2,142 research outputs found

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    A novel technique for load frequency control of multi-area power systems

    Get PDF
    In this paper, an adaptive type-2 fuzzy controller is proposed to control the load frequency of a two-area power system based on descending gradient training and error back-propagation. The dynamics of the system are completely uncertain. The multilayer perceptron (MLP) artificial neural network structure is used to extract Jacobian and estimate the system model, and then, the estimated model is applied to the controller, online. A proportional–derivative (PD) controller is added to the type-2 fuzzy controller, which increases the stability and robustness of the system against disturbances. The adaptation, being real-time and independency of the system parameters are new features of the proposed controller. Carrying out simulations on New England 39-bus power system, the performance of the proposed controller is compared with the conventional PI, PID and internal model control based on PID (IMC-PID) controllers. Simulation results indicate that our proposed controller method outperforms the conventional controllers in terms of transient response and stability

    Elephant Search with Deep Learning for Microarray Data Analysis

    Full text link
    Even though there is a plethora of research in Microarray gene expression data analysis, still, it poses challenges for researchers to effectively and efficiently analyze the large yet complex expression of genes. The feature (gene) selection method is of paramount importance for understanding the differences in biological and non-biological variation between samples. In order to address this problem, a novel elephant search (ES) based optimization is proposed to select best gene expressions from the large volume of microarray data. Further, a promising machine learning method is envisioned to leverage such high dimensional and complex microarray dataset for extracting hidden patterns inside to make a meaningful prediction and most accurate classification. In particular, stochastic gradient descent based Deep learning (DL) with softmax activation function is then used on the reduced features (genes) for better classification of different samples according to their gene expression levels. The experiments are carried out on nine most popular Cancer microarray gene selection datasets, obtained from UCI machine learning repository. The empirical results obtained by the proposed elephant search based deep learning (ESDL) approach are compared with most recent published article for its suitability in future Bioinformatics research.Comment: 12 pages, 5 Tabl

    A Comprehensive Review of Recent Variants and Modifications of Firefly Algorithm

    Get PDF
    Swarm intelligence (SI) is an emerging field of biologically-inspired artificial intelligence based on the behavioral models of social insects such as ants, bees, wasps, termites etc. Swarm intelligence is the discipline that deals with natural and artificial systems composed of many individuals that coordinate using decentralized control and self-organization. Most SI algorithms have been developed to address stationary optimization problems and hence, they can converge on the (near-) optimum solution efficiently. However, many real-world problems have a dynamic environment that changes over time. In the last two decades, there has been a growing interest of addressing Dynamic Optimization Problems using SI algorithms due to their adaptation capabilities. This paper presents a broad review on two SI algorithms: 1) Firefly Algorithm (FA) 2) Flower Pollination Algorithm (FPA). FA is inspired from bioluminescence characteristic of fireflies. FPA is inspired from the the pollination behavior of flowering plants. This article aims to give a detailed analysis of different variants of FA and FPA developed by parameter adaptations, modification, hybridization as on date. This paper also addresses the applications of these algorithms in various fields. In addition, literatures found that most of the cases that used FA and FPA technique have outperformed compare to other metaheuristic algorithms

    Dynamic performance improvement of an ultra-lift Luo DC–DC converter by using a type-2 fuzzy neural controller

    Full text link
    © 2018 Due to the uncertainty associated with the structure and electrical elements of DC–DC converters and the nonlinear performance of these modules, designing an effective controller is highly complicated and also technically challenging. This paper employs a new control approach based on type-2 fuzzy neural controller (T2FNC) in order to improve the dynamic response of an ultra-lift Luo DC–DC converter under different operational conditions. The proposed controller can rapidly stabilize the output voltage of converter to expected values by tuning the converter switching duty cycle. This controller can tackle the uncertainties associated with the structure of converters, measured control signals and measuring devices. Moreover, a new intelligent method based on firefly algorithm is applied to tune the parameters of T2FNC. In order to demonstrate the effectiveness of the proposed control approach, the proposed controller is compared to PI and fuzzy controllers under different operational conditions. Results validate efficiency of proposed T2FNC

    Studija o rekonfiguraciji mreže distributivnog sustava korištenjem adaptivnog modificiranog \u27firefly\u27 algoritma

    Get PDF
    This paper suggests a new method based on the probabilistic load flow and Adaptive Modified Firefly Algorithm (AMFA) in order to evaluate the optimal management of the Distribution Feeder Reconfiguration (DFR) operation problems by considering a few Wind Turbines (WTs) in system and performance satisfaction of the proposed method is examined on the IEEE 32-bus standard test system. The significant objective functions in this paper includes: 1) Minimizing the total cost of active power losses in the network, 2) voltage profile improvement, 3) decreasing the present network total costs such as power production cost by the main network and distributed generations. Furthermore, a new stochastic solution based on Point Estimate Method (PEM) is proposed to effectively deal with the uncertainty related to the important random parameters such as active and reactive loads in addition to the wind speed variations. Thus, the suggested probabilistic framework must be considered in order to solve the reconfiguration problem with regard to uncertainties which caused by the wind turbines.U radu se predlaže novi pristup za optimalno rekonfiguriranje napojnih vodova u elektroenergetskim distributivnim sustavima temeljen na adaptivnom modificiranom \u27firefly\u27 algoritmu. Primjena obuhvaća problem s par vjetroagregata u sustavu, a učinkovitost je provjerena korištenjem standardnog testa za IEEE 32 sabirnicu. Značajniji razmatrani kriteriji su: 1) smanjenje ukupne cijene gubitaka aktivne snage u mreži, 2) poboljšanje profila napona, 3) smanjenje ukupne cijene postojeće mreže kroz smanjenje cijene proizvodnje snage glavne mreže i distribuiranih izvora. Nadalje, novo stohastičko rješenje temeljeno na \u27Point estimate\u27 metodi predloženo je za učinkovito savladavanje nesigurnosti povezanom s važnim stohastičkim parametrima kao što su aktivni i reaktivni teret u dodatku s varijacijama brzine vjetra. Predloženi stohastički okvir mora biti uzet u obzir prilikom rješavanja problema rekonfiguracije s obzirom na neodređenosti koje proizlaze iz vjetroagregata

    Diabetes Classification using Fuzzy Logic and Adaptive Cuckoo Search Optimization Techniques

    Get PDF
    Diabetic patients can be detected now a days globally. It�s main reason of growth is the incapability of body to produce enough insulin. So, majority of people today are either diabetic or pre-diabetic. Therefore, it is very much required to develop a system that can detect and classify the diabetes in optimal time period effectively and efficiently. So, proposed system make use of fuzzy logic and adaptive cuckoo search optimization algorithm (ACS) for diabetes classification. This work has been carried out in various steps. Firstly, the training dataset�s dimensionality reduction and optimal fuzzy rule generation via ACS optimization technique. Next is fuzzy model design and testing of fuzzified testing dataset. In this paper, outcome of FF-BAT algorithm has been compared with ACS algorithm. Experimental results were examined and it is noticed that ACS algorithm seems to perform better than FF-BAT algorithm
    corecore