572 research outputs found

    Ultra Wide Band Multiple Access Performance Using TH-PPM and DS-BPSK Modulations

    Get PDF
    The increasing demand for portable, high data rate communications has focused much attention on wireless technology. Ultra Wide Band (UWB) waveforms have the ability to deliver megabits of information while maintaining low average power consumption. In accordance with recent FCC ruling, UWB systems are now allowed to operate in the unlicensed spectrum of 3.1 to 10.6 GHz, motivating renewed interest in the forty year old concept of impulse radio. Gaussian monocycles produce UWB waveforms occupying large bandwidths with multiple access (MA) capability enabled by spread spectrum techniques. Time Hopping (TH) and Direct Sequence (DS) modulations are considered here for UWB MA applications. This work extends Gold coding results and characterizes UWB performance using Simulated Annealing (SA) and Random Integer (RI) codes for TH and DS UWB applications. TH-PPM and DS-BPSK performance is evaluated using simulated probability of bit error P(sub b) under MA interference (MAI), multipath interference (MPI), and narrow band interference (NBI) conditions for synchronous and asynchronous networks

    UWB communication systems acquisition at symbol rate sampling for IEEE standard channel models

    Get PDF
    For ultra-wideband (UWB) communications, acquisition is challenging. The reason is from the ultra short pulse shape and ultra dense multipath interference. Ultra short pulse indicates the acquisition region is very narrow. Sampling is another challenge for UWB design due to the need for ultra high speed analog-to digital converter.A sub-optimum and under-sampling scheme using pilot codes as transmitted reference is proposed here for acquisition. The sampling rate for the receiver is at the symbol rate. A new architecture, the reference aided matched filter is studied in this project. The reference aided matched filter method avoids using complex rake receiver to estimate channel parameters and high sampling rate for interpolation. A limited number of matched filters are used as a filter bank to search for the strongest path. Timing offset for acquisition is then estimated and passed to an advanced verification algorithm. For optimum performance of acquisition, the adaptive post detection integration is proposed to solve the problem from dense inter-symbol interference during the acquisition. A low-complex early-late gate tracking loop is one element of the adaptive post detection integration. This tracking scheme assists in improving acquisition accuracy. The proposed scheme is evaluated using Matlab Simulink simulations in term of mean acquisition time, system performance and false alarm. Simulation results show proposed algorithm is very effective in ultra dense multipath channels. This research proves reference aided acquisition with tracking loop is promising in UWB application

    On an approach to provide space diversity to an ultra wideband time hopping pulse position modulated wireless communication system

    Get PDF
    The hypothesis question, which is addressed in this PhD dissertation, is how to use two transmission antennas in an Ultra Wide Band Time Hopping Pulse Position Modulation system to take advantage of space diversity in such a way as to not significantly degrade the communication link compared to using only one transmit antenna. In answering the hypothesis question, this dissertation proposes a novel technique, based on Space Time Spreading, to allow an Ultra Wideband Time Hopping Pulse Position Modulation system to obtain full advantage from space diversity using two transmit antennas and one receive antenna, showing how such a Multiple Input Multiple Output system is designed. This is achieved with the added advantage of transmitting the same two symbols simultaneously on each antenna link. This means that for the proposed system, should a fade occur on one of the two antenna links, the two symbols transmitted will still be received with a slight increased cost in average Bit Error Rate (BER) performance as Signal to Noise Ratio (SNR) or measured Eb/No is increased. Results are first provided for wideband Space Time Spreading in the presence of Multiple Access Interference when using two, four and eight transmit antennas. A system is developed in simulation using modules provided by MATLABs Simulink program. It is then shown that using low correlation Wysocki spreading code set results in an improved BER performance compared to the more often used Walsh Hadamard spreading code set. A Simulink Ultra Wide Band Pulse Position Modulation Single Input Single Output system is developed and validated against published peer reviewed material. This is then modified to consider the use of Space Time Spreading in a Single Input Single Output system and it is shown that improved performance over an Ultra Wide Band Pulse Position Modulated Single Input Single Output is possible. It is also shown that this improvement allows the transmission of two symbols in the same time that the original system only transmits one symbol. The thesis also investigates a system which uses two transmit antennas but a hard decision is made on a chip by chip basis. Its performance, compared to an equivalent Single Input Single Output comparable system, is suboptimal. It does, however, have the advantage that it sends two symbols in the same time that the equivalent Single Input Single output Ultra Wide Band Pulse Position Modulation system sends one, and its implementation is simpler to codify. Also, it has the feature that both symbols are sent simultaneously on each antenna link. The simulator is then modified to make a hard decision after all chips of a spreading sequence for two antennas are received and it is shown that this system, in simulation and analysis, has a similar performance to that for a comparable Single Input Single Output system with the added advantage that both antenna links send the same two symbols simultaneously. It is further demonstrated in simulation and analysis that such systems can be affected by Multiple Access Interference. In addition, it is shown, using simulation, that the choice of spreading sequence set does have an impact on the average BER performance of the proposed Space Time Spreading Time Hopping Ultra Wideband Pulse Position Modulation system. The thesis finally proposes some extensions using the developed simulator which are outlined in future work

    A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals

    Get PDF
    Fourth generation (4G) communications will support many capabilities while providing universal, high speed access. One potential enabler for these capabilities is software defined radio (SDR). When controlled by cognitive radio (CR) principles, the required waveform diversity is achieved via a synergistic union called CR-based SDR. Research is rapidly progressing in SDR hardware and software venues, but current CR-based SDR research lacks the theoretical foundation and analytic framework to permit efficient implementation. This limitation is addressed here by introducing a general framework for analyzing, characterizing, and implementing spectrally modulated, spectrally encoded (SMSE) signals within CR-based SDR architectures. Given orthogonal frequency division multiplexing (OFDM) is a 4G candidate signal, OFDM-based signals are collectively classified as SMSE since modulation and encoding are spectrally applied. The proposed framework provides analytic commonality and unification of SMSE signals. Applicability is first shown for candidate 4G signals, and resultant analytic expressions agree with published results. Implementability is then demonstrated in multiple coexistence scenarios via modeling and simulation to reinforce practical utility

    Intelligent Processing in Wireless Communications Using Particle Swarm Based Methods

    Get PDF
    There are a lot of optimization needs in the research and design of wireless communica- tion systems. Many of these optimization problems are Nondeterministic Polynomial (NP) hard problems and could not be solved well. Many of other non-NP-hard optimization problems are combinatorial and do not have satisfying solutions either. This dissertation presents a series of Particle Swarm Optimization (PSO) based search and optimization algorithms that solve open research and design problems in wireless communications. These problems are either avoided or solved approximately before. PSO is a bottom-up approach for optimization problems. It imposes no conditions on the underlying problem. Its simple formulation makes it easy to implement, apply, extend and hybridize. The algorithm uses simple operators like adders, and multipliers to travel through the search space and the process requires just five simple steps. PSO is also easy to control because it has limited number of parameters and is less sensitive to parameters than other swarm intelligence algorithms. It is not dependent on initial points and converges very fast. Four types of PSO based approaches are proposed targeting four different kinds of problems in wireless communications. First, we use binary PSO and continuous PSO together to find optimal compositions of Gaussian derivative pulses to form several UWB pulses that not only comply with the FCC spectrum mask, but also best exploit the avail- able spectrum and power. Second, three different PSO based algorithms are developed to solve the NLOS/LOS channel differentiation, NLOS range error mitigation and multilateration problems respectively. Third, a PSO based search method is proposed to find optimal orthogonal code sets to reduce the inter carrier interference effects in an frequency redundant OFDM system. Fourth, a PSO based phase optimization technique is proposed in reducing the PAPR of an frequency redundant OFDM system. The PSO based approaches are compared with other canonical solutions for these communication problems and showed superior performance in many aspects. which are confirmed by analysis and simulation results provided respectively. Open questions and future Open questions and future works for the dissertation are proposed to serve as a guide for the future research efforts

    Characterization of Ultra Wideband Multiple Access Performance Using Time Hopped-Biorthogonal Pulse Position Modulation

    Get PDF
    The FCC\u27s release of its UWB First Report and Order in April 2002 spawned renewed interest in impulse signaling research. This work combines Time Hopped (TH) multiple access coding with 4-ary UWB Biorthogonal Pulse Position Modulation (TH-BPPM). Multiple access performance is evaluated in a multipath environment for both synchronous and asynchronous networks. Fast time hopping is implemented by replicating and hopping each TH-BPPM symbol NH times. Bit error expressions are derived for biorthogonal TH-BPPM signaling and results compared with previous orthogonal TH-PPM work. Without fast time hopping (NH = 1), the biorthogonal TH-BPPM technique provided gains equivalent to Gray-coded QPSK; improved BER at a given Eb/No and an effective doubling of the data rate. A synchronized network containing up to NT = 15 transmitters yields an average BER improvement (relative to an asynchronous network) of approximately -6.30 dB with orthogonal TH-PPM and approximately 5.9 dB with biorthogonal TH-BPPM. Simulation results indicate that doubling the number of multipath replications (NMP) reduces BER by approximately 3.6 dB. Network performance degrades as NT and NMP increase and synchronized network advantages apparent in the NMP = 0 case diminish with multipath interference present. With fast time hopping (NH \u3e 1) improves BER performance whenever NMP \u3c NH while reducing effective data rate by 1/NH. Compared to the NH = 1 synchronized network, TH-BPPM modulation using NH = 10 provides approximately 5.9 dB improvement at NMP = 0 and approximately 3.6 dB improvement at NMP = 5. At NMP = 10, the BER for the hopped and NH = 1 cases are not statistically different; with NH = 10 hops, BER improvement varies from approximately 0.57 to 0.14 dB (minimal variation between synchronous and asynchronous network performance)

    Self-concatenated coding for wireless communication systems

    No full text
    In this thesis, we have explored self-concatenated coding schemes that are designed for transmission over Additive White Gaussian Noise (AWGN) and uncorrelated Rayleigh fading channels. We designed both the symbol-based Self-ConcatenatedCodes considered using Trellis Coded Modulation (SECTCM) and bit-based Self- Concatenated Convolutional Codes (SECCC) using a Recursive Systematic Convolutional (RSC) encoder as constituent codes, respectively. The design of these codes was carried out with the aid of Extrinsic Information Transfer (EXIT) charts. The EXIT chart based design has been found an efficient tool in finding the decoding convergence threshold of the constituent codes. Additionally, in order to recover the information loss imposed by employing binary rather than non-binary schemes, a soft decision demapper was introduced in order to exchange extrinsic information withthe SECCC decoder. To analyse this information exchange 3D-EXIT chart analysis was invoked for visualizing the extrinsic information exchange between the proposed Iteratively Decoding aided SECCC and soft-decision demapper (SECCC-ID). Some of the proposed SECTCM, SECCC and SECCC-ID schemes perform within about 1 dB from the AWGN and Rayleigh fading channels’ capacity. A union bound analysis of SECCC codes was carried out to find the corresponding Bit Error Ratio (BER) floors. The union bound of SECCCs was derived for communications over both AWGN and uncorrelated Rayleigh fading channels, based on a novel interleaver concept.Application of SECCCs in both UltraWideBand (UWB) and state-of-the-art video-telephone schemes demonstrated its practical benefits.In order to further exploit the benefits of the low complexity design offered by SECCCs we explored their application in a distributed coding scheme designed for cooperative communications, where iterative detection is employed by exchanging extrinsic information between the decoders of SECCC and RSC at the destination. In the first transmission period of cooperation, the relay receives the potentially erroneous data and attempts to recover the information. The recovered information is then re-encoded at the relay using an RSC encoder. In the second transmission period this information is then retransmitted to the destination. The resultant symbols transmitted from the source and relay nodes can be viewed as the coded symbols of a three-component parallel-concatenated encoder. At the destination a Distributed Binary Self-Concatenated Coding scheme using Iterative Decoding (DSECCC-ID) was employed, where the two decoders (SECCC and RSC) exchange their extrinsic information. It was shown that the DSECCC-ID is a low-complexity scheme, yet capable of approaching the Discrete-input Continuous-output Memoryless Channels’s (DCMC) capacity.Finally, we considered coding schemes designed for two nodes communicating with each other with the aid of a relay node, where the relay receives information from the two nodes in the first transmission period. At the relay node we combine a powerful Superposition Coding (SPC) scheme with SECCC. It is assumed that decoding errors may be encountered at the relay node. The relay node then broadcasts this information in the second transmission period after re-encoding it, again, using a SECCC encoder. At the destination, the amalgamated block of Successive Interference Cancellation (SIC) scheme combined with SECCC then detects and decodes the signal either with or without the aid of a priori information. Our simulation results demonstrate that the proposed scheme is capable of reliably operating at a low BER for transmission over both AWGN and uncorrelated Rayleigh fading channels. We compare the proposed scheme’s performance to a direct transmission link between the two sources having the same throughput

    IA-OPD : an optimized orthogonal pulse design scheme for waveform division multiple access UWB systems

    Get PDF
    A new design scheme of orthogonal pulses is proposed for waveform division multiple access ultra-wideband (WDMA-UWB) systems. In order to achieve WDMA and to improve user capacity, the proposed method, termed as interference alignment based orthogonal pulse design (IA-OPD), employs combined orthogonal wavelet functions in the pulse design. The combination coefficients are optimized by using interference alignment. Due to the reciprocity between transmitted and local template signals, the iterative process based on maximum signal to interference plus noise ratio (Max-SINR) criterion can be used to solve the optimization problem in interference alignment. Numerical results demonstrate that the optimized orthogonal pulses provide excellent performances in terms of multiple access interference (MAI) suppression, user capacity and near-far resistance without using any multiuser detection (MUD) techniques. Thus, the IA-OPD scheme can be used to efficiently design a large number of orthogonal pulses for multiuser WDMA-UWB systems with low computational complexity and simple transceiver structure
    • …
    corecore