves from surface
weather data,” Radio Science, vol. 22, pp. 379–386, 1987. 53

[102] GPS Satellite Surveying. Wiley, 2004. 54

[103] Y. M. Bi, J. T. Mao, X. Y. Liu, Y. Fu, and C. C. Li, “Remote sensing of the amount of water
vapor along the slant path using the ground-base gps,” Chinese Journal of GeophysicsChi-
nese Edition, vol. 49, no. 2, pp. 335–342, 2006. 55

[104] Y. E. Bar-Sever, P. M. Kroger, and J. A. Borjesson, “Estimating horizontal
gradients of tropospheric path delay with a single gps receiver,” Journal of
Geophysical Research, vol. 103, no. B3, pp. 5019–5035, 1998. [Online]. Available:
http://www.agu.org/pubs/crossref/1998/97JB03534.shtml 55

[105] D. D. McCarthy and G. Petit, “IERS Conventions (2003),” 2004. 55

[106] G. Chen and T. A. Herring, “Effects of atmospheric azimuthal asymmetry on the
analysis of space geodetic data,” Journal of Geophysical Research, vol. 102, no. B9,
pp. 20 489–20 502, 1997. [Online]. Available: http://www.agu.org/pubs/crossref/1997/
97JB01739.shtml 55

[107] L. X.-Y. F. Y. L. C.-C. BI Yan-Meng, MAO Jie-Tai, “Remote sensing of atmospheric integrated
water vapor along slant paths using ground based gps,” Chinese Journal of Geophysics,
2006. 55

[108] A. F. Jiménez, “Atmospheric tomography using satellite radio signals,” Mar. 10 2003.
[Online]. Available: http://www.tdx.cesca.es/TDX-0306103-162444/ 56

[109] L. Gradinarsky, “Sensing atmospheric water vapor using radio waves,” 2002. 56

[110] U. Foelsche and G. Kirchengast, “Tropospheric water vapor imaging by combination
of ground-based and spaceborne gnss sounding data,” Journal of Geophysical
Research, vol. 106, no. D21, pp. 27 221–27 231, 2001. [Online]. Available:
http://www.uni-graz.at/igam7www_ufandgk-jgr-v106p27221y2001.pdf 57

[111] MathWorks. (2013) Matlab compiler. Accessed: 10/09/2013. [Online]. Available:
http://www.mathworks.com/products/compiler/ 59

86

http://www.agu.org/pubs/crossref/1998/97JB03534.shtml
http://www.agu.org/pubs/crossref/1997/97JB01739.shtml
http://www.agu.org/pubs/crossref/1997/97JB01739.shtml
http://www.tdx.cesca.es/TDX-0306103-162444/
http://www.uni-graz.at/igam7www_ufandgk-jgr-v106p27221y2001.pdf
http://www.mathworks.com/products/compiler/

Parallelization and Implementation of Methods for Image Reconstruction

[112] B. Community. (2013) Boost c++ libraries. Accessed: 11/09/2013. [Online]. Available:
http://www.boost.org 59

[113] P. Spofford and B. Remondi. The national geodetic survey standard gps format
sp3. Accessed: 12/09/2013. [Online]. Available: http://igscb.jpl.nasa.gov/igscb/data/
format/sp3_docu.txt 61

[114] M. Schenewerk, “A brief review of basic gps orbit interpolation strategies,”
GPS Solutions, vol. 6, no. 4, pp. 265–267, 2003. [Online]. Available: http:
//dx.doi.org/10.1007/s10291-002-0036-0 61, 62

[115] E. Ziegel, W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes: The
Art of Scientific Computing, W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Eds. Cambridge University Press, 1987, vol. 29, no. 4. [Online]. Available:
http://www.jstor.org/stable/1269484?origin=crossref 62

[116] M. Horemu? and J. Andersson, “Polynomial interpolation of gps satellite
coordinates,” GPS Solutions, vol. 10, no. 1, pp. 67–72, 2006. [Online]. Available:
http://dx.doi.org/10.1007/s10291-005-0018-0 62

[117] W. Gurtner. (2007) Rinex: The receiver independent exchange format version 2.10.
Accessed: 14/09/2013. [Online]. Available: ftp://igscb.jpl.nasa.gov/pub/data/format/
rinex210.txt 62

[118] I. E. Rotation and Reference. (1997)) Solution (software/technique) independent
exchange format for combination of tropospheric estimates. Accessed: 15/09/2013.
[Online]. Available: http://igscb.jpl.nasa.gov/igscb/data/format/sinex_tropo.txt 62

[119] J. Feltens, “Vector methods to compute azimuth, elevation, ellipsoidal normal, and the
cartesian (x, y, z) to geodetic (?, ?, h) transformation,” Journal of Geodesy, vol. 82, no. 8,
pp. 493–504, 2008. [Online]. Available: http://dx.doi.org/10.1007/s00190-007-0198-1
63

[120] R. F. Boisvert, R. Pozo, and K. Remington, “The Matrix Market exchange formats: Initial
design,” National Institute of Standards and Technology, Gaithersburg, MD, USA, Tech.
Rep. NISTIR 5935, Dec. 1996. 65

[121] C. Champollion, “Quantification de la vapeur d’eau troposphérique par gps (modèles
2d et tomographies 3d) - application aux précipitations intenses,” Ph.D. dissertation,
Université Montpellier II, 2005. 67, 77

[122] D. J. Seidel, “Water Vapor: Distribution and Trends,” 2002. 71, 72

[123] D. K. Adams, R. M. S. Fernandes, E. R. Kursinski, J. M. Maia, L. F. Sapucci, L. A. T.
Machado, I. Vitorello, J. F. G. Monico, K. L. Holub, S. I. Gutman, N. Filizola, and R. A.
Bennett, “A dense gnss meteorological network for observing deep convection in the
amazon,” Atmospheric Science Letters, vol. 12, no. 2, pp. 207–212, 2011. [Online].
Available: http://dx.doi.org/10.1002/asl.312 71

[124] J. Boehm, B. Werl, and H. Schuh, “Troposphere mapping functions for gps and very
long baseline interferometry from european centre for medium-range weather forecasts
operational analysis data,” Journal of Geophysical Research: Solid Earth, vol. 111,
no. B2, pp. n/a–n/a, 2006. [Online]. Available: http://dx.doi.org/10.1029/2005JB003629
78

87

http://www.boost.org
http://igscb.jpl.nasa.gov/igscb/data/format/sp3_docu.txt
http://igscb.jpl.nasa.gov/igscb/data/format/sp3_docu.txt
http://dx.doi.org/10.1007/s10291-002-0036-0
http://dx.doi.org/10.1007/s10291-002-0036-0
http://www.jstor.org/stable/1269484?origin=crossref
http://dx.doi.org/10.1007/s10291-005-0018-0
ftp://igscb.jpl.nasa.gov/pub/data/format/rinex210.txt
ftp://igscb.jpl.nasa.gov/pub/data/format/rinex210.txt
http://igscb.jpl.nasa.gov/igscb/data/format/sinex_tropo.txt
http://dx.doi.org/10.1007/s00190-007-0198-1
http://dx.doi.org/10.1002/asl.312
http://dx.doi.org/10.1029/2005JB003629

Parallelization and Implementation of Methods for Image Reconstruction

[125] J. Boehm, A. Niell, P. Tregoning, and H. Schuh, “Global mapping function (gmf):
A new empirical mapping function based on numerical weather model data,”
Geophysical Research Letters, vol. 33, no. 7, pp. n/a–n/a, 2006. [Online]. Available:
http://dx.doi.org/10.1029/2005GL025546 78

88

http://dx.doi.org/10.1029/2005GL025546

Parallelization and Implementation of Methods for Image Reconstruction

Appendix A

SWART Files

A.0.1: Example SWART Configuration File

Segal GNSS Water Vapour Reconstruction Image Software (SWART)

Configuration File

#

Comments start with '#'

If you have any doubt in parameters you can try run that program in console to see the description

of each parameter. When the file isn't in the same directory than the executables, please provide

the full path (absolute path) to the file

When providing the full path to a file, please put it inside quotes ex.: "C:\myMatrixFile.dat"

Next follows the parameters for each of the SWART package programs.

###

SlantDelayJoinProcessing.exe Parameters

###

configurationFile inputBelemModPrecipitation.txt

###

###

GridRayIntersection.exe Parameters

###

gridfile gridBelem.dat

slantsfile SlantsJoined.sync

cutoff 10

gengrid gridBelemTinyDenseParams.txt

###

###

AlgebraicAlgorithms.exe Parameters

###

matrixfile outputFileM.txt

vectorfile outputFileV.txt

Possible options: kaczmarz, kaczmarzSymetric, landweber, cimmino, cav, drop, sart

algorithm sart

iterations 50000

###

###

PlotWaterVapour.exe Parameters

###

Since this' a matlab program, please always provide the absolute patch for the files, NOT the relative

#

vectorFile "C:\WaterVapourReconstructionProject\Release\reconsImage.dat"

gridFile "C:\WaterVapourReconstructionProject\Release\gridBelem.dat"

slice 5

Possible options: lat-lon, lat-height, lon-height

sliceType lat-height

#contour 15

#limitTo5000 true

###

89

Parallelization and Implementation of Methods for Image Reconstruction

A.0.2: Example Output file of SlantDelayJoinProcessing Component (the actual files have more precision than this example here the precision was reduced to fit in the
document)

Year Day Seconds Slant WV Satellite SAT_X SAT_Y SAT_Z Receiver REC_X REC_Y REC_Z elAngle(rad) elAngle(deg) Azimuth(rad) Azimuth(deg)

2011 157 41400 187254 G25 556 -15136.303 -21838.704 BABT 4199.5 -4796.73 -187.3128 0.25037355 14.345347 0.41836624 23.97062

2011 157 41400 86834.865 G5 26282 -1814.3107 3779.3100 BABT 4199.5 -4796.73 -187.3128 0.56826608 32.55924 1.342027 76.892519

2011 157 41400 126184.90 G21 -601.7 -21207.457 16015.390 BABT 4199.5 -4796.73 -187.3128 0.37850179 21.686555 5.5638297 318.7839

2011 157 41400 82095.502 G12 14602 -11880.887 -18644.717 BABT 4199.5 -4796.73 -187.3128 0.60572751 34.70562 6.1102205 350.0898

2011 157 41400 105398.99 G29 -2356. -23691.649 -11746.187 BABT 4199.5 -4796.73 -187.3128 0.45890343 26.293229 0.99577691 57.0538

A.0.3: Example SlantDelayJoinProcessing Configuration File

Comments start with '#'

SP3FILE igs16391.sp3

STARTSECONDS 41400

ENDSECONDS 43200

SP3INTERPOLATION false

BABT - 1

RECEIVER BABT

RINEXFILE BELEM_DAY_157_ModPrec\BABT\BABTnavRinexFile.txt

VARSFILE meteoBelem157.txt

ZTDFILE BELEM_DAY_157_ModPrec\BABT\BABT2011157.TRO

BAGB - 2

RECEIVER BAGB

RINEXFILE BELEM_DAY_157_ModPrec\BAGB\BAGBnavRinexFile.txt

VARSFILE meteoBelem157.txt

ZTDFILE BELEM_DAY_157_ModPrec\BAGB\BAGB2011157.TRO

BBNV - 3

RECEIVER BBNV

RINEXFILE BELEM_DAY_157_ModPrec\BBNV\BBNVnavRinexFile.txt

VARSFILE meteoBelem157.txt

ZTDFILE BELEM_DAY_157_ModPrec\BBNV\BBNV2011157.TRO

BEMA - 4

RECEIVER BEMA

RINEXFILE BELEM_DAY_157_ModPrec\BEMA\BEMAnavRinexFile.txt

VARSFILE meteoBelem157.txt

ZTDFILE BELEM_DAY_157_ModPrec\BEMA\BEMA2011157.TRO

BJRN - 5

#RECEIVER BJRN

#RINEXFILE BELEM_DAY_157_ModPrec\BJRN\BJRNnavRinexFile.txt

#VARSFILE meteoBelem157.txt

#ZTDFILE BELEM_DAY_157_ModPrec\BJRN\BJRN2011157.TRO

BMGR - 6

RECEIVER BMGR

RINEXFILE BELEM_DAY_157_ModPrec\BMGR\BMGRnavRinexFile.txt

VARSFILE meteoBelem157.txt

ZTDFILE BELEM_DAY_157_ModPrec\BMGR\BMGR2011157.TRO

BMSQ - 7

RECEIVER BMSQ

RINEXFILE BELEM_DAY_157_ModPrec\BMSQ\BMSQnavRinexFile.txt

VARSFILE meteoBelem157.txt

ZTDFILE BELEM_DAY_157_ModPrec\BMSQ\BMSQ2011157.TRO

BOGT - 8

#RECEIVER BOGT

#RINEXFILE BELEM_DAY_157_ModPrec\BOGT\BOGTnavRinexFile.txt

#VARSFILE meteoBelem157.txt

#ZTDFILE BELEM_DAY_157_ModPrec\BOGT\BOGT2011157.TRO

90

Parallelization and Implementation of Methods for Image Reconstruction

A.0.4: Example of SP3 File (igs16391.sp3)

#cP2011 6 6 0 0 0.00000000 96 ORBIT IGS08 HLM IGS

1639 86400.00000000 900.00000000 55718 0.0000000000000

+ 32 G01G02G03G04G05G06G07G08G09G10G11G12G13G14G15G16G17

+ G18G19G20G21G22G23G24G25G26G27G28G29G30G31G32 0 0

+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

++ 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

++ 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 0 0

++ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

++ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

++ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

%c G cc GPS ccc cccc cccc cccc cccc ccccc ccccc ccccc ccccc

%c cc cc ccc ccc cccc cccc cccc cccc ccccc ccccc ccccc ccccc

%f 1.2500000 1.025000000 0.00000000000 0.000000000000000

%f 0.0000000 0.000000000 0.00000000000 0.000000000000000

%i 0 0 0 0 0 0 0 0 0

%i 0 0 0 0 0 0 0 0 0

/* FINAL ORBIT COMBINATION FROM WEIGHTED AVERAGE OF:

/* cod emr esa gfz grg jpl mit ngs sio

/* REFERENCED TO IGS TIME (IGST) AND TO WEIGHTED MEAN POLE:

/* PCV:IGS08_1639 OL/AL:FES2004 NONE Y ORB:CMB CLK:CMB

* 2011 6 6 0 0 0.00000000

PG01 -17378.692000 13943.822741 -14786.495966 999999.999999

PG02 -17009.399032 1925.701331 -20137.006261 340.225624 7 9 9 140

PG03 20571.803406 5057.114510 15788.568374 724.722841 5 7 8 108

PG04 -11316.611313 -12064.363483 -20931.144153 135.981375 7 8 7 109

PG05 -26544.308834 1319.882076 -1491.306992 -170.525153 9 8 11 109

PG06 20649.665267 9600.188004 14015.950932 269.222723 5 8 8 104

PG07 4106.741275 -24188.049267 9894.412086 13.378564 9 9 7 141

PG08 -2513.410361 -19094.095018 18049.597020 8.053171 11 10 8 137

PG09 -14652.829518 20602.704472 7583.446210 84.547790 8 5 10 104

PG10 -19530.942168 -9855.824294 -15529.682922 -2.796441 9 6 10 127

PG11 13110.713280 -19654.254485 11473.961937 -157.045654 8 8 7 127

PG12 -18248.752769 11639.515063 -15253.671884 0.477921 9 8 5 113

PG13 -1928.210839 -22200.667954 -14545.953825 266.783561 10 6 8 126

PG14 14960.575737 21958.312017 -1753.942447 154.319895 8 9 9 153

PG15 -12529.960849 9047.103039 21605.157990 -123.399628 8 7 8 127

PG16 26659.329193 -98.263492 -1929.248749 -177.068618 7 7 7 151

PG17 -15611.553733 -21559.596108 -1730.239185 184.051463 10 9 9 136

PG18 3727.718469 15669.705629 21462.417674 140.727776 8 7 7 126

PG19 14880.288393 -4527.106625 21556.614555 -148.277036 7 10 6 131

PG20 14951.784010 -14359.095200 -16715.244048 49.714365 9 7 8 126

PG21 -1292.866790 23524.289909 12058.077336 -149.223352 9 7 8 129

PG22 16310.743164 11927.211193 17466.333379 147.848567 8 7 8 137

PG23 7372.080763 -14730.239211 -20758.904752 301.288620 9 5 6 135

PG24 15090.890795 -21174.356556 4654.752281 396.120036 7 5 7 134

PG25 -5141.158235 15253.885301 -21142.673649 2.527819 10 6 6 152

PG26 -17472.491135 -4985.173077 18924.491198 -51.797804 7 9 7 142

PG27 -16619.636112 15486.572889 14131.392647 272.192683 6 6 8 137

PG28 -12551.639880 -13036.032208 20046.942554 42.764766 8 6 7 141

PG29 574.533966 21278.277352 -15838.844623 213.049350 8 5 6 137

PG30 23704.202470 4918.769438 -11369.416345 7.742884 9 11 16 153

PG31 11774.418094 9203.348618 -21740.062425 91.152922 9 10 7 135

PG32 22184.613692 -8103.673206 -11444.168104 -267.785478 10 9 10 143

* 2011 6 6 0 15 0.00000000

PG01 -18900.672345 14076.899278 -12569.382878 999999.999999

PG02 -16212.352864 -315.637228 -20911.977020 340.227526 7 9 8 132

PG03 21626.021266 6483.103627 13815.011598 724.726652 4 6 8 66

PG04 -10305.982457 -14155.249852 -20087.999904 135.991070 7 7 7 107

PG05 -26249.669661 1018.669496 -4302.804493 -170.530178 8 8 11 131

PG06 21397.191147 10867.177062 11786.369219 269.145511 4 7 8 103

91

Parallelization and Implementation of Methods for Image Reconstruction

A.0.5: Example of Rinex Navigation File

2.10 OBSERVATION DATA G (GPS) RINEX VERSION / TYPE

teqc 2006Dec12 20130422 13:56:53UTCPGM / RUN BY / DATE

MSXP|IAx86-PII|bcc32 5.0|MSWin95->XP|486/DX+ COMMENT

0.000 COMMENT

-1.69424406 COMMENT

-48.79759576 COMMENT

-011.500 COMMENT

BIT 2 OF LLI FLAGS DATA COLLECTED UNDER A/S CONDITION COMMENT

BABT MARKER NAME

BABT MARKER NUMBER

-Unknown- -Unknown- OBSERVER / AGENCY

4906K34406 TRIMBLE NP 4.17 / SP 0.00 REC # / TYPE / VERS

38353437 ANT # / TYPE

4199581.4390 -4796736.4534 -187312.4433 APPROX POSITION XYZ

0.1100 0.0000 0.0000 ANTENNA: DELTA H/E/N

1 1 WAVELENGTH FACT L1/2

6 L1 L2 C1 P2 P1 D1 # / TYPES OF OBSERV

SNR is mapped to RINEX snr flag value [1-9] COMMENT

L1: 3 -> 1; 8 -> 5; 40 -> 9 COMMENT

L2: 1 -> 1; 5 -> 5; 60 -> 9 COMMENT

2011 6 6 0 0 0.0000000 GPS TIME OF FIRST OBS

END OF HEADER

11 6 6 0 0 0.0000000 0 10G 8G23G11G30G24G16G 7G19G13G20

126770653.23149 98782392.25546 24123659.1884 24123667.7504

120725477.49049 94071890.11747 22973274.3594 22973280.3954

109993288.64249 85709184.36947 20931010.7584 20931017.1094

128694231.57649 100281341.83847 24489689.3054 24489698.0354

105820336.35649 82457513.57648 20136921.9924 20136929.4344

121207499.32249 94447536.30147 23065010.4064 23065016.1804

114832021.032 9 89479428.186 8 21851765.313

127547422.49049 99387712.06146 24271451.6024 24271457.1804

122441818.13849 95409330.56747 23299890.2504 23299898.2464

115080458.78749 89673173.96448 21899070.7974 21899077.3714

11 6 6 0 0 5.0000000 0 10G 8G23G11G30G24G16G 7G19G13G20

126753323.77049 98768888.83146 24120361.7504 24120369.8444

3465.8924

120730163.81049 94075541.79647 22974166.9454 22974172.4144

-937.2644

110002116.06249 85716062.88347 20932691.0234 20932697.0864

-1765.4844

128702986.01049 100288163.47047 24491354.9924 24491364.2664

-1750.8874

105825603.90949 82461618.16748 20137924.4844 20137931.2424

-1053.5114

121208991.67549 94448699.17947 23065294.2194 23065300.0984

-298.4714

92

Parallelization and Implementation of Methods for Image Reconstruction

A.0.6: Example of Meteorological File

Year J.Day Mon Day h m Press TEMP RHumidity Precip WindSpeed WindDir PW CTT

2011 1.0000 1 1 0 0 995.90 25.80 81.10 0.00 1.10 101.00 -999.99 259.44

2011 1.0007 1 1 0 1 995.90 25.80 80.70 0.00 1.80 105.00 -999.99 -999.99

2011 1.0014 1 1 0 2 995.90 25.90 81.00 0.00 0.30 136.00 -999.99 -999.99

2011 1.0021 1 1 0 3 996.00 25.80 80.90 0.00 0.90 120.00 -999.99 -999.99

2011 1.0028 1 1 0 4 996.00 25.80 80.80 0.00 1.00 96.00 -999.99 -999.99

2011 1.0035 1 1 0 5 996.00 25.80 81.00 0.00 0.90 94.00 -999.99 -999.99

2011 1.0042 1 1 0 6 996.00 25.80 81.30 0.00 1.30 111.00 -999.99 -999.99

2011 1.0049 1 1 0 7 996.10 25.80 82.00 0.00 0.10 156.00 -999.99 -999.99

2011 1.0056 1 1 0 8 996.10 25.80 81.40 0.00 1.50 110.00 -999.99 -999.99

2011 1.0063 1 1 0 9 996.20 25.80 81.30 0.00 0.80 111.00 -999.99 -999.99

2011 1.0069 1 1 0 10 996.20 25.70 81.20 0.00 2.20 111.00 -999.99 -999.99

2011 1.0076 1 1 0 11 996.20 25.70 81.50 0.00 0.60 140.00 -999.99 -999.99

2011 1.0083 1 1 0 12 996.20 25.70 81.20 0.00 1.20 118.00 -999.99 -999.99

2011 1.0090 1 1 0 13 996.20 25.70 82.10 0.00 0.20 336.00 -999.99 -999.99

2011 1.0097 1 1 0 14 996.20 25.70 81.70 0.00 1.80 103.00 -999.99 -999.99

A.0.7: Example of SINEX File

%=TRO 0.00 DUT 13:104:02862 DUT 11:157:00000 11:157:86399 P MIX

*

+TROP/DESCRIPTION

*_________KEYWORD_____________ __VALUE(S)______________________________________

SAMPLING INTERVAL 300

SAMPLING TROP 300

TROP MAPPING FUNCTION GMF

ELEVATION CUTOFF ANGLE 08

SOLUTION_FIELDS_1 TROTOT STDDEV

-TROP/DESCRIPTION

*

+TROP/STA_COORDINATES

*SITE PT SOLN T __STA_X_____ __STA_Y_____ __STA_Z_____ SYSTEM REMRK

BABT A 1 P 4199580.417 -4796735.504 -187312.815 IGS00 DEOS

-TROP/STA_COORDINATES

*

+TROP/SOLUTION

*SITE ___EPOCH____ __TROTOT STD ______SINGRAD _____STD ______COSGRAD _____STD

BABT 11:156:75600 2557.69 1.8 -8.051147E-07 3.01E-07 5.434167E-07 2.19E-07

BABT 11:156:75900 2557.69 1.8 -8.030134E-07 2.95E-07 5.513513E-07 2.13E-07

BABT 11:156:76200 2557.84 1.6 -7.983172E-07 2.83E-07 5.794047E-07 2.01E-07

BABT 11:156:76500 2558.10 1.6 -8.132069E-07 2.74E-07 5.798400E-07 1.95E-07

BABT 11:156:76800 2558.22 1.6 -8.172714E-07 2.67E-07 5.672646E-07 1.90E-07

BABT 11:156:77100 2558.16 1.5 -8.081007E-07 2.62E-07 5.504190E-07 1.87E-07

BABT 11:156:77400 2558.20 1.5 -7.968851E-07 2.56E-07 5.382312E-07 1.84E-07

BABT 11:156:77700 2558.46 1.5 -8.023873E-07 2.52E-07 5.277810E-07 1.81E-07

BABT 11:156:78000 2558.93 1.4 -8.123833E-07 2.47E-07 5.083568E-07 1.77E-07

BABT 11:156:78300 2559.16 1.4 -8.073813E-07 2.42E-07 4.893996E-07 1.73E-07

BABT 11:156:78600 2559.05 1.4 -7.821076E-07 2.39E-07 4.727531E-07 1.71E-07

BABT 11:156:78900 2559.27 1.3 -7.606168E-07 2.36E-07 4.232840E-07 1.69E-07

BABT 11:156:79200 2559.35 1.3 -7.170313E-07 2.34E-07 3.708509E-07 1.68E-07

BABT 11:156:79500 2559.23 1.3 -6.388179E-07 2.32E-07 3.545411E-07 1.67E-07

BABT 11:156:79800 2559.44 1.3 -5.653471E-07 2.29E-07 3.213962E-07 1.65E-07

BABT 11:156:80100 2559.64 1.3 -4.931071E-07 2.27E-07 2.951329E-07 1.63E-07

BABT 11:156:80400 2560.03 1.3 -4.292869E-07 2.24E-07 2.500323E-07 1.62E-07

BABT 11:156:80700 2560.68 1.3 -3.659333E-07 2.20E-07 2.084826E-07 1.60E-07

BABT 11:156:81000 2561.83 1.3 -2.970185E-07 2.17E-07 1.960727E-07 1.58E-07

BABT 11:156:81300 2562.78 1.3 -2.411207E-07 2.13E-07 1.547433E-07 1.57E-07

BABT 11:156:81600 2562.74 1.3 -2.337512E-07 2.10E-07 3.413743E-08 1.57E-07

BABT 11:156:81900 2562.80 1.3 -2.253639E-07 2.07E-07 -8.871019E-08 1.56E-07

BABT 11:156:82200 2563.38 1.3 -2.652816E-07 2.05E-07 -1.549358E-07 1.55E-07

BABT 11:156:82500 2563.61 1.3 -2.897200E-07 2.04E-07 -2.344732E-07 1.56E-07

93

Parallelization and Implementation of Methods for Image Reconstruction

94

	Introduction
	Objectives
	Main Contributions
	Dissertation Structure

	Algebraic Reconstruction
	Image and projection representation
	Techniques
	ART methods
	SIRT methods

	Summary

	State of the Art
	GNSS Water Vapor Tomography
	CPU Algebraic Reconstruction Algorithms Parallelization
	GPU Algebraic Reconstruction Algorithms Parallelization
	Hybrid CPU and GPU Algebraic Reconstruction Algorithms Parallelization
	Summary

	Parallelizing Algebraic Reconstruction
	Multi-threading Libraries
	OpenMP
	Intel Threading Building Blocks
	CUDA

	Underlying linear algebra libraries
	Basic Algebra / Math library
	Eigen3 library
	CUBLAS library
	Other linear algebra libraries

	Linear Algebra Parallelization
	Parallelization OMP
	Parallelization TBB
	Parallelization Eigen3
	Parallelization CUDA / CUBLAS
	Results

	Algebraic Reconstruction Algorithms Parallelization
	Validation
	Results

	Summary

	GNSS and Water Vapor
	GNSS Overview
	Water Vapor Overview
	GNSS Water Vapor Estimation
	GNSS Water Vapor Image Reconstruction
	Summary

	SEGAL GNSS Water Vapor Reconstruction Image Software
	SWART Components
	WaterVaporReconstruction Component
	SlantDelayJoinProcessing Component
	GridRayIntersection Component
	AlgebraicAlgorithms Component
	PlotWaterVapor Component

	Comparison with LOFTT_K
	Synthetic data results
	Results of the Case Studies
	Marseilles Network
	Belem Network

	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	References
	SWART Files

