3,017 research outputs found

    One-dimensional many-body entangled open quantum systems with tensor network methods

    Full text link
    We present a collection of methods to simulate entangled dynamics of open quantum systems governed by the Lindblad equation with tensor network methods. Tensor network methods using matrix product states have been proven very useful to simulate many-body quantum systems and have driven many innovations in research. Since the matrix product state design is tailored for closed one-dimensional systems governed by the Schr\"odinger equation, the next step for many-body quantum dynamics is the simulation of open quantum systems. We review the three dominant approaches to the simulation of open quantum systems via the Lindblad master equation: quantum trajectories, matrix product density operators, and locally purified tensor networks. Selected examples guide possible applications of the methods and serve moreover as a benchmark between the techniques. These examples include the finite temperature states of the transverse quantum Ising model, the dynamics of an exciton traveling under the influence of spontaneous emission and dephasing, and a double-well potential simulated with the Bose-Hubbard model including dephasing. We analyze which approach is favorable leading to the conclusion that a complete set of all three methods is most beneficial, push- ing the limits of different scenarios. The convergence studies using analytical results for macroscopic variables and exact diagonalization methods as comparison, show, for example, that matrix product density operators are favorable for the exciton problem in our study. All three methods access the same library, i.e., the software package Open Source Matrix Product States, allowing us to have a meaningful comparison between the approaches based on the selected examples. For example, tensor operations are accessed from the same subroutines and with the same optimization eliminating one possible bias in a comparison of such numerical methods.Comment: 24 pages, 8 figures. Small extension of time evolution section and moving quantum simulators to introduction in comparison to v

    The Tensor Networks Anthology: Simulation techniques for many-body quantum lattice systems

    Full text link
    We present a compendium of numerical simulation techniques, based on tensor network methods, aiming to address problems of many-body quantum mechanics on a classical computer. The core setting of this anthology are lattice problems in low spatial dimension at finite size, a physical scenario where tensor network methods, both Density Matrix Renormalization Group and beyond, have long proven to be winning strategies. Here we explore in detail the numerical frameworks and methods employed to deal with low-dimension physical setups, from a computational physics perspective. We focus on symmetries and closed-system simulations in arbitrary boundary conditions, while discussing the numerical data structures and linear algebra manipulation routines involved, which form the core libraries of any tensor network code. At a higher level, we put the spotlight on loop-free network geometries, discussing their advantages, and presenting in detail algorithms to simulate low-energy equilibrium states. Accompanied by discussions of data structures, numerical techniques and performance, this anthology serves as a programmer's companion, as well as a self-contained introduction and review of the basic and selected advanced concepts in tensor networks, including examples of their applications.Comment: 115 pages, 56 figure

    The density-matrix renormalization group

    Full text link
    The density-matrix renormalization group (DMRG) is a numerical algorithm for the efficient truncation of the Hilbert space of low-dimensional strongly correlated quantum systems based on a rather general decimation prescription. This algorithm has achieved unprecedented precision in the description of one-dimensional quantum systems. It has therefore quickly acquired the status of method of choice for numerical studies of one-dimensional quantum systems. Its applications to the calculation of static, dynamic and thermodynamic quantities in such systems are reviewed. The potential of DMRG applications in the fields of two-dimensional quantum systems, quantum chemistry, three-dimensional small grains, nuclear physics, equilibrium and non-equilibrium statistical physics, and time-dependent phenomena is discussed. This review also considers the theoretical foundations of the method, examining its relationship to matrix-product states and the quantum information content of the density matrices generated by DMRG.Comment: accepted by Rev. Mod. Phys. in July 2004; scheduled to appear in the January 2005 issu

    Efficient Diagonalization of Kicked Quantum Systems

    Full text link
    We show that the time evolution operator of kicked quantum systems, although a full matrix of size NxN, can be diagonalized with the help of a new method based on a suitable combination of fast Fourier transform and Lanczos algorithm in just N^2 ln(N) operations. It allows the diagonalization of matrizes of sizes up to N\approx 10^6 going far beyond the possibilities of standard diagonalization techniques which need O(N^3) operations. We have applied this method to the kicked Harper model revealing its intricate spectral properties.Comment: Text reorganized; part on the kicked Harper model extended. 13 pages RevTex, 1 figur

    Krylov-space approach to the equilibrium and the nonequilibrium single-particle Green's function

    Full text link
    The zero-temperature single-particle Green's function of correlated fermion models with moderately large Hilbert-space dimensions can be calculated by means of Krylov-space techniques. The conventional Lanczos approach consists of finding the ground state in a first step, followed by an approximation for the resolvent of the Hamiltonian in a second step. We analyze the character of this approximation and discuss a numerically exact variant of the Lanczos method which is formulated in the time domain. This method is extended to get the nonequilibrium single-particle Green's function defined on the Keldysh-Matsubara contour in the complex time plane. The proposed method will be important as an exact-diagonalization solver in the context of self-consistent or variational cluster-embedding schemes. For the recently developed nonequilibrium cluster-perturbation theory, we discuss the efficient implementation and demonstrate the feasibility of the Krylov-based solver. The dissipation of a strong local magnetic excitation into a non-interacting bath is considered as an example for applications.Comment: 20 pages, 5 figures, v2 with minor corrections, JPCM in pres

    Block Circulant and Toeplitz Structures in the Linearized Hartree–Fock Equation on Finite Lattices: Tensor Approach

    Get PDF
    This paper introduces and analyses the new grid-based tensor approach to approximate solution of the elliptic eigenvalue problem for the 3D lattice-structured systems. We consider the linearized Hartree-Fock equation over a spatial L1Ă—L2Ă—L3L_1\times L_2\times L_3 lattice for both periodic and non-periodic problem setting, discretized in the localized Gaussian-type orbitals basis. In the periodic case, the Galerkin system matrix obeys a three-level block-circulant structure that allows the FFT-based diagonalization, while for the finite extended systems in a box (Dirichlet boundary conditions) we arrive at the perturbed block-Toeplitz representation providing fast matrix-vector multiplication and low storage size. The proposed grid-based tensor techniques manifest the twofold benefits: (a) the entries of the Fock matrix are computed by 1D operations using low-rank tensors represented on a 3D grid, (b) in the periodic case the low-rank tensor structure in the diagonal blocks of the Fock matrix in the Fourier space reduces the conventional 3D FFT to the product of 1D FFTs. Lattice type systems in a box with Dirichlet boundary conditions are treated numerically by our previous tensor solver for single molecules, which makes possible calculations on rather large L1Ă—L2Ă—L3L_1\times L_2\times L_3 lattices due to reduced numerical cost for 3D problems. The numerical simulations for both box-type and periodic LĂ—1Ă—1L\times 1\times 1 lattice chain in a 3D rectangular "tube" with LL up to several hundred confirm the theoretical complexity bounds for the block-structured eigenvalue solvers in the limit of large LL.Comment: 30 pages, 12 figures. arXiv admin note: substantial text overlap with arXiv:1408.383

    Density Matrix Renormalization Group for Dummies

    Get PDF
    We describe the Density Matrix Renormalization Group algorithms for time dependent and time independent Hamiltonians. This paper is a brief but comprehensive introduction to the subject for anyone willing to enter in the field or write the program source code from scratch.Comment: 29 pages, 9 figures. Published version. An open source version of the code can be found at http://qti.sns.it/dmrg/phome.htm

    A Sparse SCF algorithm and its parallel implementation: Application to DFTB

    Full text link
    We present an algorithm and its parallel implementation for solving a self consistent problem as encountered in Hartree Fock or Density Functional Theory. The algorithm takes advantage of the sparsity of matrices through the use of local molecular orbitals. The implementation allows to exploit efficiently modern symmetric multiprocessing (SMP) computer architectures. As a first application, the algorithm is used within the density functional based tight binding method, for which most of the computational time is spent in the linear algebra routines (diagonalization of the Fock/Kohn-Sham matrix). We show that with this algorithm (i) single point calculations on very large systems (millions of atoms) can be performed on large SMP machines (ii) calculations involving intermediate size systems (1~000--100~000 atoms) are also strongly accelerated and can run efficiently on standard servers (iii) the error on the total energy due to the use of a cut-off in the molecular orbital coefficients can be controlled such that it remains smaller than the SCF convergence criterion.Comment: 13 pages, 11 figure
    • …
    corecore