236 research outputs found

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Tag-assisted social-aware opportunistic device-to-device sharing for traffic offloading in mobile social networks

    Get PDF
    Within recent years, the service demand for rich multimedia over mobile networks has kept being soaring at a tremendous pace. To solve the critical problem of mobile traffic explosion, substantial efforts have been made from researchers to try to offload the mobile traffic from infrastructured cellular links to direct short-range communications locally among nearby users. In this article, we discuss the potential of combining users’ online and offline social impacts to exploit the device-to-device (D2D) opportunistic sharing for offloading the mobile traffic. We propose Tag-Assisted Social-Aware D2D sharing framework, TASA, with corresponding optimization models, architecture design, and communication protocols. Through extensive simulations based on real data traces, we demonstrate that TASA can offload up to 78.9% of the mobile traffic effectively

    Context-Aware Configuration and Management of WiFi Direct Groups for Real Opportunistic Networks

    Full text link
    Wi-Fi Direct is a promising technology for the support of device-to-device communications (D2D) on commercial mobile devices. However, the standard as-it-is is not sufficient to support the real deployment of networking solutions entirely based on D2D such as opportunistic networks. In fact, WiFi Direct presents some characteristics that could limit the autonomous creation of D2D connections among users' personal devices. Specifically, the standard explicitly requires the user's authorization to establish a connection between two or more devices, and it provides a limited support for inter-group communication. In some cases, this might lead to the creation of isolated groups of nodes which cannot communicate among each other. In this paper, we propose a novel middleware-layer protocol for the efficient configuration and management of WiFi Direct groups (WiFi Direct Group Manager, WFD-GM) to enable autonomous connections and inter-group communication. This enables opportunistic networks in real conditions (e.g., variable mobility and network size). WFD-GM defines a context function that takes into account heterogeneous parameters for the creation of the best group configuration in a specific time window, including an index of nodes' stability and power levels. We evaluate the protocol performances by simulating three reference scenarios including different mobility models, geographical areas and number of nodes. Simulations are also supported by experimental results related to the evaluation in a real testbed of the involved context parameters. We compare WFD-GM with the state-of-the-art solutions and we show that it performs significantly better than a Baseline approach in scenarios with medium/low mobility, and it is comparable with it in case of high mobility, without introducing additional overhead.Comment: Accepted by the IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), 201

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    Seed selection for data offloading based on social and interest graphs

    Full text link
    Copyright © 2018 Tech Science Press The explosive growth of mobile data demand is becoming an increasing burden on current cellular network. To address this issue, we propose a solution of opportunistic data offloading for alleviating overloaded cellular traffic. The principle behind it is to select a few important users as seeds for data sharing. The three critical steps are detailed as follows. We first explore individual interests of users by the construction of user profiles, on which an interest graph is built by Gaussian graphical modeling. We then apply the extreme value theory to threshold the encounter duration of user pairs. So, a contact graph is generated to indicate the social relationships of users. Moreover, a contact-interest graph is developed on the basis of the social ties and individual interests of users. Corresponding on different graphs, three strategies are finally proposed for seed selection in an aim to maximize overloaded cellular data. We evaluate the performance of our algorithms by the trace data of real-word mobility. It demonstrates the effectiveness of the strategy of taking social relationships and individual interests into account

    Architecture design for disaster resilient management network using D2D technology

    Get PDF
    Huge damages from natural disasters, such as earthquakes, floods, landslide, tsunamis, have been reported in recent years, claiming many lives, rendering millions homeless and causing huge financial losses worldwide. The lack of effective communication between the public rescue/safety agencies, rescue teams, first responders and trapped survivors/victims makes the situation even worse. Factors like dysfunctional communication networks, limited communications capacity, limited resources/services, data transformation and effective evaluation, energy, and power deficiency cause unnecessary hindrance in rescue and recovery services during a disaster. The new wireless communication technologies are needed to enhance life-saving capabilities and rescue services. In general, in order to improve societal resilience towards natural catastrophes and develop effective communication infrastructure, innovative approaches need to be initiated to provide improved quality, better connectivity in the events of natural and human disasters. In this thesis, a disaster resilient network architecture is proposed and analysed using multi-hop communications, clustering, energy harvesting, throughput optimization, reliability enhancement, adaptive selection, and low latency communications. It also examines the importance of mode selection, power management, frequency and time resource allocation to realize the promises of Long-term Evolution (LTE) Device to Device (D2D) communication. In particular, to support resilient and energy efficient communication in disaster-affected areas. This research is examined by thorough and vigorous simulations and validated through mathematical modelling. Overall, the impact of this research is twofold: i) it provides new technologies for effective inter- and intra-agency coordination system during a disaster event by establishing a stronger and resilient communication; and ii) It offers a potential solution for stakeholders such as governments, rescue teams, and general public with new informed information on how to establish effective policies to cope with challenges before, during and after the disaster events

    Service Migration from Cloud to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support.

    Get PDF
    A wide range of multimedia services is expected to be offered for mobile users via various wireless access networks. Even the integration of Cloud Computing in such networks does not support an adequate Quality of Experience (QoE) in areas with high demands for multimedia contents. Fog computing has been conceptualized to facilitate the deployment of new services that cloud computing cannot provide, particularly those demanding QoE guarantees. These services are provided using fog nodes located at the network edge, which is capable of virtualizing their functions/applications. Service migration from the cloud to fog nodes can be actuated by request patterns and the timing issues. To the best of our knowledge, existing works on fog computing focus on architecture and fog node deployment issues. In this article, we describe the operational impacts and benefits associated with service migration from the cloud to multi-tier fog computing for video distribution with QoE support. Besides that, we perform the evaluation of such service migration of video services. Finally, we present potential research challenges and trends

    Wireless social networks: a survey of recent advances, applications and challenges

    Get PDF
    With the ubiquitous use of smartphones and other connected pieces of equipment, the number of devices connected to the Internet is exponentially growing. This will test the efficiency of the envisioned 5G network architectures for data acquisition and its storage. It is a common observation that the communication between smart devices is typically influenced by their social relationship. This suggests that the theory of social networks can be leveraged to improve the quality of service for such communication links. In fact, the social networking concepts of centrality and community have been investigated for an efficient realization of novel wireless network architectures. This work provides a comprehensive introduction to social networks and reviews the recent literature on the application of social networks in wireless communications. The potential challenges in communication network design are also highlighted, for a successful implementation of social networking strategies. Finally, some future directions are discussed for the application of social networking strategies to emerging wireless technologies such as non-orthogonal multiple access and visible light communications
    corecore